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Our Contribution

Present our experience with using AmsterCHEM’s MATLAB Unit Operation.
• Specifically, we implemented our novel shooting algorithm for complex 

hydrocarbon mixture permeation across asymmetric membrane layers1

1. Weber, D. and Scott, J.  (2021). Improved Numerical Methods for Simulating Complex Mixture Transport Across 
Asymmetric Polymer Membranes using a Maxwell-Stefan Model. Manuscript in Preparation.
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Industrial Membrane Processes

2. Sholl, D. S. and Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600):435–437.



9

Crude Oil Refining:

Bio-oil refining:

Benzene derivatives:

Alkenes from alkanes:
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3. [Flowchart of crude oil products]. (n.d.). https://tinyurl.com/4ujk69pw
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4. Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chem., 7:267–278.
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Crude Oil Refining:

Bio-oil refining:

Benzene derivatives:

Alkenes from alkanes:

Industrial membrane unit operations are non-existent
in most commercial process simulators

Industrial Membrane Processes
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Complex Hydrocarbon 
Mixture Polymeric 

Membrane Simulation 

Proprietary 
Thermodynamic 

Package Flowsheet

Our Use Case

Chemical Process Modeling
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Our Application

For our experimental collaboration publication with Dr. Ryan Lively’s group at Georgia 
Tech, we looked and 2 glassy polymer membrane materials and 3 complex mixtures5:

5. Mathias, R. †,Weber, D.†, Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting 
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767
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5. Mathias, R. †,Weber, D.†, Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting 
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767

For our experimental collaboration publication with Dr. Ryan Lively’s group at Georgia 
Tech, we looked and 2 glassy polymer membrane materials and 3 complex mixtures5:

For glassy polymers 
we proposed: 

1 sorption model 
2 diffusion models

This CAPE-OPEN tool 
allowed assessment of:
3 different membrane 

sorption models 
5 different diffusion 

scenarios 
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
• First, we need to set up the local transport problem through an asymmetric 

membrane layer1

FE-SEM Photo credit Ronita Mathias of Lively Group at GT
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The sorption-diffusion transport mechanism 
can be represented as three steps6:
A. thermodynamic equilibrium (sorption) 
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I II III

6. Wijmans, J. and Baker, R. (1995). The solution-diffusion model: a review. Jour. of Mem. Science, 107(1):1 – 21.
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
• First, we need to set up the local transport problem through an asymmetric 

membrane layer1

The sorption-diffusion transport mechanism 
can be represented as three steps6:
A. thermodynamic equilibrium (sorption) 

between phase (I) and (II)
B. diffusion through phase (II)
C. sorption between phase (II) and (III)

I II III

6. Wijmans, J. and Baker, R. (1995). The solution-diffusion model: a review. Jour. of Mem. Science, 107(1):1 – 21.
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
• Then, we need to picture the full system of equations for the three-step sorption-

diffusion model1
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure 
component membrane sorption and diffusion properties.

Output all parameter matrices 
required for custom mixture 

membrane simulation

Input mixture component, 
membrane and model selection

• 2 membrane materials
• 12 components
• 3 sorption models
• 2 membrane diffusion models
• 2 cross-coupling diffusion models

dataBank.m and 
correlationsEval.m function call 
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Custom complex hydrocarbon mixture permeation simulation based on pure 
component membrane sorption and diffusion properties.

Proprietary thermodynamic mixture activity model parameters (Corporate Strategic 
Research, ExxonMobil Research and Engineering). 

Access to commercial process flowsheet simulation software property databases.

Ability to assess permeation predictions across different sorption/diffusion models 
and mixtures for validating what simulates a given application best5. 
• 270 mixture permeation simulations across 3 mixtures
• 330 pure component permeation simulations across 12 components
• A handful of multicomponent sorption simulations

Our Implementation
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Predictions of Complex Mixture Sorption

5. Mathias, R. †,Weber, D.†, Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting 
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767
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Predictions of Complex Mixture Permeation

5. Mathias, R. †,Weber, D.†, Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting 
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767
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Advantages and Challenges of AmsterCHEM’s Software

The process to get it up and running was straight forward, and the provided manual 
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase III molar compositions would be illogical 
such that they do not sum to unity.
• A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to 

normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forums.

The only other software bug (PME or PMC) encountered was the global variable 
nComp sometimes reading 0 components when in fact there were 14 for the specific 
flowsheet.
• A quick workaround was to add a new MATLAB unit-op, reload the model file, and 

run the flowsheet simulation to reinitialize the stream components

The ability to save the MATLAB unit-op model is valuable for use between different 
CAPE-OPEN compliant PMEs.
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• Implemented our complex mixture membrane simulation method1 within a 

commercial process simulator using AmsterCHEM’s MATLAB unit operation
• Accounted for non-idealities of the bulk mixtures and used commercial property 

databases to predict the local membrane transport

Future work:
• Extend rigorous local membrane transport simulation to global module transport 

simulation and interface with overall process flowsheet
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direction
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Conclusions and Future works

Conclusions:
• Implemented our complex mixture membrane simulation method1 within a 

commercial process simulator using AmsterCHEM’s MATLAB unit operation
• Accounted for non-idealities of the bulk mixtures and used commercial property 

databases to predict the local membrane transport

Future work:
• Extend rigorous local membrane transport simulation to global module transport 

simulation and interface with overall process flowsheet
• Release our CAPE-OPEN unit-op (standalone MATLAB implementation available, 

please contact for .zip download)
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Thank you for your attention!

Questions?

Direct Contact:

Dylan Weber
Email: djweber@gatech.edu

Phone: +1.864.202.2298

mailto:djweber@gatech.edu
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Ideal Solution vs. Real Mixture Predictions

Comparing ideal solution (IS) and real mixture (RM) predictions for the most complex 
9 component permeation simulation:

R
M

Full MS, no diff coupling, Vignes avg FH-LM

Molar Comp Partial Flux (LMH)

0.1995 0.1708

0.3158 0.3252

0.0239 0.0269

0.0789 0.0995

0.2469 0.3243

0.0977 0.1299

0.0227 0.0284

0.0103 0.0198

0.0043 0.0102

1.1350 Total Flux (LMH)

IS

Full MS, no diff coupling, Vignes avg FH-LM

Molar Comp Partial Flux (LMH)

0.2002 0.1700

0.3136 0.3203

0.0242 0.0270

0.0804 0.1006

0.2457 0.3201

0.0995 0.1313

0.0231 0.0287

0.0099 0.0190

0.0033 0.0078

1.1249 Total Flux (LMH)

All mixture composition and total flux predictions get 
marginally better (~3%)

TOL

MCH

MNP

DEC

NOC

IOC

TBB

TIPB

ICE
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Ideal Solution vs. Real Mixture Predictions

After looking into the details, the feed and permeate activity coefficients are almost 
identical and this acts to “cancel out” the nonideality on both sides.

After arbitrarily setting the activity coefficients for phase III to be different, IS vs RM 
predictions were vastly different (50-100%). Generally, the use of real mixture predictions 

is needed.

1.4445

1.0969

2.1656

1.0138

0.9678

1.1228

1.0836

0.9311

0.7949

1.4413

1.1111

2.0411

0.991

0.969

1.1317

1.051

0.9001

0.7895

Feed-side (phase I) 
activity coefficients

Permeate-side (phase III) 
activity coefficients

TOL

MCH

MNP

DEC

NOC

IOC

TBB

TIPB

ICE
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Process Flowsheet Modeling and Membrane Unit-Ops 

The advantages of including industrial membrane unit operation models within overall 
process flowsheet simulations include7:

7. Kancherla, R., Nazia, S., Kalyani, S., and Sridhar, S. (2021). Modeling and simulation for design and analysis of membrane-
based separation processes. Computers Chemical Engineering, 148:107258.
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Process Flowsheet Modeling and Membrane Unit-Ops 

The advantages of including industrial membrane unit operation models within overall 
process flowsheet simulations include7:
• Test membrane cascades in series or parallel arrangements with (or without) 

recycle loops 

8. Avgidou, M. et. al. (2004). DOI:10.1016/j.memsci.2003.12.007
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Process Flowsheet Modeling and Membrane Unit-Ops 

The advantages of including industrial membrane unit operation models within overall 
process flowsheet simulations include7:
• Test membrane cascades in series or parallel arrangements with (or without) 

recycle loops 
• Ability to simulate, design, and optimize overall process rather than an isolated 

membrane module
• Use powerful thermodynamic models and component property databases
• Predict process sustainability and techno-economic (TEA) competitiveness versus 

energy intensive separation methods
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Process Flowsheet Modeling and Membrane Unit-Ops 

Realistically, this work will be a step forward towards widespread industrial adoption 
of membrane processes involving complex mixtures


