
Slide 1

Jasper van Baten – AmsterCHEM

Bill Barrett – EPA

Michael Hlavinka – BR&E

Michel Pons – CO-LaN

CAPE-OPEN Annual Meeting 2021, October 27-28

CO-LaN’s CAPE-OPEN Middleware

Slide 2

➢ Marshaling & Threading

➢ Marshaling, short demo

➢ The COBIA threading models

➢ Mapping between COM and COBIA threading models

Slide 3

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Slide 4

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Slide 5

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

Slide 6

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

Slide 7

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

PMC (Win, x64, EXE)

Slide 8

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

PMC (Win, x64, EXE)

PMC Host (Linux)PMC Host (Linux)

PMC (Linux, so)

Somewhere else:

Slide 9

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

PMC (Win, x64, EXE)

PMC Host (Linux)PMC Host (Linux)

PMC (Linux, so)

Somewhere else:

Slide 10

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)

Thread

PMC (Win, x64, DLL)

Native - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

PMC (Win, x64, EXE)

PMC Host (Linux)PMC Host (Linux)

PMC (Linux, so)

Somewhere else:

Logging:

PMC (Win, x64, DLL)

Slide 11

Caller Callee

Call

Return

(Processing)

Slide 12

Caller Callee

Call Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Host ProxyClient Proxy

Slide 13

Caller

PME

Callee

PMCCall Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Host ProxyClient Proxy

Slide 14

Caller

PMC

Callee

PMECall Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Host ProxyClient Proxy

Slide 15

Client

Create

Client

Proxy

Client

Proxy

Interface

QI

Host

Proxy

Host

Proxy

Interface

First QI

Host

Object

Invoke

method

Slide 16

PME (Win, x64)PME (Win, x64) PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x64, DLL)Create

CalcEquilibrium

c
a
lc

u
la

tio
n

SetPresentPhases

(return)

(return)
Material

Object

T
h

e
rm

o
C

li
e
n

tP
M

E
T
e

s
t

W
a
te

rP
P

Slide 17

PME (Win, x64)PME (Win, x64) PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x64, DLL)Create

CalcEquilibrium

c
a
lc

u
la

tio
n

SetPresentPhases

(return)

(return)

C
lie

n
t

P
ro

x
y H

o
s
t P

ro
x
y

Material

Object

Slide 18

PME (Win, x64)PME (Win, x64) PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x64, DLL)Create

CalcEquilibrium

c
a
lc

u
la

tio
n

SetPresentPhases

(return)

(return)

C
lie

n
t

P
ro

x
y H

o
s
t P

ro
x
y

Material

Object

C
lie

n
t P

ro
x
yH

o
s
t

P
ro

x
y

Slide 19

PME (Win, x64)PME (Win, x64) PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x64, DLL)Create

CalcEquilibrium

c
a
lc

u
la

tio
n

SetPresentPhases

(return)

(return)

C
lie

n
t

P
ro

x
y H

o
s
t P

ro
x
y

Material

Object

C
lie

n
t P

ro
x
yH

o
s
t

P
ro

x
y

Slide 20

Slide 21

➢ Precompiled by COBIA

➢ Type information in registry

➢Many benefits in code generation!

➢ Precompiled by software vendor

➢From type information, code generators

➢ Compiled on the fly

➢ Native: libffi (prototype available)

➢ .NET, java: reflection (.NET prototyped)

Slide 22

IDL

cobiaRegister

registry

precompiled

Slide 23

IDL

cobiaRegister

registry

precompiled

marshaler

Slide 24

IDL

cobiaRegister

registry

precompiled

just-in-time

(on-the-fly)
marshaler

Slide 25

➢ unrestricted threading: the PME can access

PMC object from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed

only from the thread in which it was created.

Slide 26

➢ unrestricted threading: the PME can access

PMC object from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed

only from the thread in which it was created.

Restricted threading is not single threading!

Slide 27

➢ unrestricted threading: the PME can access

PMC objects from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed

only from the thread in which it was created.

Slide 28

➢ unrestricted threading: not concurrently

Unit PortPortPort

ParameterParameterParameter

Connected object

Slide 29

➢ unrestricted threading: not concurrently

Unit PortPortPort

ParameterParameterParameter

Connected object

Slide 30

➢ unrestricted threading: the PME can access

PMC objects from any thread, as long as it takes

care not to do so concurrently

➢ restricted threading: a PMC can be accessed

only from the thread in which it was created.

➢ PME can indicate that it does not need

unrestricted threading!

➢ if the PME does not do so, COBIA will

marshal the PMC in-process

Slide 31

➢ COBIA PMCs are fully compliant with any COM

threading model. No problems here.

➢ in a COM Single Threaded Apartment (STA),

COBIA will create the PMC without the need

for unrestricted threading

➢ in a COM Multi-Threaded Apartment (MTA),

COBIA will create the PMC with marshaling if

needed.

Slide 32

➢ COM PMCs are not necessarily compliant

with COBIA threading

➢ when a COM object is created, COM needs

to be initialized for the current thread with a

COM threading model

➢ the problem is that COM threading models

are per thread, whereas COBIA threading can

be indicated per PMC.

Slide 33

PME (Win, x64)PME (Win, x64)

PMC (Win, x64, DLL)PMC (Win, x64, DLL)

ThreadThread

PMC (Win, x64, DLL)

Native - .NETNative - .NET

PMC (C#, DLL)

PMC Host (Win, x86)PMC Host (Win, x86)

PMC (Win, x86, DLL)

PMC (Win, x64, EXE)

PMC Host (Linux)PMC Host (Linux)

PMC (Linux, so)

Somewhere else:

Logging:Logging:

PMC (Win, x64, DLL)

Slide 34

Slide 35

➢ Marshaling is a very important step in COBIA

phase III development, and a proof-of-concept

is delivered

➢ Some details on COM-COBIA threading model

interoperability still remain to be worked out.

➢ COBIA was already pretty cool, and just became

a lot cooler!

Slide 36

➢ Source is available to CO-LaN members

➢ /trunk: Phase II, COBIA 1.2.0.8

➢/branches/phaseIII: Phase III work-in-progress

➢ COBIA wizard available

➢ Trying is encouraged!

➢ Feedback is welcome…

