
Slide 1

Jasper van Baten – AmsterCHEM

Bill Barrett – EPA

Michael Hlavinka – BR&E

Michel Pons – CO-LaN

CAPE-OPEN Annual Meeting 2021, October 27-28

CO-LaN’s CAPE-OPEN Middleware



Slide 2

➢ Marshaling & Threading

➢ Marshaling, short demo

➢ The COBIA threading models

➢ Mapping between COM and COBIA threading models
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➢ Precompiled by COBIA

➢ Type information in registry

➢Many benefits in code generation!

➢ Precompiled by software vendor

➢From type information, code generators

➢ Compiled on the fly

➢ Native: libffi (     prototype available)

➢ .NET, java: reflection (     .NET prototyped)
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➢ unrestricted threading: the PME can access      

PMC object from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed 

only from the thread in which it was created.
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➢ unrestricted threading: the PME can access      

PMC objects from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed 

only from the thread in which it was created.

➢ PME can indicate that it does not need 

unrestricted threading!

➢ if the PME does not do so, COBIA will 

marshal the PMC in-process
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➢ COBIA PMCs are fully compliant with any COM 

threading model. No problems here.

➢ in a COM Single Threaded Apartment (STA), 

COBIA will create the PMC without the need 

for unrestricted threading

➢ in a COM Multi-Threaded Apartment (MTA), 

COBIA will create the PMC with marshaling if 

needed.
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➢ COM PMCs are not necessarily compliant 

with COBIA threading

➢ when a COM object is created, COM needs 

to be initialized for the current thread with a 

COM threading model

➢ the problem is that COM threading models 

are per thread, whereas COBIA threading can 

be indicated per PMC.
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➢ Marshaling is a very important step in COBIA

phase III development, and a proof-of-concept 

is delivered

➢ Some details on COM-COBIA threading model

interoperability still remain to be worked out.

➢ COBIA was already pretty cool, and just became

a lot cooler!
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➢ Source is available to CO-LaN members

➢ /trunk: Phase II, COBIA 1.2.0.8

➢/branches/phaseIII: Phase III work-in-progress

➢ COBIA wizard available

➢ Trying is encouraged!

➢ Feedback is welcome…


