

COBIA Implementation of the Quantum Converter Multi-Stream Heat Exchanger for Hydrogen Liquefaction Processes

Andrea Galeazzi, PhD candidate in Chemical Engineering at Politecnico di Milano Ahmed Sabri Mohamed Zaid, MsC candidate at Universiti Teknologi Petronas in Chemical Engineering Flavio Manenti, Professor of Chemical Plants at Politecnico di Milano

Liquid Hydrogen

Overview

Liquid Hydrogen

Primary usages

- Storage
- Transportation

Hydrogen Market

EU Ambitions

Conservative scenario (2050):

+6% (+455 TWh)

Ambitious scenario (2050): +22% (+1926 TWh)

Hydrogen Market

Current Production (North America & Europe)

Continent/Country	Location	Operated by	Capacity (TPD)	Commissioned in	-
Canada	Sarnia	Air Products	30	1982	
Canada	Montreal	Air Liquide, Canada Inc.	10	1986	
Canada	Becancour	Air Liquide	12	1988	
Canada	Magog, Quebec	BOC	15	1989	
Canada	Montreal	BOC	14	1990	
French Guyane	Kourou	Air Liquide	5	1990	
USA	Ontario	Praxair	20	1962	
USA	New Orleans	Air Products	34	1977	
USA	New Orleans	Air Products	34	1978	
USA	Niagara Falls	Praxair	18	1981	
USA	Sacramento	Air Products	6	1986	
USA	Niagara Falls	Praxair	18	1989	
USA	Pace	Air Products	30	1994	
USA	McIntosh	Praxair	24	1995	NA mean [.] 20 TPD
USA	East Chicago, IN	Praxair	30	1997	
France	Lille	Air Liquide	10	1987	
Germany	Ingolstadt	Linde	4.4	1991	
Germany	Leuna	Linde	5	2008	Ell moon: 61 TDD
Netherlands	Rosenburg	Air Products	5	1987	EU Mean. 0.1 IPD

Operational plants in North America and Europe until 2009

Source: Krease-in et al. 2010

Hydrogen Market

EU Ambitions (perspective)

Consider 100% liquid hydrogen request for transportation in 2050 with conservative scenario (85 TWh):

$$LHV_{H_2} = 120 MJ/kg$$

$$Mass_{H_{2}} = \frac{Energy_{H_{2}}}{LHV_{H_{2}}} = 2.55 Mt$$

DailyProduction_{H_{2}} =
$$\frac{Mass_{H_{2}}}{Annual Operativity_{90\%}} = 7763 TPD$$

Calculation for new plants request with average European production of **6.1 TPD**:

$$NewPlants_{EU} = \frac{DailyProduction_{H_2}}{PlantProduction_{H_2}} \approx 1200 \ new \ plants$$

Hydrogen Liquefaction

Process

Hydrogen

Spin isomers

Ortho hydrogen

Para hydrogen

Hydrogen Isomers

Ortho-para equilibrium

- **Para-Hydrogen** is the only stable specie for liquid Hydrogen storage
- If Ortho-Hydrogen is stored at lowtemperatures it reaches the equilibrium composition (99+% of p-H₂) with heat generation
- Equilibrium Hydrogen is defined as the most stable o/p composition at any temperature
- Normal Hydrogen (75/25, ortho/para) is the hydrogen existing at high temperatures

10

Liquefaction process

Traditional Claude process

Source: Aasadnia et al. 2018

11

Catalytic Plate Fin Heat Exchanger (PFHE)

Hydrous Ferric Oxide Catalyst

Source: Park et al. 2021

Core unit

PFHE – simulation

Core unit

PFHE – in reality (single unit)

Brazed Aluminum Heat Exchanger

Source: Chart industries

Heat Exchanger Simulation

Current Methods and Proposed CAPE-OPEN Solution

Simulation Methods

Current solutions

1. Heat of reaction is added at the end of each heat exchanger

Non rigorous method with inaccurate results

- 2. Equilibrium hydrogen is modelled as a **pseudo-component** and used only inside the reactive heat exchangers
 - Requires thermodynamic modelling with a pseudo heat capacity which includes the equilibrium heat of reaction
- 3. Linkage to **external tools** like Excel for calculation of heat exchanger
 - Cumbersome method with possibly accurate result

Proposed Solution

Rigorous reactive PFHE - CAPE-OPEN Unit Operation

- Finite difference method with heat exchange and additional heat of reaction at in-out differential temperatures
- Final inlet-outlet unknown temperatures are calculated through a convergence cycle

Proposed Solution

Why use COBIA interface

- Lower entry barrier thanks to class wizard
- Easier customizability and features addition
- Better forward/backward compatibility with platform independence

Conclusion

And prospects

Conclusion

- Solve the problem of simulating the ortho-to-para hydrogen conversion
- CAPE-OPEN is a valid tool for simulating unconventional unit operations without compromises or tricks
- COBIA is the desired interface in order to build new solution efficiently

Future Developments

- Use the integrated UI over the ICapeUtilities Interface to extend the unconventional unit to user-defined processes
- Implement a simulation-wide reaction system for oH_2-pH_2 using the Chemical Reactions interface specification in COBIA once it is released

Thank you for your kind attention

Andrea Galeazzi, andrea.galeazzi@polimi.it

Bibliography

Bibliography

- Fuel Cells and Hydrogen 2 Joint Undertaking, 2019, Hydrogen Roadmap, Executive Summary
 - https://www.doi.org/10.2843/341510
- Park et al. 2021, Catalyst filled heat exchanger for hydrogen liquefaction, International Journal of Heat and Mass Transfer
 - https://doi.org/10.1016/j.ijheatmasstransfer.2021.121007
- Krease-in et al. 2010, Development of large-scale hydrogen liquefaction processes from 1898 to 2009, International Journal of Hydrogen Energy
 - https://doi.org/10.1016/j.ijhydene.2010.02.109
- Valenti 2016, Hydrogen liquefaction and liquid hydrogen storage, Compendium of Hydrogen Energy
 - https://doi.org/10.1016/B978-1-78242-362-1.00002-X
- Aasadnia et al. 2018, Large-scale liquid hydrogen production methods and approaches: A review, Applied Energy
 - <u>https://doi.org/10.1016/j.apenergy.2017.12.033</u>