Slide 1

tailor-made engineering software solutions

Jasper van Baten - AmsterCHEM

CAPE-OPEN Annual Meeting 2021, October 27-28

Good afternoon. My name is Jasper. This presentation will feature my new COBIA
based CAPE-OPEN unit operation: the Python Unit Operation.

tailor-made engineering software solutions

Go g|e most popular programming languages X Q
Q Al) Images [3] Videcs & Nowse M Books ! More Tocle

C is the most widely popular programming language in TIOBE Index, while Python is the
most searched language in PYPL Index.

PYPL Index (US)

Aug 2021 Programming language Share
1 Python 3147 %
2 Java 19.14 %
3 JavaScript 7.49 %
4 c# 6.24 %

24 more rows - Aug 11, 2021

Let’s start with the motivation. Python has made a rapid climb in the last years
becoming the most popular programming language. When googling “most popular
programming languages” this is what comes up.

amstercHEM

ade engineering software solutions

Cons Pros
» Python is siow » Most ‘python’ code is
not actually python
» Python is ugiy » Python is easy
» Python does not » Large ecosystem of
happily do support libraries
multithreading

(more on that later)

To understand why this is so I have made a list of pros and cons for Python. First
con, Python is slow. This is of course a disadvantage, but on the pro side we see that
most code executing in Python is not actually written in Python. As an example, if
you use a numeric solver, it is likely from the scipy package, which uses highly
optimized native routines. Next, Python is ugly. There was probably a good reason
to call the language after Monty Python, it is so ugly that it is almost funny. With
spacing and indenting being part of the syntax specification I get all nostalgic and I
feel like I am back in 1977. Of course on the up side, many people find Python
really easy to learn and to understand and to read. For me a rather big down side is
that Python does not really lend itself well for multi-threaded production software,
more on this later. But on the up side, there is a large ecosystem of support libraries
ready for you to use.

Tailor-made engineering software solutions

Cons Pros
» Python is siow » Most ‘python’ code is
not ython

» Python is ugiy » Python is easy

» Python does not » Large ecosystem of
happily do production suppoit libraries
software _/
(more on that later)

I am going to put some emphasis on these two pros: the combination of ease of use
and plenty of support libraries, including numerical solvers, makes Python an
excellent platform for prototyping and quick development. This is I think why
Python is so popular.

tailor-made engineering software solutions

https://www.colan.org/news/evaluation-of-cape-open-2020-annual-meeting/

Another big motivator of this project is the feedback from our own community.
After the CAPE-OPEN 2020 Annual Meeting, there was a questionnaire, and one of
the results from this is that our community really wants to see Python as being
accessible though CAPE-OPEN. The Python Unit Operation, and its sister product
Python CAPE-OPEN Thermo import, may fill this void to some extent, but....

amstercHem

tailor-made engineering software solutions

PYTHON UNIT OPERATION IS NOT
A COBIA LANGUAGE BINDING TO
PYTHON

» Such a language binding would make that one is able to
implement CAPE-OPEN interfaces directly in Python

» Python Unit Operation uses its own API

(and this is a really long title for a slide), Python Unit Operation is not a COBIA
language binding for Python. Such a language binding would have you implement
CAPE-OPEN interfaces directly in Python. This is not what the Python Unit
Operation does. It is indeed built on COBIA. As it is recent software development,
that decision makes sense.. But Python Unit Operation offers its own programming
interface towards coding a unit operation, bypassing most of the CAPE-OPEN
details, which are taken care of under the hood. So now that we know what the
Python Unit Operation is not, let us look at what it is. And how we can learn from it
for making a COBIA Python language binding.

amstercHEM

e engineering software solutions

PRESENTATION OUTLINE

» What is the Python Unit Operation?
» Learnings for COBIA Python Language binding

So after all that, I finally get to the outline of this presentation. I want to introduce
you to the Python Unit Operation. I also want to share what I have learned building
the Python Unit Operation, and how it would reflect on a possible COBIA language

binding to Python.

Python
PME > uo
"\\\",, ciass
Kok factory
\ - R
N e ~ v ~N
Python Python Python
3.8UO 3.9U0 3.10 U0
Y Python
~ Scintilla UO Editor

The Python Unit Operation is not actually one unit operation. If you instantiate the
unit, the class factory will determine if it can find a supported version of Python on
your system, for the current bitness. If you run a x64 PME, you will need an x64
Python installation. Then it will instantiate the proper Python Unit Operation using
the appropriate module for the appropriate Python version. All of these make use of
the same editor component, which in turn makes use of the Scintilla editing
component, giving a syntax highlighting editor experience. All CAPE-OPEN
interactions use COBIA as the middleware.

Python
PME > uo
“\\\'-_.,, ciass
Kok facto
\ - o
N e ~N v ~
Python Python Python
Notepad:+ 3¥‘3t Uo 3.¥-3t uo 3.1y\tf) uo
Y Python
| Scintila_ UO Editor

For those of you not familiar with Scintilla, it is the editor component underlying
the popular Notepad++ editor.

tailor-made engineering software solutions

S @ Unit operation Python Unit Operation_I:
Nome Staw Edt Balance Pots o
R Pasameter Vae
Pyihon Uit Operaiioy /70 A b
il LE
Python Unit Operation

Python parameters Ports Reports Configure License
#Python CAPE-OPEN Unit Operation script

2
<)
4 def Configure(unit):

5 #example: add a feed and product

6 unit.add_port("Feed",unit.PortType.MATERIAL, unit.PortDirection.FEED)
7 unit.add_port("Product",unit.PortTlype.MATERIAL, unit.PortDirection.PRODUCT)
8

S

#example: add a heat duty parameter

unit.add_parameter("Heat Duty",unit.ParameterType.REAL,unit.ParameterMode.INPUT,default=0,dimension=WATT)

10
11
12 def Calculate(unit): i
\
Test FS) Qose.
[e7a®

[

So I will give a short introduction in what the Python Unit Operation is and does.
For this I will use the default Python script that will be there when you drop a
Python Unit Operation in the flowsheet. A simple constant duty heater where heat
duty is an input parameter. One feed, one product, no pressure drop. If you edit the
unit operation, this editor window will show.

tailor-made engineering software solutions

] @ Unit operation Python Unit Operation_I: %

Nome Stsn €St Balance Pots Info

= g Paramater Value Ut
Pyiinon Uni Operaion A b
i LE

Python Unit Operation s] X
Pyton puameters Ports Reports Configre Lcense

1 A
2 #Python CAPE-OPEN Unit Operation script

L

>

4 def Configure(unit):

5 #example: add a.fe€l and product

6 unit.ada port(Feed",unit.PortType.MATERIAL,unit.PortDirection.FEED)

7 unit.add_port("Product",unit.PortTlype.MATERIAL, unit.PortDirection.PRODUCT)

8 #example: add a heat duty parameter

S WATT=unit.Dimension.KILOGRAM*unit.Dimension.METER**2/unit.Dimension. SECOND**3

10 unit.add_parameter("Heat Duty",unit.ParameterType.REAL,unit.ParameterMode.INPUT,default=0,dimension=WATT)
1

12 def Calculate(unit):

0 S o st A v
< >
\

Test) Cose

[re7a®

[

There are essentially two functions you need to provide. The Configure function
allows you to well ... set up the unit operation configuration, and the Calculate
function, you guessed it, is called when the unit operation is calculated. There are
other functions that you can provide, but these two are the only required ones. Let’s
start with the Configure function. The argument to the configure function is the
object that provides the access to the CAPE-OPEN unit operation.

11

tailor-made engineering software solutions

] & Unit operation Python Unit Operation_1 x
Name Ststus €M Balance Pots Info l
2o N Pamete Veke add »mort
Pyion nit Operaiiop 1, 7= A Qe _pOl L
Python Unit Operation =] X
i add_parameter
Python Puameters Ports Reports Configre Lcense
2 #Python CAPE-OPEN Unit Operation script add_report
2
4 def Configure(unit): a.dd_lma.ge
5 #example: add a feed
6 unit.add_port(* Junit.PortType.MATERIAL, unit.PortDirection.FEED}
7 unit.add_port("Product",unit.PortTlype.MATERIAL, unit.PortDirection.PRODUCT)
8 #example: add a heat duty parameter
S WATT=unit.Dimension.KILOGRAM *unit.Dimension.METER **2/unit.Dimension. SECOND**3
10 unit.add_parameter("Heat Duty",unit.ParameterType.REAL,unit.ParameterMode.INPUT,default=0,dimension=WATT)
11
12 def Calculate(unit):
P SE oo ot i e
\
Test5) Cose
CICED

[

In the configure function, you can add ports, you can add parameters, and you can
add two kinds of reports. The old fashioned textual reports that were introduced in
CAPE-OPEN 1.0 Unit Operations, and image reports that are new to the reporting
interface in CAPE-OPEN 1.2. Of course when used from a CAPE-OPEN 1.0 or 1.1
compliant PME, these image reports will be unavailable to the PME, but you can
still inspect them from the Reports tab.

12

tailor-made engineering software solutions

S @ Unit operation Python Unit Operation_I:
Nome Staw ES Balace Pots o

Parameter Value Unt

Pyiton Uni Cperaioy | A & I

Python Unit Operation) ‘ o X
Python parameters Ports Reports Configure License

2 #Python CAPE-OPEN Unit Operation script

2

4 def Configure(unit):

5 #example: add a feed and product

6 unit.add_port("Feed",unit.PortType.MATERIAL, unit.PortDirection.FEED)

7 unit.add_port uct",unit.PortTlype.MATERIAL, unit.PortDirection.PRODUCT)

8 #example: add a ty parame|

S WATT=unit.Dimensio RAM™ .

10 unit.add_parameter("H N * Python Unit Operation m)

11

12 def Calculate(unit): Python Parameters Ports Reports Configure License

a2 Hmw Aamiimnmmbabinme ima o
‘(Port Type Direction Connected to ——

Feed material inlet Feed stream
Product material outlet Product stream

Test F5) Qose.

| ol 39

As said, you are not implementing a CAPE-OPEN unit operation yourself. You do
not need to implement a port collection, this is all done for you. Adding a port will
automatically add it to the port collection. You can inspect the results from the ports
tab. The Python Unit Operation supports material-, energy- and information ports.

13

tailor-made engineering software solutions

¥ Python Unit Operation a X
J & unto Python Parameters Ports Reports Configure License
Name i Parameter Type Mode Value Unit
251 5 LS Paramet Heat Duty real input 0.0 w
Python Unit Operaiiop (. 0 "
Python Unit Operation
Python parametsrs Ports Reports Configwe Lcense
#Python CAPE-OPEN Unit Operation script
T .

2
<)
4 def Configure(unit):

5 #example: add a feed and product
6 unit.add_port("Feed",unit.PortType.M -PortDirection.FEED)
7 unit.add_port("Product”,unit.Po, RIAL,unit.PortDirection.PRODUCT)
8
S

#example: add a heat dut

WATT=unit.Dimension s GRAM*unit.Dimension.METER**2/unit.Dimension.SECOND**3

10 unit.add_parameter("Heat Duty",unit.ParameterType.REAL,unit.ParameterMode.INPUT,default=0,dimension=WATT)

11

12 def Calculate(unit):

<> S e it M i

\

Test) Gose
[re7a®

[

Similarly you do not need to implement parameter objects, parameter specification
objects, a parameter collection; also this is all taken care of. Just add a parameter,
with dimensionality, type and mode (input or output), and again the result can be
immediately checked from the parameter tab. The Python Unit Operation supports
real, integer, Boolean, string and real array parameters. Setting up text reports or
image reports is equally simple, and not shown here. There is a default report, which
will capture any output you print to the standard output.

14

tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
fexample: copy Feed to Product, apply heat duty
fd=unit.ports["Feed"]

duty=unit.parameters["Heat Duty"].value
if fd.flow rate==0 and duty!=0:
raise RuntimeError('Zero feed flow rate;
cannot apply duty')
h=fd.get property('enthalpy') #molar enthalpy

if (duty!=0):
h+=duty/fd.flow rate
unit.ports["Product"].set(x=fd.x,p=fd.p,
flow rate=fd.flow rate,enthalpy=h)

So let’s have a look at the calculation script. Again for the sake of simplicity I will
not go past the default example script that is there when you drop the unit operation
into the flowsheet.

15

Tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
exampdet—aopy=toecd to Product, apply heat duty
fd=unit.ports["Feed"]
duty=tunitiparameters["Heat Duty"].value
if fd.flow rate==0 and duty!=0:
raise RuntimeError (' fe f1
Carot—_anly duty')
h=fd.get property('enthalpy') #molar enthalpy
if (dutyt=6)=
h+=duty/fd.flow_rate 2
unit.ports["Product™ . Set(x=£d,. x ;)p=fd.p,
flow_rate=fd.flow_raté,enthalpy=h)

1te:

’

Any port added using add_port in configure, is available during Calculate from the
unit.ports dictionary. Shown here are all references to the feed port. One can just get
properties of the feed port. If this is not sufficient, the full thermodynamic API,
compatible with Python CAPE-OPEN Thermo Import, is available via each object
connected to a material port. The CAPE-OPEN Unit Operation standard says you
cannot do anything that has side effects on material objects connected to feed ports.
Hence, if you need to calculate a property, which would have the side effect of the
property being available, you should do so on a duplicate of the material object.
None of these CAPE-OPEN concerns matter much here, this duplication, when
needed, is done automatically behind the scenes. In this case it is needed, as we
calculate and obtain enthalpy.

16

tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
fexample: copy Feed to Product, apply heat duty
fd=unit.ports["Feed"]

duty=unit.parameters["Heat Duty"].value
if fd.flow rate==0 and duty!=0:
raise RuntimeError('Zero feed flow rate;
cannot apply duty')
h=fd.get property('enthalpy') #molar enthalpy

if (duty!=0):
h+=duty/fd.flew-rate

vniit.ports["Product"].set (x=fd.x,p=fd.p,
flow rate=fd.flow rate,enthalpy=h)

Material streams expose thermodynamics consistent with:

Python CAPE-OPEN Thermo Import (AmsterCHEM)

Finally the CAPE-OPEN Unit Operation standard says we must flash our product
ports. This is taken care of by the set function, that is circled here for the product
port. This unit does a PH flash.

17

tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
#example: copy Feed to Product, apply heat duty
fd=unit.perts T Tecd"]
duty=unit.parameters["Heat Duty"].value
if fd.fkew.rate==0 and duty!=0:
raise RuntimeError('Zero feed flow rate;
cannot apply duty')
h=fd.get property('enthalpy') #molar enthalpy
if (duty!=0):
h+=duty/fd.flow rate
unit.ports["Product"].set(x=fd.x,p=fd.p,
flow rate=fd.flow rate,enthalpy=h)

Parameters are available from the unit.parameters dictionary, and the value can be
set and obtained.

tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
fexample: copy Feed to Product, apply heat duty
fd=unit.perts T Tecd"]
duty=unit.parameters["Heat Duty"].value
if fd.fkew.rate==0 and duty!=0:
raise RuntimeError('Zero feed
cannot apply dut
h=fd.get property('enthalpy') #m
if (duty!=0):
h+=duty/fd.flow rate value
unit.ports["Product"].set(x=fd.x,p=f name
flow rate=fd.flow rate,ent description

is input
type

Other members include name, description, is_input, and type, all of which are read
only during Calculate.

19

tailor-made engineering software solutions

def Calculate(unit):
#for documentation, use
help(unit)
#example: copy Feed to Product, apply heat duty
fd=unit.ports["Feed"]
duty=unit.parameters["Heat Duty"].value
if fd.fdow Tate==0 and duty!=0:

raise RuntimeError('Zero feed flow rate;
cannot apply duty')
= |

h=fd. get_property (Ter Calculate unit: X
if (duty!=0):

h+=duty/ fd . flow 1 Failed to calculate the selected unit operation: failed to solve

. — aW unit Prthon Unit Operation_1: calculate failed for unit Pvthon
unit. port s["Product"] Unit Operation_1: in ICapeUnit::Calculate of Python Unit
Operation "Python Unit Operation_1": RuntimeError: Zero feed

flOW rate=f flow rate; cannot apply duty

Error handling is as simple as raising a Python exception of your choice. This is
automatically converted to a CAPE-OPEN error, and handled by the PME as it sees
fit. Shown here is what COFE does if you select Calculate for a single unit

operation.

Slide 21

tailor-made engineering software solutions

B AmseCHEM - Bamgles X+

€« cC @ 08
amstercHem
engneenng ‘e $0luBONS.

Examples:

amsterchem.cor|

Table of contents

The basics
alculating thermo physical properties
inits of measure

jalidation

arameters
formation streams.
nergy streams
oxt roports

« Putting it all together
© Building a library

Examples

© Example 1: a simple heater.
 Example 2: thormo.physical property calculations.
 Example 3: Dimension and units of measure.

© Example 4: Water separator.

© Example 5: Hoat exchanger configuration.

Examples

e o o 0 o o o

Example 1: a simple heater.
E 2: th -physical property calculations.
Example 3: Dimension and units of measure.
Example 4: Water separator.

Example 5: Heat exchanger configuration.
Example 6: Counter-current heat exchanger with

Examnla 7: Addad ontions o tha haat axch,
xample 7: Added cpticns to the heat exch;

3

Example 8: Expose temperature deviation from dew point via information port.

Example 9: Heater, with thermal energy feed port.

Example 10: Heater, with thermal energy feed port.
Example 11: Writing a report.

Exampie 12: Muiti-stream sheii and tube heat exchanger.
Example 13: importing an external unit operation definition.

Example 14: importing an external unit operation definition in the path.

aximum heat exchange.

=7

© Example 6: Counter.current heat exchanger with maximum heat
© Example 7: Added options 1o the heat exchanger of Example 6.

© Example 9: Heater, with thermal energy feed port.
© Example 10: Hoater, with thermal energy foed port.

© Example 11: Writing a roport.

© Example 12: Multi stream shell and tube heat exchanger.

© Example 13: importing an extermal unit operation definition.
 Example 14: importing an external unit operation definition in the path.

The basics

feports, using add_parameter, add_port and add_report

During calculate, the ports can be obtained from unit.ports [<name>], that is, the objects connected to the ports are obtained like that If a ports is not connected, it will not appear in the unit
<

Let's start with the basics. Each Unit Operation requires a Con:gure function and a calculate function. Each of these functions takes a unit argument. During Congigure, One can add parameters, ports and

orts dictionary. v
>

© 2021 Jasper van Baten, AmsterCHEM

OK - that may have been an extremely simple example. But fear not, much more

illustrative examples are available from the AmsterCHEM web site.

21

tailor-made engineering software solutions

B AmsecHEM - Bamgies X+

S =7 o] Examples
am Traneeing e solusons e Example 1: a simple heater. 9
e Example 2: thermo-physical property calculations. o
Examples: e Example 3: Dimension and units of measure.
Table of contents e Example 4: Water separator.
e E ple 5: Heat exchang figuration.
i whicel propestes e Example 6: Counter-current heat exchanger with maximum heat exchange.

e Examnla 7: Addad ontions to tha haat axchanaar of Examnla §
+ Example 7: Added opticns to the heat exchanger of Example 6.

e Example 8: Expose temperature deviation from dew point via information port.
e Example 9: Heater, with thermal energy feed port.

e Example 10: Heater, with thermal energy feed port.
ple 11: Writing a report.

e Exampie 12: Muiti-stream sheii and tube h%
e Exa 13=importing: | uni nition.

p
ple 14: importing an external unit operation definition in the path.

function and a Calculate function. Each of these functions takes a uni t argument. During Con£ igure, one can add parameters, ports and

>], that is, the objects connected 1o the ports are obtained like that If a ports is not connected, it will not appear in the unit.ports dictionary +
>

©2021 Jasper van Baten, AmsterCHEM

If you immediately want to dive into the more complex functionality, the multi-
stream heat exchanger uses solvers from scipy, it uses persistence, it uses validation
and it creates plots temperature profiles along the device. Our friends from
ChemSep immediately applied this multi stream heat exchanger example in several
of their example flowsheets, available from chemsep.org or cocosimulator.com.

22

amstercHem s 2

ailor-made engineering software solutions

LEARNINGS FOR COBIA - PYTHON

» Bring your own Python or share what is given?
» Multithreading

» Lingering references

So much for showing what the Python Unit Operation is. I promised I would share
my findings on using Python in a COBIA language binding, and I said I would
elaborate on why Python does not happily do production software. There are three
points in particular [would like to discuss. The first is the choice of which Python to
use.

amstercHem

tailor-made engineering software solutions

LEARNINGS FOR COBIA - PYTHON

Slide 24

» Bring your own Python or share what is given?
» Multithreading

» Lingering references

1 > ThisPC > DATA(D:) > Programs > Python >

(o) Name
ccess

anaconda3
op

anaconda3-x64
loads .

Pyth
Python37-64
es Python38-32
Python38-64
Python39-32
Python39-64
Python310-32
Python310-64

ments

test suite

My computer contains a whole nest of Pythons and they seem to multiply. Secondly
I will gloss over Python’s multithreading provisions, or rather the lack thereof,
particularly in the context of sharing Python with your PME or other PMCs, and
finally I will touch on an issue that is not unique to Python, the issue of lingering
references. From here on out I am afraid the presentation will get a bit more
technical. So hold on to your hats.

amstercHem sz

ailor-made engineering software solutions

BRING YOUR OWN PYTHON?

» CAPE-OPEN is about interop, PMEs and PMCs share
the same process space

» Uniess you are wiliing to compiie your own Python or
make a unique copy in a tmp folder, each Python comes

in a DLL with a particular name. So each Python can only
be loaded once.

» Should the PME select Python? Should COBIA? Should
the PMC? What if somebody else already loaded
Python?

For COBIA a proper design is needed.

CAPE-OPEN is about interop, PMEs and PMCs share the same process
space. Who is responsible for picking which Python is to be used in such a
context, and who loads Python, and if Python is already loaded, how do you
with it not being the version of Python you were hoping for. These are far
from a trivial problems. The Python Unit Operation has several steps in place
to take care of this, including a method in which you identify yourself which
Python is to be used. It skips loading python3.dll, as this DLL name is shared
between all Python 3 versions, and each Python Unit Operation
implementation is specific to a particular Python version, and statically binds
to a particular DLL name, e.g. python39.dlIl for Python 3.9. It could of course
be that this Python is already loaded by somebody else, in which case we
are sharing Python with others. So best not to make use of any global
variables, short of the list of loaded modules (you can of course immediately
see there are potential problems there too). On top of this, how we deal with
threading also is affected by who we are sharing Python with and how they
are dealing with threading.

Note that all Python Unit Operations share the same underlying Python. So
they should probably stay away from the use of global variables. The Python
Unit Operation resolves this by loading the user script under the hood inside
a private, unique module. That all Python Unit Operations share the same
instance of Python also has consequences for multi-threading.

25

amstercHEM sz

ade engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

The Python interpreter is, alas, not thread safe. Access to the Python Interpreter is
shielded by the Global Interpreter Lock, also infamously known as the GIL. You

need to acquire the GIL any time you want to execute something in the interpreter.

During any interpreted code, Python itself may temporary unacquire the GIL,
during for example lengthy file operations or other external actions, and then the
GIL is reacquired by Python itself. Then you must release the GIL when you are
done with the interpreter. Consequently of course, multithreading Python is rather
inefficient in this manner. Surprisingly, this is how Python’s built-in module
python.threading is working.

26

tailor-made engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

https://docs.python.org/3/library/threading.html

CPython implementation detail: In CPython, due to the Global Interpreter Lock, only one thread can execute
Python code at once (even though certain performance-oriented libraries might overcome this limitation). If you
want your application to make better use of the computational resources of multi-core machines, you are advised
touse multiprocessing OF concurrent. futures.Processl 1Executor. However, threading is still an
appropriate model if you want to run multiple 1/0-bound tasks simultaneously.

Here’s the excerpt from the documentation in Python 3.10. Multiprocessing would
be an option, if you don’t mind intra-process marshaling, which is surely a
performance killer altogether.

tailor-made engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

» Use of independent sub-interpreters?

The next route down to investigate would be the use of sub-interpreters, which are
independent of each other and can run concurrently. There is an API on this, but
there are particular items in the documentation and corresponding PEP (Python
Enhancement Proposal) that are rather frightening.

28

tailor-made engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

» Use of independent sub-interpreters?

https://docs.python.org/3/c-api/init. html#sub-interpreter-support

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-
mterpreters Itis hlghly recommended that you don't switch sub-interpreters between a pair of matching

yG ate) and LState Release () calls. Furthermore, extensions (such as ctypes) using
these APIs to allow calllng of Python code from non- Pylhon created threads will probably be broken when using
sub-interpreters.

We find this excerpt in the API documentation under Bugs and Caveats. | have
highlighted the bit of interest that says that anybody that does not have the same
plan may face broken essential functionality, including ctypes, which we we surely
use for native interop. Keep in mind that this is CAPE-OPEN so there are bound to
be 3" party software products inside the process, that may not appreciate what you
are doing if you are accessing this API.

29

tailor-made engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

» Use of independent sub-interpreters?

https://www.python.org/dev/peps/pep-0554/#a-disclaimer-about-the-gil

A me__8_% __ . _ L _..axl _ R

A viscialmer avboul e UiL

To avoid any confusion up front: This PEP is unrelated to any efforts to stop sharing the GIL between subinterpreters. At most
this proposal will allow users to take advantage of any results of work on the GIL. The position here is that exposing subinter-

preters to Python code is worth doing, even if they still share the GIL.

The PEP that suggested the sub interpreters API says this. So whether this is a viable
route to avoid the GIL is, well, questionable.

tailor-made engineering software solutions

MULTITHREADING

» Python interpreter is not thread safe.

» Therefore, access to the Python interpreter is shielded by
the GiL: the Giobai interpreter Lock

» Use of independent sub-interpreters?

» More research required....

I would carefully say that before jumping on a COBIA Python language binding,
more research into the whole threading issue is required.

As said, all Python Unit Operations share the same Python. Therefore, each Unit
Operation shields use of the Python interpreter by using the GIL.

Work is being done on making a Python interpreter that is thread safe, but as far as I
know this is not publicly available yet. At least not main stream. Perhaps in a few
years this problem will resolve itself.

31

amstercHEM s 2

ade engineering software solutions

LINGERING REFERENCES

» CAPE-OPEN defines finite life span of some objects
» Problem is not unique to Python: Garbage Collection
(.NET, java)
» Python keeps references of a stack frame
» last_type, last_value, last_traceback

» Note these variables are global, and we may be sharing
Python

Finally the CAPE-OPEN standards says that when a PMC is terminated, all external
references must be dropped. There are other contexts in which you are not supposed
to keep references to objects, for example, you should not cache a duplicate material
object past the Calculate call of a unit operation. That this leads to problems is not
unique to Python. In .NET and java for example, objects are not reference counted
as they are in COBIA, COM and Python, but memory management is obtained
though the process of garbage collection, which means that objects may not actually
be destroyed until well after they are no longer referenced. In various .NET
implementations this leads to having to carefully figure out which objects are
related to each other and which not, and explicitly telling the .NET marshaler to
drop the COM binding of objects when needed, well before garbage collection.

The lingering references in Python come from a corner that surprised me somewhat.
When an error is raised, the Python interpreter funnily saves some global debugging
values: last type, last value, last traceback. The latter contains the entire stack
trace, including all variables on the stack on each frame. Clearly if there are some
external CAPE-OPEN variables in there, we did not actually release them in time.

As a cherry on the cake, these are global variables. Again something we would like
to avoid manipulating in case we are sharing the Python instance with others.

32

Ok — that completes my summary of potential Python issues in an interop framework. Some
final notes.

32

Tailor-made engineering software solutions

CONCLUDING REMARKS
» Python Unit Operation available from AmsterCHEM:

https://www.amsterchem.com/pythonunitoperation.htmi
» A similar module to use CAPE-OPEN thermo in Python:
https://www.amsterchem.com/pythonthermo.html|
» Free for academic use
» Give it a test spin: 1 month trial for non-academic use.
LEARNINGS FOR COBIA
» Several issues to be sorted for COBIA-Python binding

Thank you for your attention.

33

