

Hafnium Labs Predicting Chemistry

September 2022

Intro to Hafnium Labs and Q-props

Examples:

- High-fidelity dynamic simulation of CO₂ + impurities
- Reactive electrolyte systems with amines + CO_2/H_2S
- Beyond state-of-art thermodynamics polar PC-SAFT for Benzene-Cyclohexane

Hafnium Labs solves one of the hardest challenges in chemical R&D: Obtaining *reliable* physical property data *fast*

Our **Q-props** software sets a gold standard for property modeling to help digitalize R&D and enable:

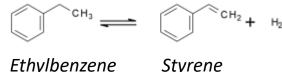
Our mission

Establish a gold standard for obtaining physical properties of molecules and mixtures

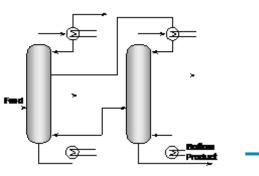
Background and approach

Founded in 2016

- <u>Industry need</u>: **Digitalization of chemistry** requires reliable physical properties often as critical input to modeling tools
 - **Customer industries**: Energy, chemicals, consumer goods, pharma, mining, and engineering
- <u>Our approach</u>: First tool to take a universal and continuously improving approach, providing a one-stop solution


Working on a universal solution, we put **more resource into physical properties** than any individual projects (or most companies) can justify, with >€3M already invested in R&D

We work closely with customers to define good proof-of-concept projects, after which broader deployment can be planned


Reliable digital designs require reliable physical properties Example: Influence of physical properties on process simulation results

A simple problem?

Styrene is separated from ethylbenzene by distillation:

Ethylbenzene T_{boil} = 136°C

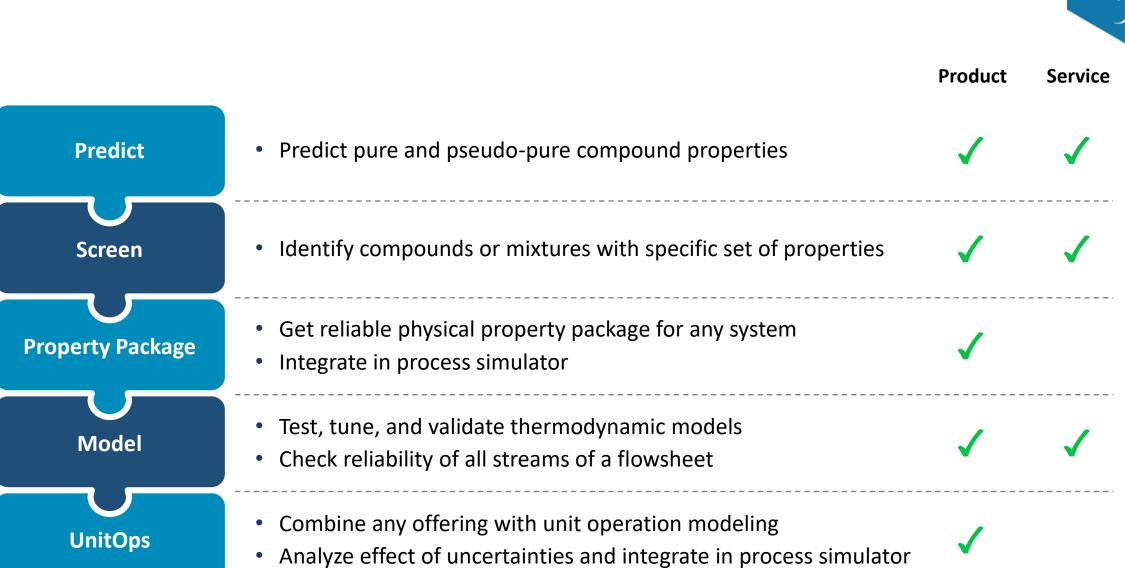
 $T_{boil} = 145^{\circ}C$

3 different simulators give vastly different separations

- Bottom styrene concentration:
 - Simulator 1: 90%
 - Simulator 2: 81%
 - Simulator 3: **71%**

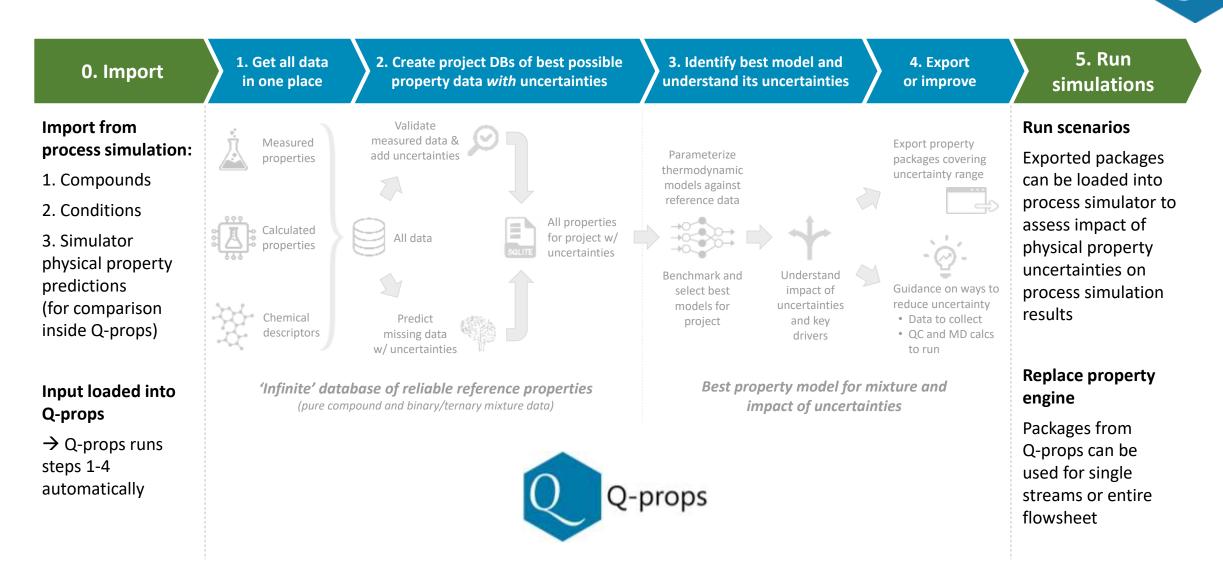
The problems go way beyond simple examples

Little/no data for green chemicals


Adding new compounds and data is time-consuming and error-prone

Same mathematical models but <u>each</u> <u>simulator uses different physical</u> <u>property data</u>

→ Wrong physical properties can ruin a digital design


Lack reliable uncertainties to rationalize design factors

Solids, electrolytes and reactions are often neglected – but cause costly failures, e.g. corrosion

Q-props: One-stop solution for all physical property needs

Q-props integrates with process simulation tools end-to-end

Q-props is built for extensions and integrations

Q-props base interfaces

Set up systems, validate properties and models and export packages

In-house data

Improve Q-props with own

experimental data

- in full confidentiality

Custom models and tools

Additional Q-props interfaces to serve specific use cases and distribute web apps

Tool integrations

Process simulators, in-house physical property systems, 3rd party tools (e.g. Excel) etc.

Call Q-props engine from anywhere

Q-props engine

Q-props

Additional models

Include in-house and academic models in Q-props and explore performance

Embedding Q-props through CAPE-OPEN

We have built core Q-props components using the Julia programming language

1. All data 2. Best possible data 3. Best 4. Export with uncertainties model in one place Export propert measured data packages with - uncertainties edge scenario All necessary Across proces structure database of reliable reference propertie 3rd party, SQL, C++ Julia open source

Julia is core to Q-props modeling engine

Other languages

- C#/.NET Core for ETL workflows
- Python for automation and Jupyter notebooks
- HTML/Javascript for frontends (Jupyter)

Julia goodies for developers

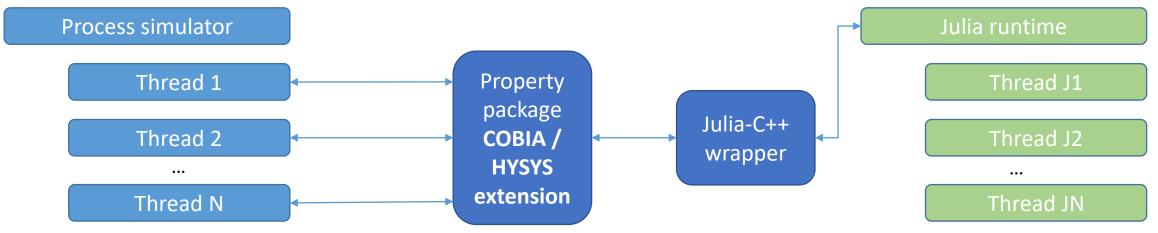
Julia can be used for both prototypes and production

 \rightarrow Viable alternative to FORTRAN and C++ but also Python and MATLAB

Built-in package-manager for dependency management in large projects

- Eases maintenance and extensibility
- Internal package repository

Julia is stable (currently at version 1.8)


More than 8000 packages available on Github

Nice features for thermodynamics modeling

- Support for unicode names enables standard symbols in applied thermodynamics, e.g. β, γ, ω, σ, φ, Γ
- Excellent support for unit of measurement, automatic/algorithmic differentiation etc.

We used COBIA v/1.0 to implement unit operation and property package wrappers (v 1.1/1.2)

- COBIA acts as a wrapper for COM (COMBIA).
- Julia C API must be called from a single thread
 - C++ acts as wrapper for synchronizing calls to Julia via std::future
 - Julia 1.9 will allow full multi-threading support

Things to watch out for:

- Julia uses UTF-8 but CAPE-OPEN uses wide strings (16-bit)
- Use e.g. std::wstring_convert<std::codecvt_utf8_utf16<char16_t>>

Examples: Simulation of pure fluids w/ impurities

New processes are pushing existing tools to the limit: Accurate properties for Brayton cycle w/ supercritical CO2

Many potential applications

- Concentrating solar power (CSP)
- Waste heat recovery
- Geothermal
- CO2 Sequestration
- ...

Brayton cycle w/ sCO₂

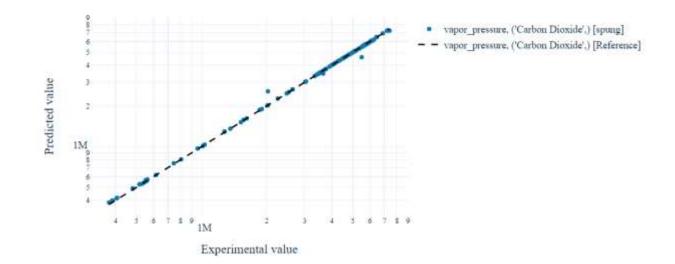
- Single-phase fluid (> 31 °C)
- Temperatures up to 1000 °C and pressures up to 35MPa
- Advanced configurations may lead to smaller turbomachinery than steam (up to 20x smaller)

Challenges existing tools

- Cubic EoS or MBWR cannot consistently represent properties over such wide temperature/pressure ranges
- Span-Wagner EoS (REFPROP) is suitable, but about an order of magnitude slower than cubic EoS
- Instabilities in flash are observed with existing commercial tools leading sometimes to slowdown

A Q-props Model was set up

- Validation of Q-props for properties of pure CO₂ against experimental data
- Extension to mixtures through SPUNG principle
- (Demo)


Validation examples for CO2

Property predicted vs experimental

select a property below

Property (Carbon Dioxide) vapor_pressure - ('Carbon Dioxide',)

Show discarded datasets

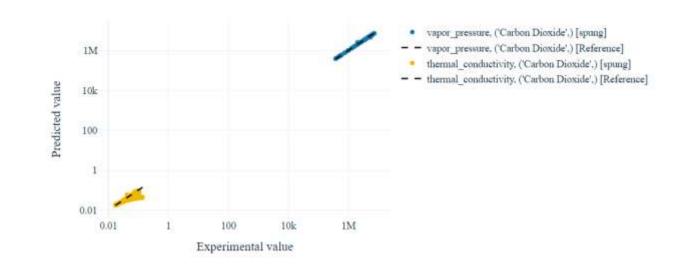
Validation examples for CO2

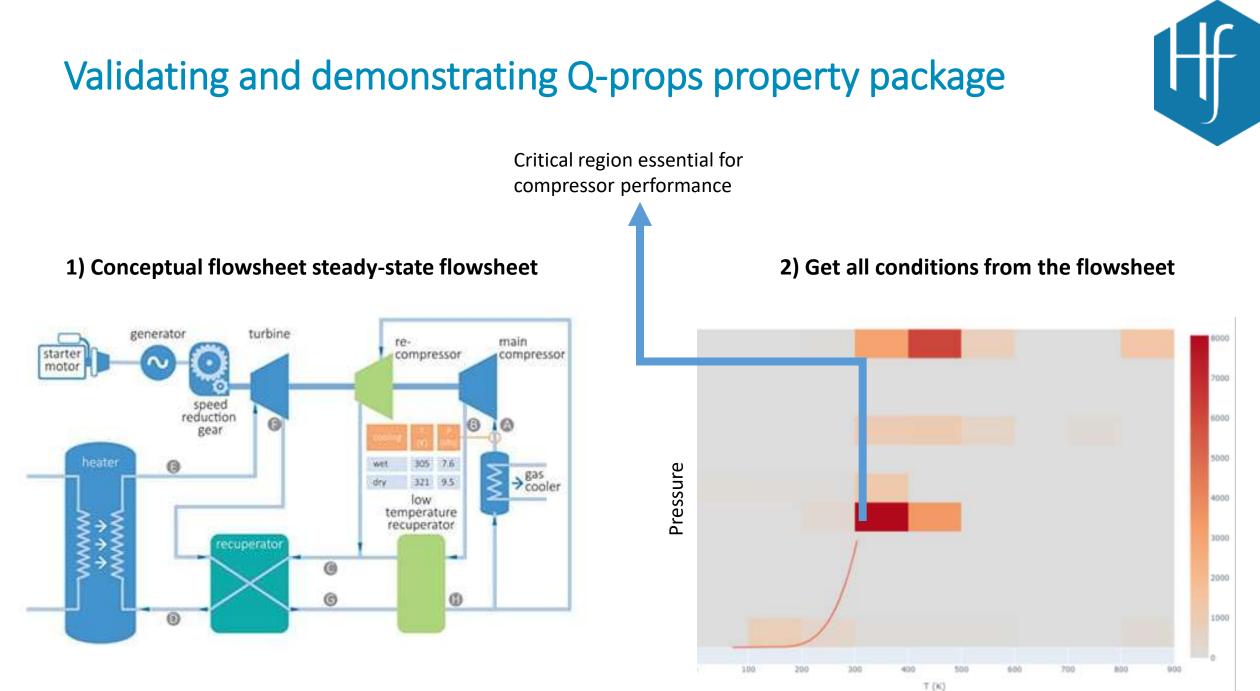
Property predicted vs experimental

select a property below

Property (Carbon Dioxide)

Validation examples for CO2


-


Property predicted vs experimental

select a property below

Property (Carbon Dioxide) yapor_pressure - ('Carbon Dioxide',), thermal_conductivity - ('Carbon Dioxide',)

Show discarded datasets

Making Q-props a viable alternative to built-in Span-Wagner

Improving speed of dynamic simulation

Initial testing revealed that

- Q-props PR @ 45x slower than native PR
- Q-props Span-Wagner @ 250x slower
- \Rightarrow Infeasible to perform dynamic simulation

Where was the bottleneck?

 $\tau = \tau_{sim} + \tau_{interface} + \tau_{C++/Julia} + \tau_{model}$

Fixes:

- $\tau_{C++/Julia}$ improved by 10-100x
- au_{model} improved by ~10x
- **CAPE-OPEN** allows using our internal flash algos

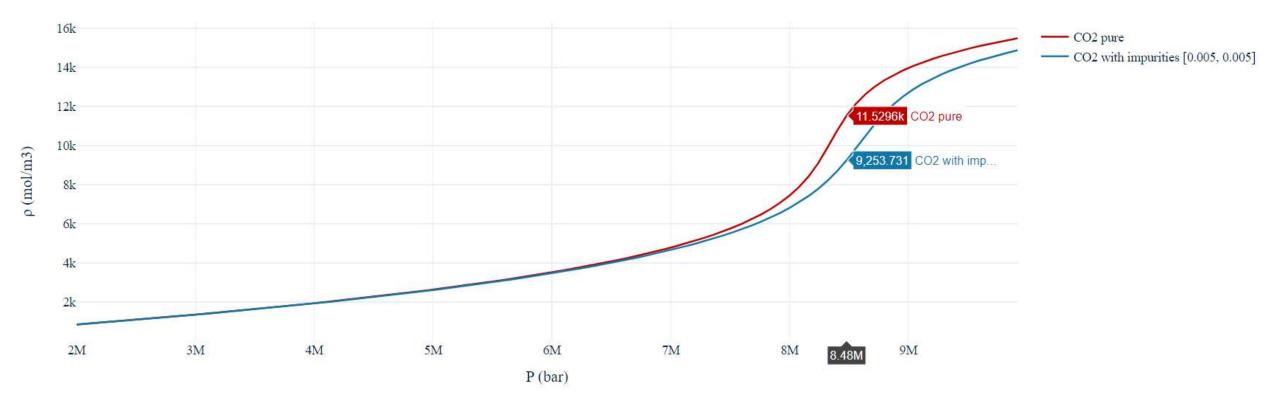
• **ExtnPropertyPackage** uses simulator flash algos Q-props now performed on-par with built-in Span-Wagner when testing for a simple pair of streams

RTF: Real time factor – simulated minutes/minutes

After improving Q-props speed

RTF / Scenario	Startup	Load change
Built-in Span-Wagner	~0.1	~0.1
ExtnPropertyPackage	~0.25*	~0.8*
CAPE-OPEN	~0.20*	~0.4*

*) Increased robustness allows increasing the time step, leading to higher simulation real-time factors


CAPE-OPEN was about 20-50% slower than native, but we expect it to perform better for mixtures

Effect of impurities on properties of CO₂-streams

CO2 Isotherm at T=310.0 K with 1% of impurities

Examples: Simulation of electrolyte systems

Status of ongoing work to make Q-props a leading modeling tool for amine-based acid gas treatment and carbon capture

1. Q-props electrolyte thermodynamic models and general high-performance reactive flash algorithms

	models and data strial application areas	Example: Mixed salt aqueous systems well-described by state-of-the-art	rt flash algorithms to handle Im calculations (reactive VLLSE)	
Models HRF (accurate standard states) Photer = Biccholyte NRT = Biccholyte NRT	Application areas include A prine transmit Scaling and flow assummed assummed B fines for metals and mineral recovery (mining) P includes area P includes area P includes area P includes area Compatibility of formation water	Grand scalar production is much at system bring size of each strategy of the s	and most robust, built	es: Robust binary global phase se envelopes for mixtures

3. Integration with process simulators

2. Implementing published amine models and establishing a model performance baseline

4. Short-term development targets

Improving model performance

- Targeted parameter estimation for improving models
- Improved standard states with HKF
- Electrolyte equations of state (e.g. e-CPA)
- Extension of flash to liquid-liquid equilibrium with two electrolyte phases

Property prediction for novel amines and additives

Implementing a baseline for published amine models

Kent-Eisenberg Model Li-Mather Electrolyte Model Physical Solvent Model

Blends of: MEA, DEA, TEA, MDEA, DIGA, DIPA

Specific systems:

- MDEA-PZ
- AMP
- MEA-AMP
- DEA-AMP
- MDEA-TMS
- DIPA-TMS
- MDEA-PZ-TMS
- CO₂, H₂S, Mercaptans, paraffins, olefins, SO₂, NH₃, BTEX

Q-props Extended UNIQUAC systems

NH3-CO2 by Que & Chen (2011) MDEA-CO2-H2S by Zhang & Chen (2011) MEA-CO2 by Zhang et al. (2011) PZ-K2CO3-CO2 by Cullinane & Rochelle (2005) MDEA-PZ-CO2 by Bishnoi & Rochelle (2002) DIPA-TMS-H2S-CO2 by Zong & Chen (2011) MDEA-TMS-H2S-CO2 by Zong & Chen (2011) MDEA-PZ-TMS-CO2 by Dash et al. (2016) AMP-PZ-CO2-H2O Hartono et al. (2021)

In several cases, both e-NRTL and Extended UNIQUAC parameters exist, which allows comparison. However, since fitting is a complex procedure, a model is rarely significantly better than the other, but the specific set of parameters might be

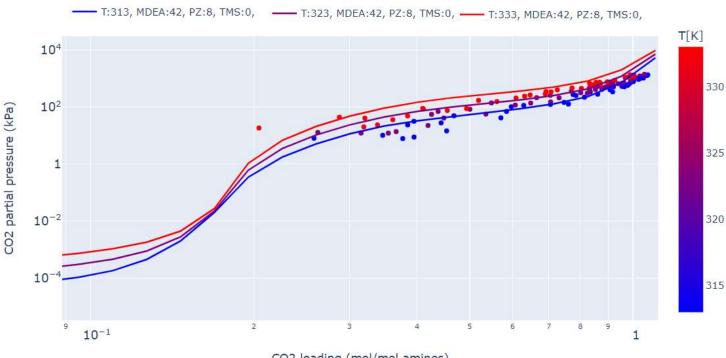
Q-props Electrolyte NRTL systems

CO2-NH3 by Darde et al. (2012) CO2-H2S-MEA-MDEA by Negar et al. (2015) CO2-MEA / CO2-AMP / CO2-PZ by Svendsen et al. (2011,2013) CO2-DEEA-MAPA by Arshad et al. (2016) CO2-1DMA2P/3DMA1P/DEAB by Lee et al. (2018) CO2-amino acid salts by Olabi et al. (2018) CO2-PZ-K2CO3 by Zhang et al. (2022)

Models implemented and ready for use Models to be implemented

Fast to implement and validate new models and systems in Q-props

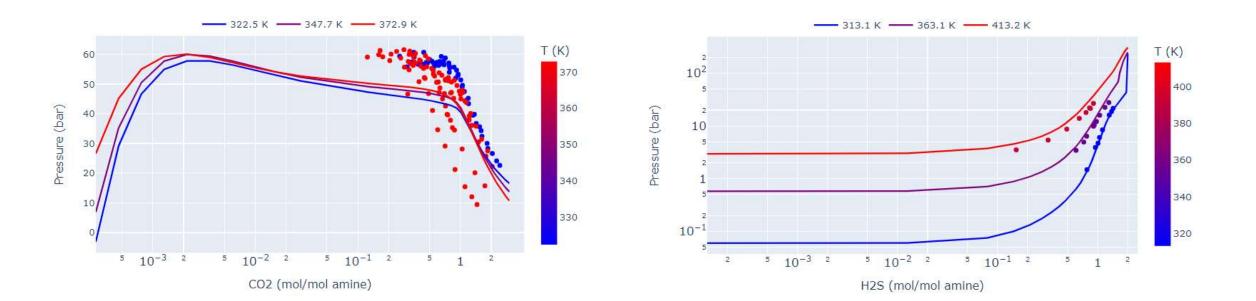
Model performance


Q-props is integrated with Jupyter Lab, which allows for detailed analysis and interactive plotting using Python libraries in Jupyter Notebooks

Validation Notebook examples: <u>MDEA-CO₂-H₂S Electrolyte NRTL</u> <u>MDEA-CO₂-H₂S Extended</u> <u>UNIQUAC</u> <u>MDEA-PZ-TMS-CO₂ Electrolyte</u> <u>NRTL</u>

Excerpt from validation Notebooks

CO2-MDEA-PZ loading curve



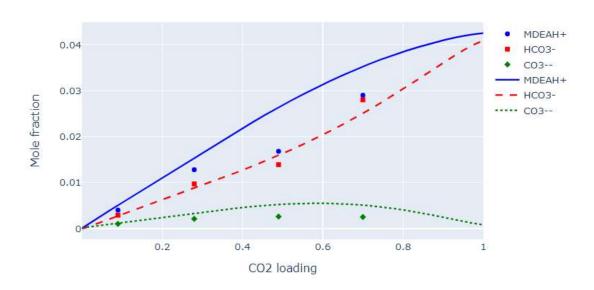
CO2 loading (mol/mol amines)

Additional excerpts from Jupyter Notebooks

Enthalpy of adsorption 30 wt% MDEA

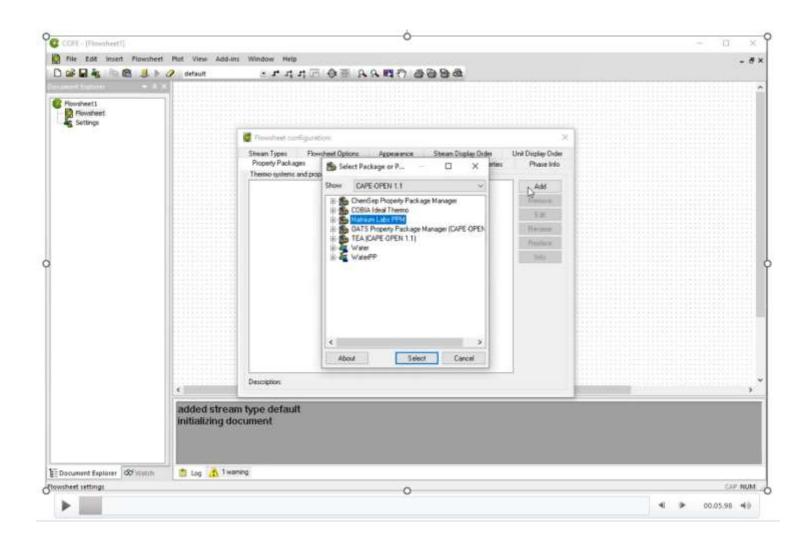
H2S-MDEA loading curve

24

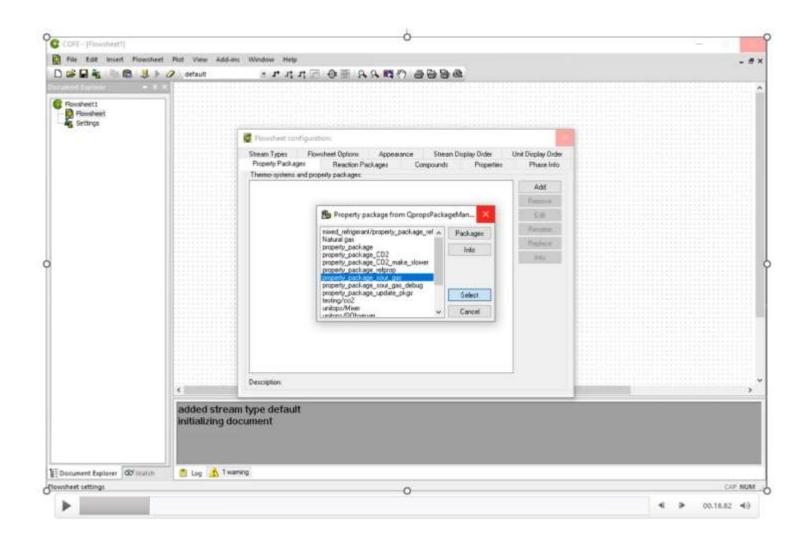

Speciation validation

Speciation in 1.8 molal PZ at 60°C with CO2 (Q-props prediction against original paper)

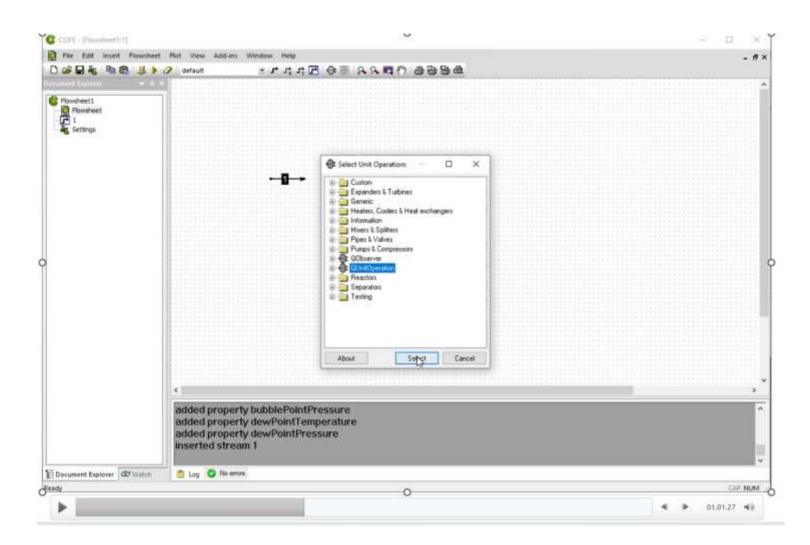
MDEA-CO2 speciation

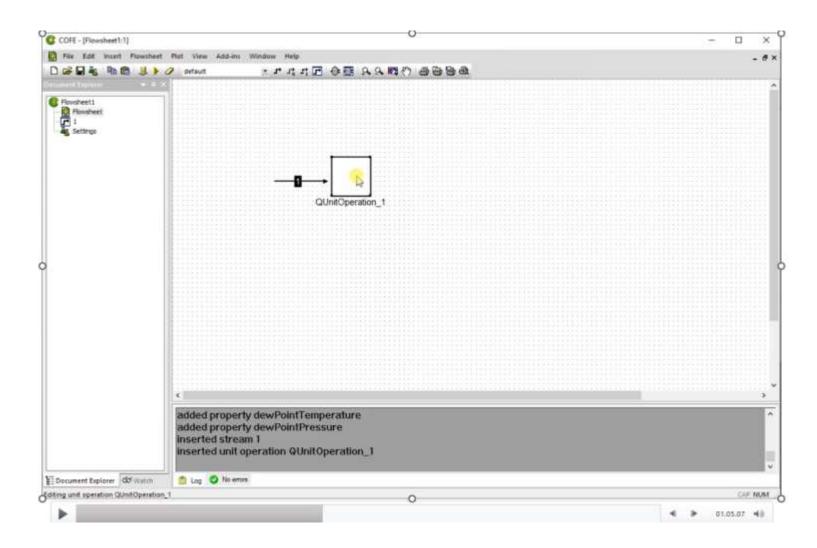


293.15 K, 23.0% w/w MDEA

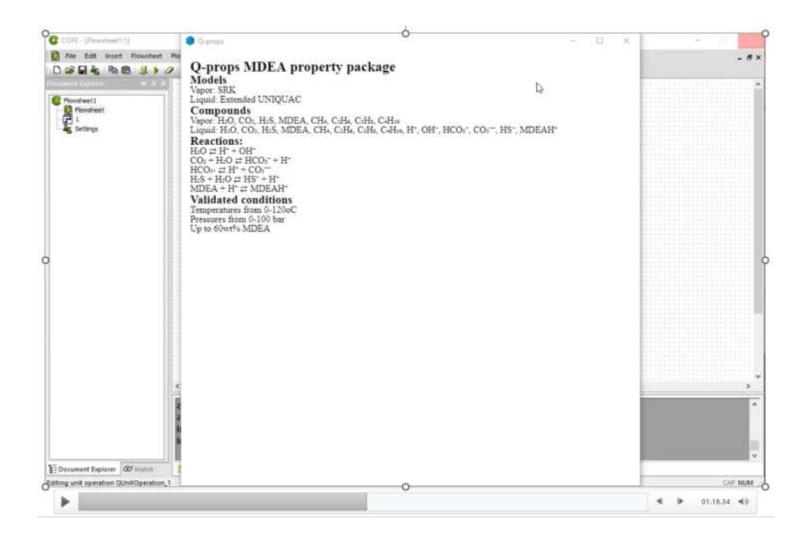


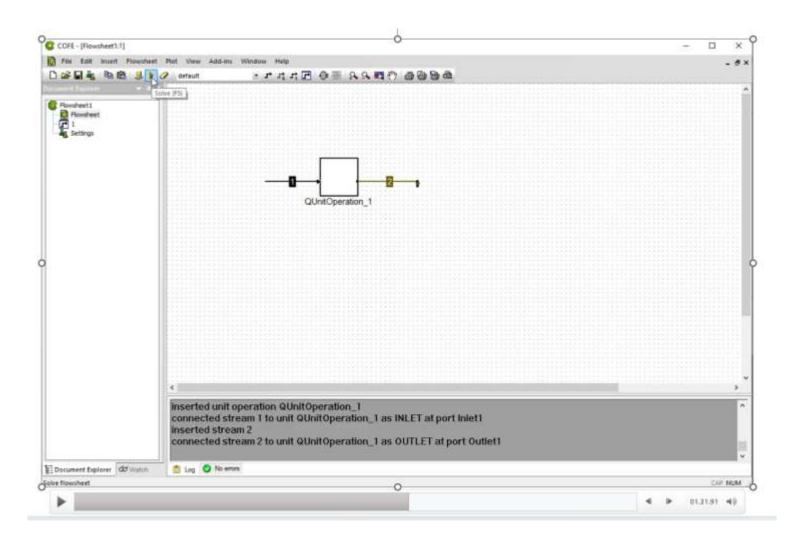
D 📽 🖬 🍇 b 🕅 😃)		Tra at at the	0 = 23408		 	
Piovsheet1 Piovsheet Settings						
	< added stream initializing do	n type default cument				*



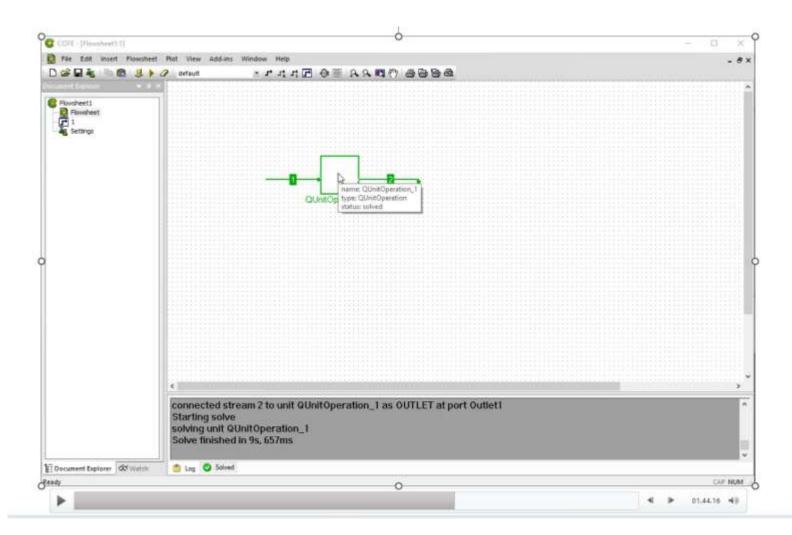


	2 default . 1	市内田舎	F 2 2 5 5 6 5 6 5 6	
Discussion - 4	the second se	1	unit	
C Flowsheet1	> Stream			
Rom Spet	Connections			
Flow(pet	- Overall			
- 45 Settings	pressure	101325	Pa	
	temperature	300	x	
	mole fraction [water]	0.4		
	mole fraction (methyl diethanolanine)			
	mole fraction [carbon dioxide]	0.05		
	mole fraction (hydrogen sullide)	0.05		
	mole fraction [methane]	0.1		
	mole fraction [ethane]	0.1		
	mole fraction [propane]	0.1		
	mole fraction (butane)	0.1		
	6pw	1	mol / a	
	MW	3.786154	-05 kg / mol	
1	Compound flows			
	Phase Fractions			
	Vapor composition			
	Liquid composition			
	 Overall properties 			
	 Vapor properties 			
	Liquid properties			
Document Explorer				





	S Nevigate to unit operation			ò			×
		n Maribo-Mogensen + "uprops + s	entrops				
No.	Organice + New folder						E+ 🖬 👔
0014	Quick access	Name	Date modified	Туре	Stat		
1	COFE CAPE-OPEN FI	Micerji QObserverji	21-09-2021 08:55 21-09-2021 08:54	具 File 点 File	1 KB 1 KB		
	CneDrive - Personal	Concerningenter, J	11-01-2002 (1852 21-05-2001 11/12	A File	3 KB 4 KB		
	This PC	StippleTest2.jl	26-09-2021 20:18 29-09-2021 17:46	JL File JL File	2 KB 0 KB		
D	Desktop Documents Downloads Music Pictures Videos Windows-SSD (C:) Gogle Drive (G)						
	Filena	me: OStreaminupector#				Unit oper	ation (*ji)
1	and the second second	💼 Log 🔘 No errore				<u> </u>	
and the second sec	nert Explorer dd Watch nit operation QUnitOperation_			0			CAP NUM
•				0		4 Þ	01.11.19 49


Julia-script uses Q-props thermos internally, optionally circumveinting PME-PMC calls

COFE - [Fissedhist1/1]	Q-props			0			×	-	
Rife Edit Insert Flowsheet Flot	10								- 8×
and the second	info S	tream Prop	erties App	arent composition	True composition				
C Fluvsheett	Compound	Feed	Liquid	Vapor					Î
Flowsheet 1 Settings		mol/mol	mol/mol	mol/mol					
- Securda	HiC	0.4	0.635196	0.0289675					
	MDEA	0.1	0.0111824	3.81276e-8					
	CO	0.05	1.58421e-8	1.11242e-5					
	н	0.0	5.46914e-10	0.0					
	OH	0.0	1.82099e-13	0.0					
	MDEAH	0.0	0 176804	0.0					
	COIT	0.0	7.84551e-5	0.0					
	HCO	0.0	0.0939059	0.0					
	HiS	0.05	9.26828e-5	0.0142					
	HS	0.0	0.0827409	0.0					
	СН	0.1	1.0544e-7	0.239205					
	C₂H	0.1	1.23719e-7	0.239205					
201 1.8.8 1.9.9	CiH	0.1	2.13694e-8	0.239205					
¢	C.H.	0.1	3.46667e-9	0.239205					
51	onr Tota tar dvi olv	1.0	0.531954	0.418051					·
and the second se	Lo								
Editing unit operation QUnitOperation_1				0		_	_		CAP NUM

Examples: Development of new property models

Motivation

- New chemistries puts new demands on predictive capabilities of thermodynamic models
- Adding new physical terms can reduce need for data to fit kijs
- We need to be able to quickly implement and evaluate models as they appear in literature
- One example of such new model is the Polar PC-SAFT, which we'll demonstrate next

Model

Marshall and Bokis, Fluid Phase Equilibria, 489 (2019) 83-89

Model implemented in a Jupyter Notebook and included in a property package (demo)

Adds a new pure compound parameter (polarizability)

Model validation

• Cyclohexane-benzene

Export

Exports to a Q-props Model JSON that contains definitions of

- Compounds
- Models in each phase
- Parameters in each phase
- Experimental data (optional)
- Fit strategy (optional)

Gets loaded by the process simulator, which can now use it internally

Implementation of polar PC-SAFT 1

We found the nice results from Marshall and Bokis, Fluid Phase Equilibria, 489 (2019) 83-89 and want to reproduce them

Starting point is an implementation of the original PC-SAFT.

We need to implement the polar term. The paper defines the Helmholtz energy as:

$$a = \frac{A}{Nk_BT} = a_{hc} + a_{at} + a_{dp}$$

$$a_{dp} = \frac{a_2}{1 - a_3/a_2}$$

	using QSAFT using QBinary
	using QBase using StateFunctions
	using QPhaseEquilibriaCore
	const Temperature = QSAFT.Temperature; const Volume = QSAFT.Volume;
	const Composition = QSAFT.Composition;
	const AVDGADRD_CONSTANT = QSAFT.AVDGADRD_CONSTANT; const GAS_CONSTANT = QSAFT.GAS_CONSTANT;
[1]:	8.314459865598527
	First, we need the integrals are taken from the original Rushbrooke (1973) paper and defined as:
[2]:	<pre>doval QSAFT 1_*(p⁺)-(1-0.3618p⁺-0.3285p⁺-2+0.1078p⁺-3)/(1-0.5236p⁺)^2;</pre>
[2]:	I: (generic function with 1 method)
1915	<pre>@eval QSAFT 1_(p*)+(1-8.62378p*-8.11648p**2)/(1-8.59856p*+8.20059p**2);</pre>

[3]: 1: (generic function with 1 method)

For a mixture we assume that the integral is independent of compounds at the same reduced density, hence

[4]: I₄₁₁ (generic function with 1 method)

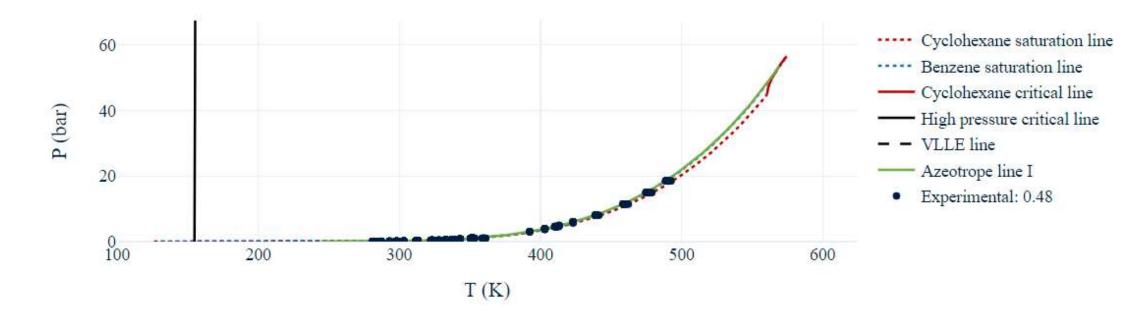
[5]: geval QSAFT $I_{11ji}(p,x_1,\pi_1,d_1^3)=I_2(p^*(p,x_1,\pi_1,d_1^3));$

[1]: IAIN (generic function with I method)

The average cubed diameter is computed as:

[0] @val QSAFT d³(x₁, m₁, d₁³)+sum(x₁, *m₁, *d₁³);

[6]: d³ (generic function with 1 method)



d is related to the hard sphere diameter a and energy parameter e using: (a): feval QSAFT d₁₃(f:Temperature, a₁₃, c₁₁) = a₁₃*(1.0 - 0.12*exp.(-3*c₁₃)(f+10-90))); (a): d₁₃ (generic function with 1 method) Next we need to define the a₂ function. $a_2 = -\frac{2\pi}{9} \frac{p}{(k_b T)^2} \sum_{t=2}^{t} \sum_{t=2}^{t} N_t N_t \frac{a_{01}a_{01}}{d_0^2} z_{d}$ It's almost done as in the paper: (b): feval QSAFT a₁(x₁, n₁, a₀₁, d₁)³, p₁β) = -2\pi/9*p*p*2*\Sigma_1\Sigma_2x_1x_3a_1a_3d_{13}^{-2}(x_1, a_{11}, d_{13}^{-2})*T_{d_13}(p, x_1, n_1, d_{13}^{-2}); (c): feval QSAFT a₄(x₁, x₁, a₀₁, d_{13}^{-3}, a_{13}^{-2}, p_1\beta) = -2\pi/9*p*p*2*\Sigma_1\Sigma_2x_1x_3a_1a_3d_{13}^{-2}(x_1, a_{11}, d_{13}^{-2})*T_{d_13}(p, x_1, n_1, d_{13}^{-2}); (c): feval QSAFT a₄(x_1, x_1, a_{01}, d_{13}^{-3}, a_{13}^{-2}, p_1\beta) = -2\pi/9*p*p*2*\Sigma_1\Sigma_2x_1x_3a_1a_3d_{13}^{-2}(x_1, a_{11}, d_{13}^{-2})*T_{d_13}(p, x_1, n_1, d_{13}^{-2}); (c): feval QSAFT a₄(x_1, x_1, a_{01}, d_{13}^{-3}, (x_1, a_{01}, d_{13}^{-2}) = -2\pi/9*p*p*2*\Sigma_1\Sigma_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1(p) = -2\pi/9*p*2*T_2x_2x_1x_3a_1a_1(p) = -2\pi/9*p*2*T_2x_2x

[11]: a, (generic function with I method)

 $11 : eval QSAFT \sum_{i} \sum_{j} \sum_{x_i \in x_j} x_{ix_i x_i x_{ix_i} a_{ix_i} a_{ix_i}$

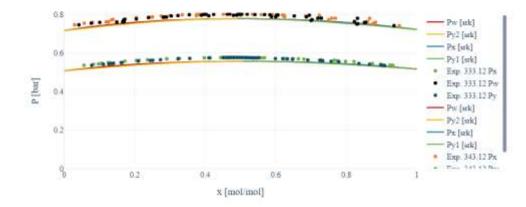
 $[12]:= \underline{\chi}_1 \underline{\chi}_2 \underline{\chi}_1 x_1 x_3 x_4 a_{p1} a_{p2} a_{p3} d_{1,1} + i d_{1,2} + i \text{ (generic function with 1 method)}$

Critical Locus, VLLE-line, and Azeotrope lines Cyclohexane-Benzene

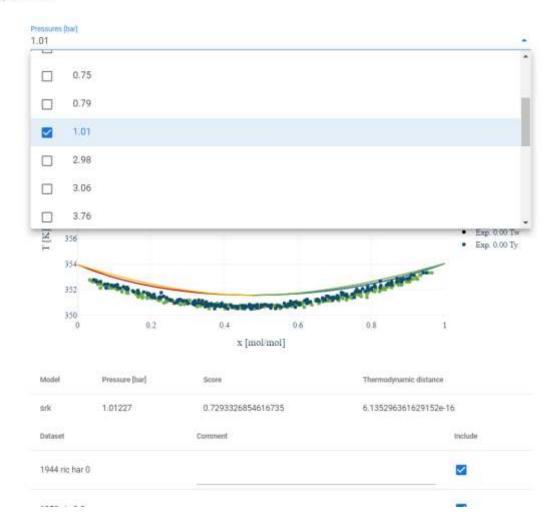
Case study: Implementation of Polar PC-SAFT

111

「「丁:..:デ 国 国 必 軍


10

Temperatures (k) 333.12, 343.12


Show discarded datasets

Pxy: Cyclohexane, Benzene

dodel Tem	perature (K)	Score	Thermodynamic distance
ark 333	1160000000004	0.3906359455470684	2.1747202477358613e-9
	1225000000006	0.3679770579556052	0.000324832296647117
Dotaset	Co	rament	include
1939 sca woo 1			

Select pressure below


```
"mixture": {
  "phases": {
   "vapor": {
     "model": "polar pc saft",
     "compounds": [196, 1361],
     "reactions": [],
     "parameters": {
       "molecular_weight": [84.16, 78.11],
       "critical_temperature": [554.0, 562.0],
       "critical pressure":[4070e3, 4890e3],
       "acentric_factor": [0.212, 0.212],
       "pcsaft segment number": [2.5303, 2.305],
       "pcsaft_sigma": [3.8499, 3.732],
       "pcsaft epsilon": [278.11, 291.23],
       "polarizability": [0.0, 2.16],
       "kij": {"size": [2, 2], "0,0": 0.00, "0,1": 0.00, "1,0": 0.00, "1,1": 0.00 }
     },
```

}, "strategy": ["properties": ["thermodynamic distance"], "steps": ["method": "local", "compounds": [196, 1361], "mask": [{ "phases.liquid": { "pcsaft_segment_number": [false, true], "pcsaft sigma": [false, true], "pcsaft epsilon": [false, true], "polarizability": [false, true], "kij": {"size": [2, 2], "0,1": true, "1,0": true} }, "phases.vapor": { "pcsaft segment number": [false, true], "pcsaft_sigma": [false, true], "pcsaft_epsilon": [false, true], "polarizability": [false, true], "kij": {"size": [2, 2], "0,1": true, "1,0": true} "nofononco data": J

Thank you

Hafnium Labs Predicting Chemistry