

LEVERAGING CAPE-OPEN FOR ENHANCED MULTIPHASE PUMP DESIGN AND PROCESS SIMULATION

CAPE-OPEN 2025 ANNUAL MEETING

GHENT – BELGIUM

V. CARIES, M. GAINVILLE, V. MOENNE-LOCCOZ

PRESENTATION BREAKDOWN

1. IFPEN role in CAPE-OPEN: past contributions & motivations for the current work

2. Multiphase pump software: leveraging CAPE-OPEN Python Unit Operation

3. Conclusions & perspectives

INTRODUCTION

IFPEN INVOLVEMENT IN CAPE-OPEN ACTIVITIES

Key roles

- Managed CAPE-OPEN and Global CAPE-OPEN projects (1997-2002)
- Co-founded CO-LaN and contributed actively (2001–2011)
- Transitioned to corporate associate member in 2011

Contributions & applications

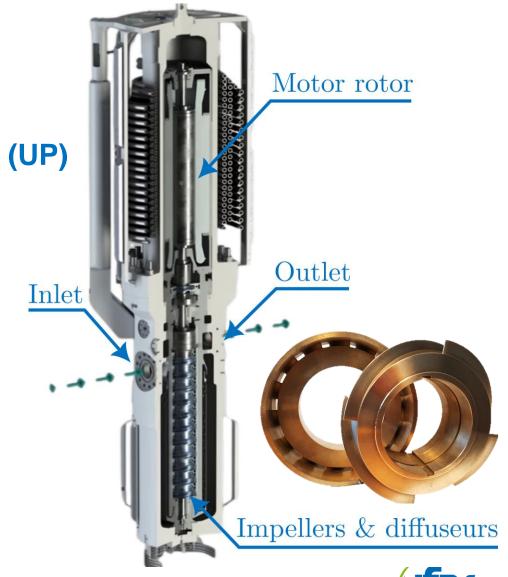
- Developed a wizard for Unit Operation (UO) in C++
- Developed UO (e.g., Hysipipe for hydrate transportability, Desulfo+ for gas sweetening)
- Introduced CAPE-OPEN support to Carnot, our in-house thermodynamic server
- Extensive use of CAPE-OPEN-supporting tools like COFE, Multiflash®, PRO/II™, HYSYS®...

OVERVIEW OF MULTIPHASE PUMP (MPP) ACTIVITIES

Over 40 years of expertise in MPP design

Historical applications in upstream petroleum (UP)

Wellhead pumps: 100+ units


Downhole pumps: 1,000+ units

MPP key features

Gas volume fraction: up to 90%

● Flow rate: up to 400 m³/h

Pressure increase: up to 200 bar

Source: SLB OneSubsea

MOTIVATIONS

Ouputs from past UP activities

- Proprietary software for MPP design, performance, and selection
- Proven MPP robustness and reliability derived from extensive UP experience

Leverage MPP potential by expanding its application range

- Lower CAPEX: equipment replacement synergy → compressor + pump = single MPP
- Lower OPEX: maintenance cost reduction & lower downtime

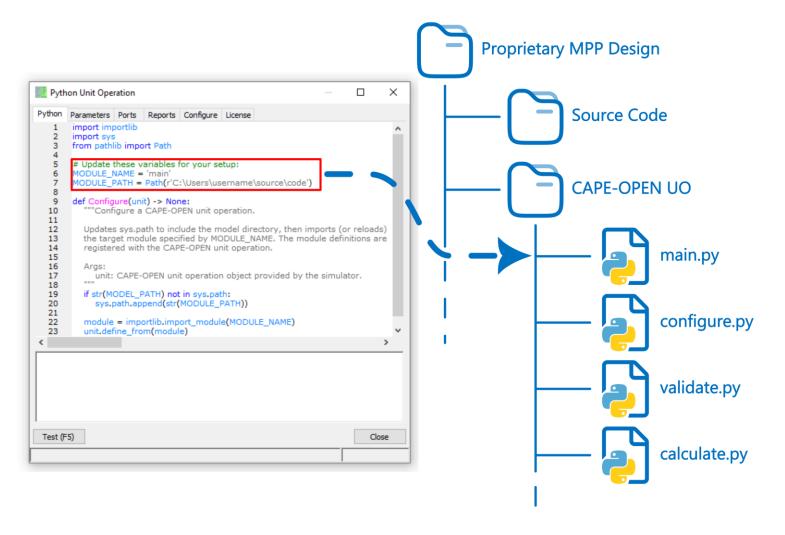
Current needs: evaluation and optimization of MPP integration into new processes

- > Embedding proprietary MPP design code into PMEs (Process Modeling Environments)
- > AmsterCHEM CAPE-OPEN Python UO identified as an ideal framework

LEVERAGING AMSTERCHEM CAPE-OPEN PYTHON UNIT OPERATION

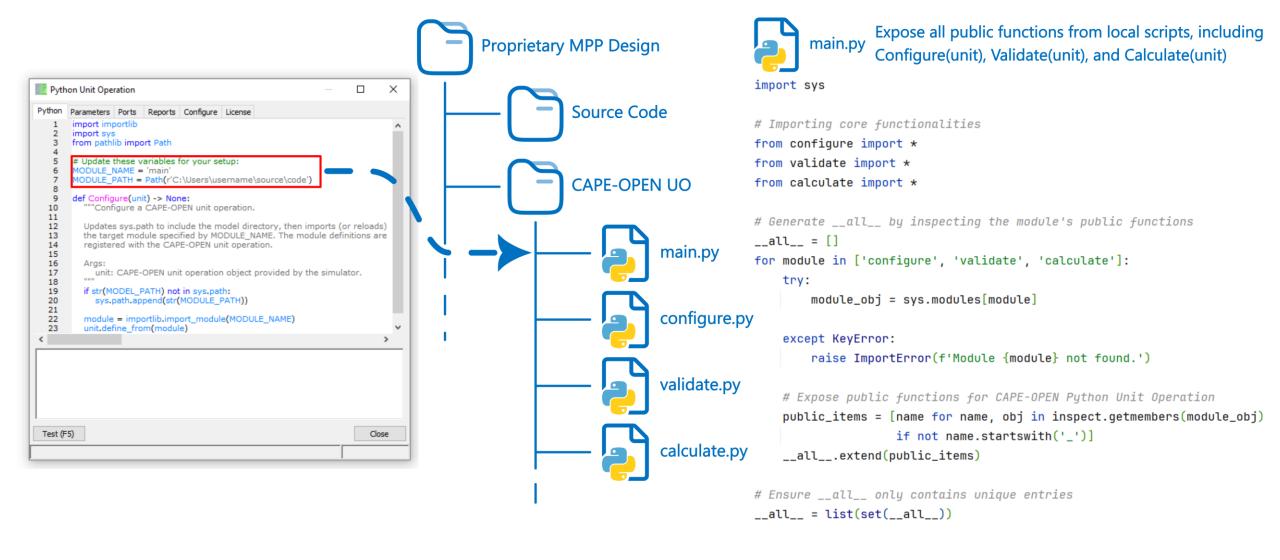
CAPE-OPEN PYTHON UO IMPLEMENTATION: INTRODUCTION

Key drivers

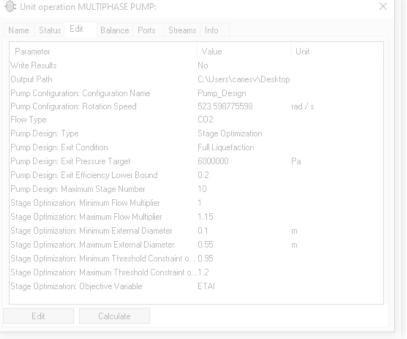

- Ensure thermodynamic model consistency by using the same model as the PME
- Handle complex compositions without further assumptions in the MPP design software
- Execute MPP design software directly through Python to pass the feed object from the PME as the thermodynamic object

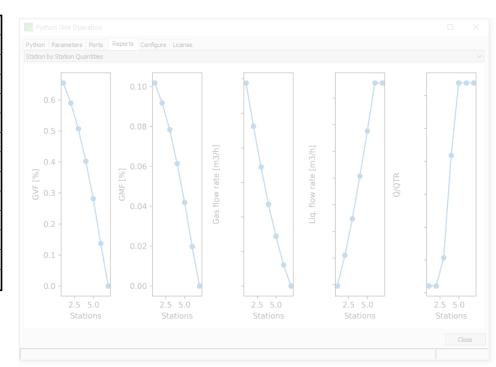
Key constraint

- Address the complexity and multiple dependencies of the MPP design code with a modular implementation
- Deploy the AmsterCHEM CAPE-OPEN Python UO on multiple PMEs: COFE, PRO/II™ & HYSYS®

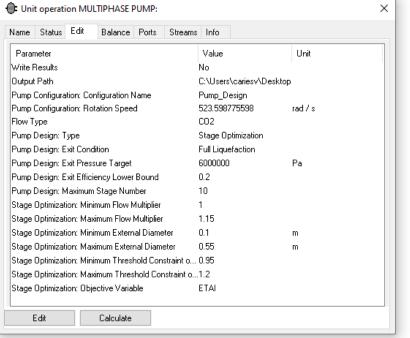


CAPE-OPEN PYTHON UO IMPLEMENTATION: INSIGHTS

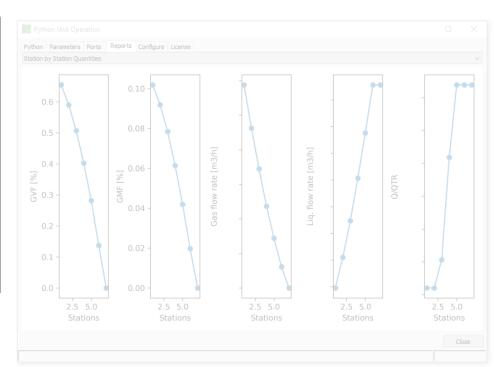

CAPE-OPEN PYTHON UO IMPLEMENTATION: INSIGHTS


CAPE-OPEN PYTHON UO IMPLEMENTATION: FEATURES

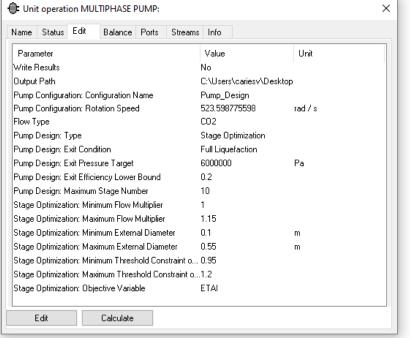
- Calculation applied to CO2 with impurities conditioning with a Multiflash® model
- Facilitates rapid and interactive analyses through the integrated CAPE-OPEN GUI
 - ✓ Fully customizable input settings
 - ✓ Provides direct user access to output visualization through the Reports tab


Stream	IN	OUT	Unit		
Pressure	25	47.75	bar		
Temperature	-20	-0.8751	°C		
Flow rate	20	20	kg/s		
Mole frac CARBON DIOXIDE	0.97	0.97			
Mole frac NITROGEN	0.015	0.015			
Mole frac ARGON	0.01	0.01			
Mole frac OXYGEN	0.0025	0.0025			
Mole frac WATER	0.0013	0.0013			
Mole frac CARBON MONOXIDE	0.0012	0.0012			
Vapor phase					
phase fraction	0.1058				
Liquid phase					
phase fraction	0.8942	1			

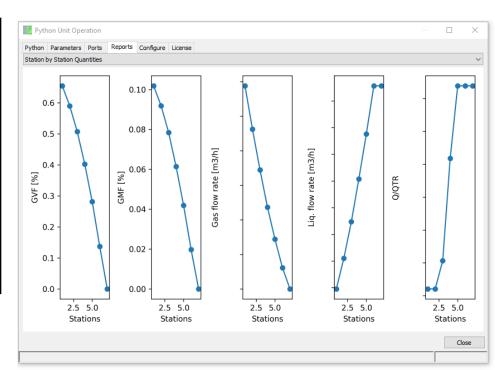
MPP


CAPE-OPEN PYTHON UO IMPLEMENTATION: FEATURES

- Calculation applied to CO2 with impurities conditioning with a Multiflash® model
- Facilitates rapid and interactive analyses through the integrated CAPE-OPEN GUI
 - √ Fully customizable input settings
 - ✓ Provides direct user access to output visualization through the Reports tab


Stream	IN	OUT	Unit		
Pressure	25	47.75	bar		
Temperature	-20	-0.8751	°C		
Flow rate	20	20	kg/s		
Mole frac CARBON DIOXIDE	0.97	0.97			
Mole frac NITROGEN	0.015	0.015			
Mole frac ARGON	0.01	0.01			
Mole frac OXYGEN	0.0025	0.0025			
Mole frac WATER	0.0013	0.0013			
Mole frac CARBON MONOXIDE	0.0012	0.0012			
Vapor phase					
phase fraction	0.1058				
Liquid phase					
phase fraction	0.8942	1			

MPP


CAPE-OPEN PYTHON UO IMPLEMENTATION: FEATURES

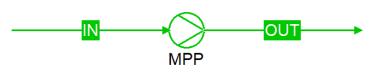
- Calculation applied to CO2 with impurities conditioning with a Multiflash® model
- Facilitates rapid and interactive analyses through the integrated CAPE-OPEN GUI
 - √ Fully customizable input settings
 - ✓ Provides direct user access to output visualization through the Reports tab

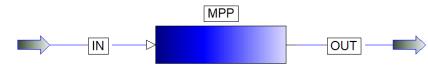
Stream	IN	OUT	Unit		
Pressure	25	47.75	bar		
Temperature	-20	-0.8751	°C		
Flow rate	20	20	kg/s		
Mole frac CARBON DIOXIDE	0.97	0.97			
Mole frac NITROGEN	0.015	0.015			
Mole frac ARGON	0.01	0.01			
Mole frac OXYGEN	0.0025	0.0025			
Mole frac WATER	0.0013	0.0013			
Mole frac CARBON MONOXIDE	0.0012	0.0012			
Vapor pha	Vapor phase				
phase fraction	0.1058				
Liquid phase					
phase fraction	0.8942	1			

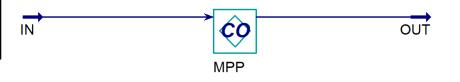
MPP

CAPE-OPEN PYTHON UO IMPLEMENTATION: AVAILABLE ON PMES

COFE


AVEVA™ PRO/II™



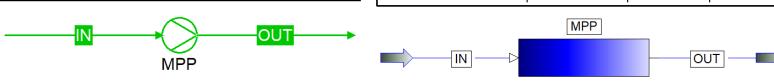

Stream	IN	OUT	Unit	
Pressure	25	47.75	bar	
Temperature	-20	-0.8751	°C	
Flow rate	20	20	kg/s	
Mole frac CARBON DIOXIDE	0.97	0.97		
Mole frac NITROGEN	0.015	0.015		
Mole frac ARGON	0.01	0.01		
Mole frac OXYGEN	0.0025	0.0025		
Mole frac WATER	0.0013	0.0013		
Mole frac CARBON MONOXIDE	0.0012	0.0012		
Vapor phase				
phase fraction	0.1058			
Liquid phase				
phase fraction	0.8942	1		

Stream Name Stream Description Phase		IN Mixed	OUT Liquid
Temperature Pressure Enthalpy Molecular Weight Mole Fraction Vapor Mole Fraction Liquid Rate	C BAR M*KJ/HR KG-MOL/HR	-20,0000 25,0000 -22,9721 43,6462 0,1058 0,8942 1649,627	-0,8750 47,7469 -21,3251 43,6462 0,0000 1,0000 1649,627
Fluid Rates CO2 CO2 N2 O2 H2O CO	KG-MOL/HR	16,4963 1600,1387 24,7444 4,1241 2,1445 1,9796	16,4963 1600,1387 24,7444 4,1241 2,1445 1,9796

Material Streams			
		IN	OUT
Vapour Fraction		0,1058	0,0000
Temperature	С	-20,00	-0,8749
Pressure	kPa	2500	4775
Molar Flow	kgmole/h	1650	1650
Mass Flow	kg/h	7,200e+004	7,200e+004
Liquid Volume Flow	m3/h	86,89	86,89
Heat Flow	kJ/h	-6,534e+008	-6,517e+008

CAPE-OPEN PYTHON UO IMPLEMENTATION: AVAILABLE ON PMEs

COFE


AVEVA™ PRO/II™

Stream	IN	OUT	Unit	
Pressure	25	47.75	bar	
Temperature	-20	-0.8751	°C	
Flow rate	20	20	kg/s	
Mole frac CARBON DIOXIDE	0.97	0.97		
Mole frac NITROGEN	0.015	0.015		
Mole frac ARGON	0.01	0.01		
Mole frac OXYGEN	0.0025	0.0025		
Mole frac WATER	0.0013	0.0013		
Mole frac CARBON MONOXIDE	0.0012	0.0012		
Vapor phase				
phase fraction	0.1058			
Liquid phase				
phase fraction	0.8942	1		

Stream Name Stream Description Phase		IN Mixed	OUT Liquid
Temperature Pressure	C BAR	-20,0000 25,0000	-0,8750 47,7469
Enthalpy Molecular Weight Mole Fraction Vapor Mole Fraction Liquid Rate	M*KJ/HR KG-MOL/HR	-22,9721 43,6462 0,1058 0,8942 1649,627	-21,3251 43,6462 0,0000 1,0000 1649,627
Fluid Rates CO2 CO2 N2 O2 H2O CO	KG-MOL/HR	16,4963 1600,1387 24,7444 4,1241 2,1445 1,9796	16,4963 1600,1387 24,7444 4,1241 2,1445 1,9796

Material Streams			
		IN	OUT
Vapour Fraction		0,1058	0,0000
Temperature	С	-20,00	-0,8749
Pressure	kPa	2500	4775
Molar Flow	kgmole/h	1650	1650
Mass Flow	kg/h	7,200e+004	7,200e+004
Liquid Volume Flow	m3/h	86,89	86,89
Heat Flow	kJ/h	-6,534e+008	-6,517e+008

Proprietary MPP design code successfully integrated in COFE, PRO/II™ & HYSYS® using AmsterCHEM CAPE-OPEN Python UO

OUT

CAPE-OPEN PYTHON UO IMPLEMENTATION: USER FEEDBACK

Strengths

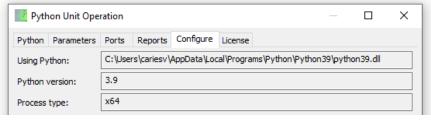
- User-friendly CAPE-OPEN formalism with easy implementation via clear documentation
- COFE: ideal for prototyping and testing new features

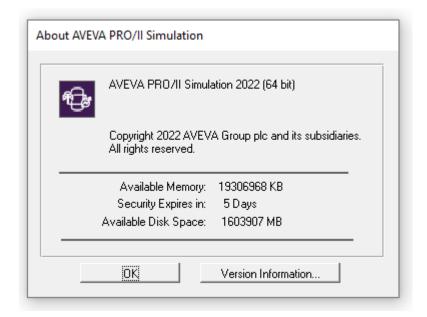
Challenges

- Adding Python virtual environment support would make it easier to address package compatibility challenges in large Python projects
- PRO/II™: missing phase related feed stream properties that should be available
- HYSYS®: requires changing the unit CapeVersion in the registry to 1.1 (misunderstanding of the standard) and lacks essential feed stream properties

Acknowledgments: a big thanks to J. Van Baten for the CAPE-OPEN Python UO 1.0.26.0 release addressing the missing properties issue in PRO/II™ & HYSYS®

CONCLUSIONS & PERSPECTIVES




CONCLUSIONS & PERSPECTIVES

- ✓ Proprietary MPP design software successfully integrated in COFE, PRO/II™ & HYSYS® using the AmsterCHEM CAPE-OPEN Python UO
- ✓ Thermodynamic model consistency: ensured by being able to use the same model as the PME
- ✓ Integration into complex process flowsheets: enabled by treating the MPP as a standard pump component
- ✓ Easier collaboration during new process design and exploration phases
- Enhancing the robustness of the MPP design software to effectively handle unexplored configurations
- ■Improving error handling between the MPP design software and the CAPE-OPEN standard for smoother operation

REFERENCES

Python Unit Operation license Version 1.0.26.0 Copyright (C) AmsterCHEM 2025

Innovating for a low-carbon and sustainable world

www.ifpenergiesnouvelles.com

IFP Energies nouvelles

1 - 4 avenue de Bois-Préau92852 Rueil-Malmaison Cedex - France

Tel.: +33 1 47 52 60 00

IFP Energies nouvelles

Rond-point de l'échangeur de Solaize BP 3 – 69360 Solaize - France

Tel.: +33 4 37 70 20 00