enfhu:

Jasper van Baten — AmsterCHEM

NUSIT BINDING ROR ClEJE]IFay

CAPE-OPEN Annual Meeting 2025, October 30-31

Good afternoon. My name is Jasper.

Today I will be talking about COBIA. And about RUST. And tying the two things
together.

tailor-made engineering software solutions

Go g|e most popular programming languages X Q

Q Al () Images [3) Videos (@ News [Books ¢ More Tools

bout 334,000,000 results (0.86 seconds,

C is the most widely popular programming language in TIOBE Index, while Python is the
most searched language in PYPL Index

PYPL Index (US)

Aug 2021 Programming language Share
1 Python 3147 %
2 Java 19.14 %
3 JavaScript 749 %
4 C# 6.24 %

24 more rows + Aug 11

I presented the Python unit operation in 2021 — and I started with this image taken
from google. This it to make the point that doing something with Python is pretty
much needed at this point in time.

amstercHem

tailor-made engineering software solutions

COBIA Language bindings

« C++ (the main language binding)
» Other language bindings from CO-LaN
pending business justification
« 2023: Flat C language binding was
added
* Any language that provides interop
with C
+ rust: bindgen package

The Python unit operation is a COBIA implementation. It uses COBIA’s C++ API.
Other language bindings for COBIA are planned; however, CO-LaN does not want
to commit unless there is a business justification in the form of a commitment from
software vendors. This may be a bit of a chicken and egg story. So I wanted to get
ahead of the game myself, and I have built up some interest in the rust language in
the last couple of years. So I proposed to CO-LaN to first provide a flat C language
binding to COBIA. This has manifested in 2023, and is part of the COBIA
distribution itself. Of course, a C language binding can be used to in turn bind to
other languages that know how to deal with the C ABI, and I then proceeded to use
the C language binding for rust. One of the packages available for rust is called
bindgen, which understands C.

tailor-made engineering software solutions

Oct 2025 Oct 2024 Change Programming Language Ratings Change
1 1 e Python 24.45% 255
2 4 ® 929% 091

3 2 v @ c 884% 277

4 3 v Java 8.35% 2.15%
5 5 @ c# 6.94% +1.32%
5 6 s JavaScript 341% 013%
7 7 @® vsasasc 322% +0.87%
8 8 o0 Go 192% 010%
9 10 @ DewhiObject Pascal 186% +0.19%
10 1" SQL 177% +0.13%
1 9 v @ Fortran 1.70% 0.10%
12 2 c Perl 166% +1.10%
13 17 R R 152% +0.43%
14 15 ‘ PHP 138% +0.17%
15 16 Q Assembly language 1.20% +0.07%
16 13 v ® Rust 1.19% 0.25%
17 12 ¥ 4 MATLAB 1.16% 032%
18 14 M Scialch 1159 0 26%

Looking at the TIOBE index today, we see the following picture. As an aside,
interestingly C and C++ have climbed up the ladder, back to positions 2 and 3.
Python still firmly holds the first place, and rust does not come in until the 16th
place. So rust is not yet very popular. Then why would I invest my time in this you
may wonder.

tailor-made engineering software solutions

Q)
. Prog,am"':’_, Wants y°u - to
o e e De\'e|°‘:le"s ¥ chgr :,.ryab,:,‘g'e’abﬂmesn pi’ang(mg es use memory 'Safe
us Pushe*“‘e mory Safe Lang .

* Do

Lately we have seen quite the flood of news messages that memory overruns,
dangling pointers, etc, are the bane of our existence. The United States government
in particular, wants us to do something about it.

tailor-made engineering software solutions

The background story here is that the memory bugs that the NSA and FBI are
concerned about are the same bugs that cause security issues in software, which is in
turn considered a national security risk, as these leads to exploits.

tailor-made engineering software solutions

Ncle
am w,
= 1 Pro gram nga[:ts You - o use
s ¥ Me
s°ﬂ Deve\0per Cis, mwy Viin, eab:m:espcsc :Quages "'emory-safe
S Pushes s afe La“g 0US rigks
Nemmm ‘émbrace M mory . to Nationg Secyrj
Cyber Buletin

ty ang
Critica) m(msl/ucl
lure, g4

. quescRs

N\\T Ne\NS)

at anoomgP km:mu o83 it

akers Encouroged to Stop

software M e > 526

Using C/C+*

. ederal Bureau of

and F
e;uflt“)"el:‘gerf; :/msofe \anguages
ther

F’ubh‘,hcd November

Th rsecurt Ol'\d \nfruslruct S
(] Cybe Se! ty ure

It even goes to the point where there is an FBI advisory to stop using C and C++
altogether, and use so called memory safe languages instead. Now we are not in the
business of providing critical systems software typically. If we crash our simulator,
it is just that, you crash the simulator. You get annoyed, restart, and complete your
work anyway. CAPE-OPEN implementations have gained credible quality over the
last 2 decades, so we are certainly not in a precarious situation regarding safety and
stability. But it would certainly be nice to know that your software is not going to
crash after releasing it.

tailor-made engineering software solutions

https:/langdev stackexchange.com/questions/4092/what-programming-languages-implement-memory-safety

a Most programming languages are memory safe!

59 Memory safety is not a particularly unusual property for a programming language to have. The
large majority of programming languages currently in common use are memory safe (ignoring

w explicitly unsafe features or operations). However, what most of those languages have in common
is that they are garbage collected: if the programming language manages memory on behalf of the
programmer, it is much easier to prevent certain types of memory safety violations that are

V otherwise easy to express when memory is managed manually, such as use-after-free.

The primary innovation of Rust is not that it is memory safe per se, but that it is memory safe
despite not being garbage collected. Instead of having a centralized runtime that owns all memory,
Rust’s borrow checker tracks memory ownership statically, and this static analysis determines
precisely when memory may be shared and when it may be freed (though note that it does not
always determine when it should be freed: unlike precise, tracing garbage collectors, Rust's
ownership model does not guarantee that unreferenced memory will never leak).

It would be much easier to list the set of memory-unsafe languages in common use than the
memory-safe ones, since that list is arguably limited to C, C++, and not much else. Zig is an
exceptionally rare example of a new language that is explicitly not aiming to be memory safe.
Usually, memory safety is considered table stakes for any new programming language.

Looking further at which languages are memory safe, I found this interesting
opinion at StackExchange. The author here claims that all languages, except C and
C++, are essentially memory safe. He goes further in stating that the special case for
rust is not in its memory safe qualities, but rather that is manages to do so without a
VM and without garbage collection, but with reference counting on its allocated
objects. So now we get into the realm of performance, which, to us simulation
people is of course rather important.

amstercHEM
https://github.com/jabbalaci/SpeedTests
Execution time Execution time
350 6
300 5
250 4
200
3
150
100 2
50 1
0 —— = =~ - 0
@) 4 == [t (] © c 17 x s
59 £33 8¢ O SPE &F
2 a <°

Looking up some benchmark software in which various languages are compared,
we quickly get the picture. Here’s a hand-full of popular languages with their
performance. The first graph is somewhat obfuscated as I put our mighty popular
Python in there, which is exceedingly non-performant. Not good for the CO2
production. But of course, such a statement is not entirely fair, as most Python based
software uses Python merely to steer objects that are themselves written in other
languages, mostly C and C++, but then again, you could claim that doing this you
are not really memory safe to begin with.

On the right, Python is removed from the image and the true picture emerges. C and
C++ are nearly unparalleled in performance. The numbers shown here for C and
C++ are averages of different compilers with different optimizer settings; the
message being here that you can get slightly better performance. Low and behold,
rust is the only language that competes with that.

Now benchmarks being benchmarks, this is just an example and true milage may
vary. But fact remains that rust is designed for performance. So what you get is
performance, and safety, hand in hand.

tailor-made engineering software solutions

You can take my word for it. Or you can take the word of Microsoft and Linus.
System utilities in both Windows and linux are being rewritten in Rust.

10

amstercHem

tailor-made engineering software solutions

Who?

Platinum
arm AWS Google gewuwe 0OMeta

Silver

1Passwaord A AdaCore &dorsys O AUTOMATA

O construct
ACCELERANT

mO y A ” a #
| @olutians T B 2000 Qfledgio - rmanw III A
feane

1
® sererANs IKII LYNX Mainmatter

oxidlos] & @mmmm 4 sentey (fag") @ Threema. M

QRT Sy

Rust
Foundation WIENORIS. a3 s

Associate

/;:3 f)
CodeDay ‘=r&rfAS 7 cricis, . opentk O premoitiq 8% e
0OS-SCi :
L g&lllu\h ’n 11:"{';\‘(‘.‘

Foundation

Languages come and go over time, and what was popular last year may be extinct a
few years later. We all used Visual Basic 6 at some point. But I would think rust is
here to stay. It started at Mozilla, and moved on to the rust foundation. Which is
backed by some pretty big names, including Amazon, Google, and Microsoft. Rust
is something I would trust to bet on at this point. And I did.

11

tailor-made engineering software solutions

Local safety

Of course, when we speak about CAPE-OPEN we are talking about interoperability.
Here’s the general picture. You can have multiple property package
implementations, multiple process simulators and multiple unit operations, and they
all talk to each other using the same language. They are not all going to be written
in rust. This is also not a requirement that we want to make on the CAPE-OPEN
standard.

12

tailor-made engineering software solutions

Local safety

Unit Operation 1

Unit Operation 2

Property Package 1

Property Package 2

Property Package 3 ; Unit Operation 3

(COBIA) (COBIA)
C-ABI C-ABI

Rust: unsafe keyword

The CAPE-OPEN standard lives on the interface between these applications;
CAPE-OPEN is the layer over which these applications talk to each other. COM has
its own Application Binary Interface, and COBIA was designed around the C ABI,
which is well defined on all platforms. So your rust components will talk to other,
non-rust components, and even if you would only have rust based components in
your particular setup, over the pipeline we still use C pointers to data, raw memory,
etc. This is good, as this allows interop. Rust can of course do this to, with its
‘unsafe’ keyword. Which you will therefore find around each function that converts
rust code to the CAPE-OPEN piple line and vice versa. This is not something bad,
this ‘unsafe’ keyword just alerts the programmer that the rust compiler will not have
your back when it comes to safety and you need to pay attention. In particular, at
this boundary you need to pay attention to the CAPE-OPEN standard and the
contractual agreement that comes with that.

So now that I mentioned that we are not writing systems software where security is
paramount, and we cannot avoid talking to other non-rust components, and we must
in any case use the C-ABI over the CAPE-OPEN pipeline, you could wonder why
to go this route at all. Particularly as rust is not an easy programming language. You
will probably spend more time programming the same thing in rust as compared to
other languages as the compiler it outright pedantic. But there is a clear trade off
here. All the bugs that the compiler will not allow you to introduce, will not end up
in your production software, and will not bother your customers. Also the extra
effort spent on coding, you probably get back on not having to troubleshoot bugs

13

that are in your production software.

13

amstercHem e 1

tailor-made engineering software solutions

How is rust safer?

» All variables by default immutable
» Mutability must be declared explicitly
» Regular assignment transfers ownership
« Compiler does not allow you to access a
variable after transferring ownership
* You can pass a reference to an object
« Only one mutable reference to an object at
a time
* Object may not transfer ownership while
referenced

Here’s essentially why rust coding is harder, and why the compiler produces safer

code. The compiler will enforce you to set up your design in such a way that a
whole category of potential problems is detected and disallowed at compilation

time.

14

tailor-made engineering software solutions

This of course requires you to rethink some of your software design. The sketch
here represents how we intuitively think of a unit operation class organization, and
this is also how it is often implemented. By myself at least. There is one top level
unit operation class, which owns a parameter collection, which in turn owns a bunch
of parameters. There is also a port collection which is owned by the unit operation,
which owns a bunch of ports. And there is a dialog to edit the unit, also something
that feels like it belongs to the unit operation. But, when you connect a port, you
need to invalidate the unit operation, so the port must somehow know how to
operate on the unit operation itself. When you change a parameter, same thing, and
also you must mark the unit dirty. And you may need to access the name of the unit
operation in error messages: “the material object connected to Feed port of unit
operation Separatorl does not contain temperature”. So all of these owned objects
must somehow access the object that owns them. Rust does not allow for this. Not
easily at least.

15

tailor-made engineering software solutions

stale reference

As the unit operation is exposed to the outside world, and so are the parameters,
there is no guarantee that the ports do not survive the unit operation (well — there is
the CAPE-OPEN contract that says you must at least disconnect the ports at
Terminate). So what happens if the Unit itself is destroyed and the ports or
parameter live on? You have yourself a dangling pointer reference. This is one of
the memory errors that rust aims to prevent.

16

tailor-made engineering software solutions

mutable reference

shared ownership

So you rethink your strategy. You could obtain the same structure as in the previous
slides, using weak pointer constructs, but here’s another way to look at it. Suppose
the validation states, the dirty flag, the unit operation name are not actually
members of the unit operation, but live in a separate object that represents the unit
operation’s shared data. Now the unit operation can own this data, but so can all
ports and parameters. Shared, reference counted, ownership is a straight forward
rust concept.

17

tailor-made engineering software solutions

mutable reference

shared ownership

Now if the unit operation gets destroyed, there are no dangling pointers, and the
shared unit data remains alive as long as any of its owners refer to it. Problem
solved. The GUI construct in the previous slide is actually backwards. The unit
should not own the GUI, but the GUI should own the unit, or at least a mutable
reference to it. Remember from a previous slide that as long as the GUI has a
mutable reference to the unit, nobody else can have a have a mutable reference to
the unit. But this is entirely in line with the CAPE-OPEN contract as the GUI is
modal, and the entire application grinds to a halt until the GUI is done.

Clearly you can also do all these same changes in a C++ based implementation. But
the difference is that the rust compiler forces you to think about it and do it in a safe
way, whereas in C++ you are free to do it safely, but you can also do it unsafely if
you so wish and potentially end up with your dangling pointers.

18

amstercHem e 1

tailor-made engineering software solutions

What'’s in the box?

« Entire COBIA API

« Wrappers for externally implemented objects
» Adaptors for implementing interfaces

« Data type implementations

» Data type wrappers for [in] and [out]

» Code generation from COBIA IDL

* Documentation

Ok — enough tech talk. Let’s see what we have. The rust cobia language binding
contains a rust wrap of the entire COBIA API (well — nearly entirely at this point, I
still need to dot the 1’s on some of it). This includes registry access, object
instantiation, string utilities and other API functions. And, much like the C++
language binding, the rust cobia crate provides wrapper for externally implemented
objects, adaptors for implementing your own objects in rust where the nitty gritty C
details get hidden from the programmer. The crate provide some default data type
implementations for the COBIA data interfaces. I decided to make [in] and [out]
specific versions of the data types, as this corresponds to the rust concepts of
mutable and immutable, remember that the compiler forbids multiple mutable
references to the same object, but allows multiple immutable references. And it
comes with a code generator that takes COBIA IDL and produces all of the above.
This is in fact how the entire CAPE-OPEN 1.2 type library is converted to rust. The
rust language comes with an excellent documentation system, with as bonus that
any example code simultaneously servers as unit test code. All of that is included.

19

amstercHem e

tailor-made engineering software solutions

Example: Salt water property package

» Stand-alone property package

« Two compounds: H,O, NaCl

» Single phase: liquid

» Density, volume, enthalpy, entropy
» Thermal conductivity, viscosity

» TP-, PH-, PS flashes

Mostafa H. Shargawy, John H. Lienhard V, Syed M. Zubair, Desalination and Water Treatment, 10.5004/dwt.2010.1079
Kishor G. Nayar, Mostafa H. Sharqawy, Leonardo D. Banchik, John H. Lienhard V, Desalination, 10.1016/j.desal.2016.02.024

The cobia crate is part of a bigger project which is available publicly from github. It
includes two examples at this point. The first example is a salt water stand-alone
property package. Two compounds: salt and water. One phase, liquid. Single phase
properties as well as transport properties are provided, along with a TP-, PH- and
PS-flash.

20

amstercHem e

tailor-made engineering software solutions

Example: Salt water property package

1
Pump design web application ’ Tl
i Sy

_—
DesCargo DesFuel PumpSelection

RO simulator

https://www.colan.org/presentation/co2023-eca-ccs/

To demonstrate that for this project I am looking for usable examples, the salt water
package is already in production. You may remember Jens Peter Hansen’s
presentation on CAPE-OPEN use in ECA Engineering Aps, from 2023. The link is
at this slide. He shared that the package is already applied in some web applications
of the products shown on this slide, and in their reverse osmosis simulator, and he
has plans in his company to make further use of the package.

21

tailor-made engineering software solutions

Example: Distillation shortcut unit
* Fenske-Underwood-Gilliland-Kirkbride

* Feed, Distillate & Bottoms ports

8 short-cut Distillation Unit o X Short-cut Distillation Unit - (u] X
Configure Ports About Configure ~ Ports About
1 S Feed Distle Bortoms
Name Test Unit Stream Measured Distillate Bottoms
Description Distilation ShortCut unit operation based Temperature / [°C] 23.15 4284 475
I - Zrssi] - . e
Light key compound Ethane ~ F[Ethane] / [kg/s] 0.012 0.012 (99.00%) 0.000 (1.00%)
Heavy key compound T F[Propane] / [kg's) 0.026 0021 (77.57%) 0.006 (22.43%)
. F[N-butane] / [kg/s] 0.023 0.002(10.00%) 0.021 (90.00%)
F[N-pentane] / [kg's] 0.043 0.000 (0.50%) 0.043 (99.50%)
0995
12
20
106
Results
Number of stages 3.027746038600299
Reflux ratio 0.07358250500456555
Feed stage location 1.3911032597973425

The second example is a shortcut distillation unit based on the work of Fenske,
Underwood, Gilliland and Kirkbride. Shown here is the private GUI of the unit
operation, showing the public parameters and a summary of the stream
table, including component recoveries at the product ports.

amstercHem

tailor-made engineering software solutions

Example: Distillation shortcut unit

[Short-cut Distillation Unit = fa] %

Configure Ports About

Fenske -
The Fenske eq (Fenske, "Frac of Straight-Run Pennsylvania Gasoline", Industrial and Engineering Chemistry, Vol. 24
482, 1932) 1s used to distillate and b comp and the number of stages

From the slate of components, two components are selected that are called the Light Key (LK) component, and Heavy Key (HK)
component. The desired recovery is specified for the LK

§
= LKdist
Kk =g

and for the heavy component recovery

fikbot
rpx = 0%
HK ™ Fikteed

Initial distillate and bottom compositions are estimated.

The separation is based on calculation of the relative volatility for each component:

K

@ = -
Ky

i

where the K value for each compound 1s calculated for the dew point (DP) at distillate conditions, and bubble point (BP) at bottoms
conditions, and the average K value is given by |

K; = /KiDp,distKi BP, bot |

The minimum number of stages follows from v ‘

Specification 1s complete

The unit operation GUI is actually a web browser, that runs on the main GUI thread
along with a web server that provides the interaction with the unit operation. As
much as rust is getting mature, a one-size-fits-all widget toolkit is not yet available
to my taste do I decided to go the way of the embedded web browser. This may
eventually be in any case what we all end up doing if indeed everything moves to
the cloud. What you are looking at here is a WebView2 browser on windows
running inside a native window. I have not yet implemented the web bit on linux, so
the unit compiles and runs fine on linux, but without its edit capabilities. I need to
find some time to finish that bit.

23

amstercHem e

tailor-made engineering software solutions

Example: PME
* Looking for usable PME example

« Suggestions?

Of course, it would be nice to have a PME example as well that is not just another
command-line based mixer/splitter implementation. To get the best bang for the
buck, I was looking to implement examples that do not only demonstrate how to use
CAPE-OPEN and particularly how to use it in the rust context, but it would also be
nice if the examples have a right of existence of themselves as useful application. If
anybody has a good idea on what I should implement as example PME, I am open
to suggestions and I am hoping for your feedback on this item.

24

tailor-made engineering software solutions

Getting started

cobia vo11 Follow

CAPE-OPEN COBIA binding interface library for rust

Readme 2Versions Dependencies Dependents Settings

. .
Rust binding for COBIA Metadata
& pkg:cargo/cobia@0.11 (€]

(C) Jasper, AmsterCHEM 2025 3 days ago

) . o ® 2024 edition
This workspace implements rust bindings for COBIA. & MIT
CAPE-OPEN consists of a series of specifications to expand the range of <> 19K SLoC
application of process simulation technologies. The CAPE-OPEN specifications A 132 KiB
specify a set of software interfaces that allow plug and play inter-operability
between a given process modelling environment (PME) and a third-party Install

process modelling component (PMC). -

- = R in
project directory:
cargo add cobia

mi.

The CAPE-OPEN specifications are supported by the non-profit organization
CO-LaN: http://www.colan.org

The COBIA middle-ware is a platform independent object model and request
broker implementation to facilitate the inter-operation of CAPE-OPEN
compliant PMEs and PMCs. cobia = "6.1.1

.
License Homepage

& amsterchem.com/cobiarust.h.
This project is provided under the MIT license. See LICENSE for more details.

Rust features its own building tools and packaging tools, and independent libraries
such as the cobia binding are distributed in the form of crates. As such, the rust
cobia binding is now available on crates.io, where you can read that, to add this to
your own rust development, all you need to do is run rust’s packaging tool cargo,
with the words add cobia. And you are off. Well — almost.

25

amstercHem e

tailor-made engineering software solutions

Prerequisites
« The COBIA SDK

https://colan.repositoryhosting.com/trac/colan_cobia/downloads

 Prerequisites for bindgen

https://rust-lang.github.io/rust-bindgen/requirements.html

 CLANG compiler
converts the COBIA C API to rust

 License: MIT

For it to compile, you will need to have the COBIA SDK installed, as that is how
the crates learns about the COBIA API content and about the CAPE-OPEN types. It
literally compiles all of this on the fly. For that in turn, you need to satisfy some
prerequisite requirements of the bindgen package, most noticeably, you need to
have a CLANG compiler installed. All of this is available under the do-as-you-want
MIT license. Just don’t hold me responsible for your damage or loss of mental
sanity.

26

amstercHem e

tailor-made engineering software solutions

Conclusions

COBIA now has rust language binding

Platform independent

It's free
COBIA is pretty cool!

Well — I hope you enjoyed that. I did. To conclude: COBIA now has a rust language
binding, which is based on COBIA’s C language binding that was recently added.
You make a PMC this way, and as a bonus you get that it will run on Windows and
linux, as soon as we publish COBIA there. If you are CO-LaN member you can
already run COBIA on linux, but you have to compile it yourself from the code. It’s
free — I hope you find a good use for it. And I cannot escape reaching the same
conclusion as all previous years, which is that COBIA is pretty cool. Thank you for
your attention.

27

