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Our Contribution

Present our experience with using AmsterCHEM’s MATLAB Unit Operation.
* Specifically, we implemented our novel shooting algorithm for complex
hydrocarbon mixture permeation across asymmetric membrane layers?
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Industrial Membrane Processes
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Industrial Membrane Processes
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Industrial Membrane Processes
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Industrial Membrane Processes
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Industrial Membrane Processes

Crude Oil Refining: Rl Tranepaision Benzene derivatives:
g \. [T\<EWJ: : 4 \Ej\
pr— — ! TOTAL
: US ENERGY
S ': : CONSUMPTION 7 X
VN I
- 98 A
S (T e ke ' QUADS* ~ o
Industrlal membrane unit operations are non-existent
- - in most commercial process simulators
Bio-oil refining: — v om alkanes:
| 45-559%, '
Energy consumed by
separation processes H H |
v \ _/  H /H
C=C C—CG_
o / \ / \ "H
k H H H H
H H H HH
\ / |
Membrane-based Therm?'l /C:C\ H_CIZ_(;’—?_H
H separations
P m Distilltion “ CH; H H H
90% M Drying
Evaporation

less energy
than distillation

Non-thermal
separations

Georgla & 13



Standardized Interoperability — CAPE-OPEN

Chemical Process Modeling

/\

Geqinl 14



Standardized Interoperability — CAPE-OPEN

Chemical Process Modeling

/\

Process Modeling
Environment (PME)

Geqrial 15



Standardized Interoperability — CAPE-OPEN

Chemical Process Modeling

/\

Process Modeling
Environment (PME)

Process Modeling
Component (PMC)

Georgia
Te%

al 16



Standardized Interoperability — CAPE-OPEN

Chemical Process Modeling

//\

Process Modeling
Environment (PME)

Process Modeling
Component (PMC)

Georgia
Te%

al 17



Our Use Case

Chemical Process Modeling
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Our Application

For our experimental collaboration publication with Dr. Ryan Lively’s group at Georgia
Tech, we looked and 2 glassy polymer membrane materials and 3 complex mixtures>:
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Our Application
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Our Application
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.

* First, we need to set up the local transport problem through an asymmetric
membrane layer?
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* First, we need to set up the local transport problem through an asymmetric
membrane layer?
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.

Sorption-Diffusion Step A
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= 0 DoF

Then, we need to picture the full system of equations for the three-step sorption-
diffusion model!
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Our Membrane Simulation

Utilizing this software, we made a custom

PMC for industrial membrane modules.

* Finally, we can implement our novel
shooting algorithm?® within this PMC
framework
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1
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Sorption and diffusion parameters|{| System conditions Physical properties
(s, D) (T, P, PV L ,n,x) (p’*?, ¥, etc.)
]

Solve equation (11) for phase |
component activity coefficients at
z2=0,7(0)

v

Solve equations (8) and (10) for
phase Il component volume fractions

atZ=0a¢(O)
v

Initialize outer solver
variables, NY ., x/IT

RIS e i l

v
A
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Pure component properties
Sorption and diffusion parameters|| System conditions

evaluation/lookup for all pe—
Physical properties
( (p"?, ¥, etc.) 2
v

phases (s, D) (T, P*, PV, L,n,x')

Solve equation (11) for phase |
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¥
Solve equations (8) and (10) for
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v

Initialize outer solver
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Pure component properties
evaluation/lookup for all
phases

Sorption and diffusion parameters

(s, D)

System conditions
(T, P, PV L ,n,x)

Sorption-Diffusion Step A
requires evaluation of
activity model for phase |

v
Solve equation (11) for phase |

component activity coefficients at
z2=0,77(0)
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P e
p
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Solve equations (8) and (10) for
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Pure component properties

evaluation/lookup for all ———
h Sorption and diffusion parameters|{| System conditions Physical propertia
phases (s,D) (T, P, PV L ,n,x) (p"?, ¥, etc.) {

=

Solve equation (11) for phase |
component activity coefficients at
z2=0,77(0)

getSinglePhaseProperty

getSinglePhaseProperty is used to retrieve single phase mixture properties.

Solve equations (8) and (10) for
Syntax » phase Il component volume fractions [«
) . atz =20, ¢(O)
value=getSinglePhaseProperty (propName, phaseName, T, P,moleFraction) ‘
Initialize outer solver
. . . variables, N, x!1T
Sorption-Diffusion Step A I foby ter
_________________________________________________________ 3
1 o : . 1

requires evaluation of
activity model for phase |
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Solve equation (12) for phase Il
» component activity coefficients at
z=0,y"(L)

-
Inner solver

Phase Il thermodynamic
sorption model type?
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: DAE integration of ODE integration of
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC

framework

Sorption-Diffusion Step C
requires evaluation of
activity model in phase Il

Outer solver
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC
framework o

Sorption-Diffusion Step C
requires evaluation of
activity model in phase Il

Solve equation (12) for phase Il
component activity coefficients at

o 0,7’”(1;)4/

Phase Il thermodynamic
sorption model type?

equations (22), (24), & (34)|| equations (22) & (24) for |
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Adjust
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guesses

2

Solve equation (9) for phase|| Solve equations (9) and (10)
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Solution Found: NV, x!1!
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Our Membrane Simulation

Utilizing this software, we made a custom PMC for industrial membrane modules.
* Finally, we can implement our novel shooting algorithm?! within this PMC
framework o

Sorption-Diffusion Step C
requires evaluation of
activity model in phase Il

Solve equation (12) for phase Il
component activity coefficients at

o 0,7’”(1;)4/

Phase Il thermodynamic
sorption model type?

getSinglePhaseProperty

equatlons (22), (24), & (34)|| equations (22) & (24) for T
for phase Il component phase Il volume fractions

Adjust
iterate

Syntax 5

getSinglePhaseProperty is used to retrieve single phase mixture properties.

guesses \ f”(L) !

: :

! n— — 1

value=getSinglePhaseProperty (propName, phaseName, T, P,moleFraction) : Solve equation (9) for phase Solve equations (9) and (10) :
1

| Il component molar for phase Ill component ||

i compositions at molar compositions at 1

: s 111 pll 111 1

i e—Exa @y z=L,x"(gr) |}

! 1
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evaluate phase Il component
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1B II[ —5 ¢
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Zx].[[ <10—5 2

Solution Found: NV, x!1!
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Using AmsterCHEM’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

RETENTAT [ >

C)—{ Feeo > B1

PERMEATE —C >

Matlab Unit Operation
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Using AmsterCHEM’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

t Matlab CAPE-CPEM Unit Operation: *
< Farts PF‘arametersI Fiepu:urtsl Matlal:ul Additional filesl About I

Feed portz: Froduct parts:

Name| #| Connected to | M ame | #| Connected to

Feed 1 Retentate 1
Product 2

Add | Remove | Add Remove
Save model | Load model | Help Cloze
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Using AmsterCHEM’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

#L Matlab CAPE-OPEN Unit Operation: >
Parts ] F'arameters] Hepnrtdditiunal files] &bouit ]
Matlab script info level: |dﬁaQE;;hu _IJ

“
¥ =cript: aszvMemlocallain. m

% Description: Asvmmetric membrane local flux model smethod solwver for:
= —=zingle mixture permation simulation

it —zingle component diffsivity fitting from =ingle expi=s)
x —=zingle component peremation predictions loop
it —-nixture peremation predicicotns loop

- .

“

o
y]
=
=
m
=
o
H
[u]
H
M

gpecify =ingle sinulation

nConp

miZture components, compositions, =ystem paramnsters
#5BAD1 Data

gyslnfo.menlID = "SBAD1": % polvmer =spec W
< >
Test | Edt |
Save model Load model Help | Cloze
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Using AmsterCHEM’s Software

The process to get it up and running was straight forward, and the provided manual

helped tremendously for function references and general syntax.

Matlab CAPE-OPEM Unit Operation:
" P

Partz ] F'arameters] Hepu:urts] Matlab CAdditional files ) &bout ]

Additional filez ta be uged by the Matlab script:

azyMenmLocal_VP.m
azybemlocalSa, m
azphemlocalSa_RHS.m
azybemlocalSolve.m
corelationEwal.m
DAEevalFH_Lk_RHS.m

dataB ank.m

matri«E valGammaB_FH_LM.m
phiz2vPhazeEq FH_RHS.m
vol2molFrac.m
volZmolFrac_RHS.m
v2phiPhazeEq FH_LM.m
v2phiPhazeEq FH_LKM_RHS.m
v2phiPhazeEq FH_FAHS.m
y2phiPhazeEq_FH.m
v2phiPhazeEq DSkM_RHS.m
y2phiPhazeEq_DSM.m
DAEevallSk_RHS.m
DaEevalFH_RHS.m

matni«E valzammab_D5SM.m
rnatrixE valzammab_FH.m
azphdemDifFitS olve.m
azybdemDiftFit_RHS.m
azytemblocalFoEu QUICK. m
azyMenmlocalFoEu_QUICK_RHS.m
azytemLocalss_[WP_TimeStep.m
phi2fugPhazeEq_DSM.m
phizfugPhazeEq FH_Lk.m
azphemSingCompEwal.m

Browse

Mew script

i

S ave model Load model Help

Cloze
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

Geqin| 44



Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

$mixture components, compositions, system parameters

$SBAD1 Data

Input mixture component, ot oo
membrane and model selection A
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

compositions, system parameters

Input mixture component, R S
membrane and model selection

%9 coMP M1

2 membrane materials

* 12 components

e 3 sorption models

2 membrane diffusion models

* 2 cross-coupling diffusion models
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

compositions, system parameters

Input mixture component, 4SEAD] Dats % polymer spec
membrane and model selection ®9 come

e 2 membrane materials

* 12 components
* 3 sorption models dataBank.m and

* 2 cross-coupling diffusion models
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

compositions, system parameters

Input mixture component, 4SEAD] Dats % polymer spec
membrane and model selection ®9 come

e 2 membrane materials

* 12 components
* 3 sorption models dataBank.m and

* 2 cross-coupling diffusion models

Output all parameter matrices
required for custom mixture
membrane simulation
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

Proprietary thermodynamic mixture activity model parameters (Corporate Strategic
Research, ExxonMobil Research and Engineering). E)kOhMObil
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

Proprietary thermodynamic mixture activity model parameters (Corporate Strategic
Research, ExxonMobil Research and Engineering). E)kOhMObil

Access to commercial process flowsheet simulation software property databases.
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Our Implementation

Custom complex hydrocarbon mixture permeation simulation based on pure
component membrane sorption and diffusion properties.

Proprietary thermodynamic mixture activity model parameters (Corporate Strategic
Research, ExxonMobil Research and Engineering). E)KOI'IMOb"

Access to commercial process flowsheet simulation software property databases.

Ability to assess permeation predictions across different sorption/diffusion models
and mixtures for validating what simulates a given application best>.

e 270 mixture permeation simulations across 3 mixtures

e 330 pure component permeation simulations across 12 components

* A handful of multicomponent sorption simulations
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Predictions of Complex Mixture Sorption

0.00
B 1.00

g L,

S Z
S5 0.50 $ (25:75) ®
Q 0.50 %

(50:50)
(75:25) 0.25

1.00
» . ) : , : - : >0.00
0.00 0.25 0.50 0.75 1.00
heptane

]% Dual Mode % Flory- HugglnsF& Langmu[r:-?FIory HuggmsT Experlment

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting Georgia&
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767 Techl| 52



Predictions of Complex Mixture Sorption

| 1
—@® - Dual Mode 38 Flory-Huggins |8 Langmuir + Flory-Huggins | 7= Experiment

0.00
C D
g 1.2
=
>
8_ 0.9 *
%’-’ P
S 06
= X
w
o
ay 03
e
1.00 =
, , , , ~0.00 3 0.0 . . . .
000 025 050 075  1.00 Exptl  DMS FH  LM-FH

toluene

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting Georgia@j
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767 Techl| 53



Predictions of Complex Mixture Permeation

0.5

Separation 1

0.4+

0.3

0.2

0.1+

Experimental Mol Fraction >

DMS

FH

T 0.001

0.4 0.5 0

Sorption Model

LM-FH 1

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767

0.14

0.01 4

Separation 2

Separation 3

Diffusion Condition

0.8
ﬁ 0.6
o :
™ 04- e
= b
K @ o
B 0.2 )
- , , 0.0+ . . .
.001 0.01 0.1 0.0 0.2 0.4 0.6 0.8
Predicted Mol Fraction
RMSPE
Flux-based
120.0
DMS 4 485 45.1 54.6 100.0
80.00
60.00
FH 4 378 327 29 AO00
20.00
LM-FH-{ 485 27.7 39.1
Sc1 Sc2 Sc3
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical
such that they do not sum to unity.

* A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

Geqdial 56



Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical
such that they do not sum to unity.

e A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forumes.
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical

such that they do not sum to unity.
* A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forumes.

The only other software bug (PME or PMC) encountered was the global variable
nComp sometimes reading 0 components when in fact there were 14 for the specific
flowsheet.
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Advantages and Challenges of AmsterCHEM'’s Software

'& Matlab CAPE-OPEM Unit Operation: X

Parts ] F'arameter&] Reports  Matlab | Additional filegl fbout ]

b atlab script info level; ||:|efault echo j

Valid registration: license type = Academic

Hot licen=sed for commercial use
MATLAER output :

n_onp =
1]

Evaluation error: Unrecoghized field name "TEBR".
HATLAR done

Error: Unrecognized field namse "TEB".

Script  Output

Test Edi |

Save model Load mode

Help ‘ Cloze
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Advantages and Challenges of AmsterCHEM'’s Software

'& Matlak CAPE-OPEM Unit Operation: >

Puartz ] F'arameters] Feports  Matlab | Additional files] Aot ]

M atlab script infa level: ||:Iefault echo ﬂ
Equation =solwved. ™

fzolve completed because the vector of function waluesz 1= near zero
a= measured by the wvalue of the function tolerance, and
the problem appears regular a=s= measured by the gradient.

F:

localConpFlu= =

1.0000
n.814:

partialFlux =

0.814:

HATLAE done
£ >

scrpt  Qutput |

,. .......... IESt., Edlt |

.................................

Save model ‘ Load model ‘ Help | Cloze
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical

such that they do not sum to unity.

* A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forumes.

The only other software bug (PME or PMC) encountered was the global variable
nComp sometimes reading 0 components when in fact there were 14 for the specific
flowsheet.

e A quick workaround was to add a new MATLAB unit-op,
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Advantages and Challenges of AmsterCHEM'’s Software

": Matlab CAPE-COPEM Unit Operation: >

Parts I F'arametersl Feports  Matlab | Additional filesl Aot I

Matlab zcript info level: Idefault echo j

¥Enter wvour Matlab calculations here

Script | Jutput

Test | Edt |

Save model | Load model | Help | Cloze
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical

such that they do not sum to unity.

* A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forumes.

The only other software bug (PME or PMC) encountered was the global variable

nComp sometimes reading 0 components when in fact there were 14 for the specific

flowsheet.

* A quick workaround was to add a new MATLAB unit-op, reload the model file, and
run the flowsheet simulation to reinitialize the stream components
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Advantages and Challenges of AmsterCHEM'’s Software

The process to get it up and running was straight forward, and the provided manual
helped tremendously for function references and general syntax.

In some cases, the iteration guess for phase Ill molar compositions would be illogical

such that they do not sum to unity.

* A quick workaround was suggested by Dr. Jasper van Baten on CAPE-OPEN forum to
normalize the compositions

The support by Dr. Jasper van Baten is also helpful on the CAPE-OPEN forumes.

The only other software bug (PME or PMC) encountered was the global variable

nComp sometimes reading 0 components when in fact there were 14 for the specific

flowsheet.

* A quick workaround was to add a new MATLAB unit-op, reload the model file, and
run the flowsheet simulation to reinitialize the stream components

The ability to save the MATLAB unit-op model is valuable for use between different
CAPE-OPEN compliant PMEs.
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Conclusions and Future works

Conclusions:
* |Implemented our complex mixture membrane simulation method! within a
commercial process simulator using AmsterCHEM’s MATLAB unit operation
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Conclusions and Future works

Conclusions:

* |Implemented our complex mixture membrane simulation method! within a
commercial process simulator using AmsterCHEM’s MATLAB unit operation

* Accounted for non-idealities of the bulk mixtures and used commercial property
databases to predict the local membrane transport
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Conclusions and Future works

Conclusions:

* |Implemented our complex mixture membrane simulation method! within a
commercial process simulator using AmsterCHEM’s MATLAB unit operation

* Accounted for non-idealities of the bulk mixtures and used commercial property
databases to predict the local membrane transport

Future work:

* Extend rigorous local membrane transport simulation to global module transport
simulation and interface with overall process flowsheet

| ' Driving force changes in z-direction (mass, pressure, temperature)
Permeant * F *
concentration N "

changes in x- Permeate

direction
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Conclusions and Future works

Conclusions:
* |Implemented our complex mixture membrane simulation method?! within a

commercial process simulator using AmsterCHEM’s MATLAB unit operation
Accounted for non-idealities of the bulk mixtures and used commercial property

databases to predict the local membrane transport

Future work:
Extend rigorous local membrane transport simulation to global module transport

simulation and interface with overall process flowsheet
Release our CAPE-OPEN unit-op (standalone MATLAB implementation available,

please contact for .zip download)
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Thank you for your attention!

Questions?
Direct Contact:

Dylan Weber
Email: djweber@gatech.edu
Phone: +1.864.202.2298
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Supplemental Slides
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Our Specific Application

Separation 1 via PIM-1 at a transmembrane pressure of 30 bar

Permeate flux (L/m?/h) 6.33 4+ 3.96

Feed Conc. Permeate Permeate Conc.
Conc. Error
mole mole fraction %
fraction
Toluene 0.257 0.267 0.37
Heptane 0.216 0.210 0.95
p-xylene 0.205 0.212 0.47
o-xylene 0.264 0.269 0.74
[so-cetane 0.058 0.042 4.8

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting Georgia&
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767 Tech 74



Our Specific Application

Separation 2 via SBAD-1 at a transmembrane pressure of 40 bar

Permeate flux (L/m?/h) 0.88 + 0.52

Feed Conc. Permeate Permeate Conc.
Conc. Error
mole mole fraction %
fraction
Toluene 0.171 0.201 1.5
methyleyclohexane 0.281 0.253 0.79
1-methylnaphthalene 0.020 0.028 3.6
Decalin 0.107 0.110 0.91
n-octane 0.221 0.245 2.0
iso-octane 0.150 0.123 6.5
tert-butylbenzene 0.022 0.027 3.7
1,3,5- 0.016 8.2 x 1073 12
triisopropylbenzene
iso-cetane 0.013 4.5 x 1073 22

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting

the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767
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Our Specific Application

Separation 3 via SBAD-1 at a transmembrane pressure of 30 bar
Permeate flux (L/m?/h) 0.40 + 0.12

Feed Conc. Permeate Permeate Conc.
Conc. Error
mole mole fraction %
fraction
Toluene 0.284 0.318 1.9
iso-octane 0.388 0.422 1.4
iso-cetane 0.328 0.260 4.2

5. Mathias, R. ",Weber, D.", Thompson, K., Marshall, B., Finn, M., Scott, J., and Lively, R. (2021). A framework for predicting Georgia&
the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 640:119767 Tech 76



Ideal Solution vs. Real Mixture Predictions

Comparing ideal solution (IS) and real mixture (RM) predictions for the most complex
9 component permeation simulation:

Full MS, no diff coupling, Vignes avg FH-LM Full MS, no diff coupling, Vignes avg FH-LM

Molar Comp Partial Flux (LMH) Molar Comp Partial Flux (LMH)

0.1995 0.1708 TOL 0.2002 0.1700

0.3158 0.3252 MCH 0.3136 0.3203

0.0239 0.0269 MNP 0.0242 0.0270

s 0.0789 0.0995 DEC - 0.0804 0.1006
= 0.2469 0.3243 NOC - 0.2457 0.3201
0.0977 0.1299 10C 0.0995 0.1313

0.0227 0.0284 TBB 0.0231 0.0287

0.0103 0.0198 TIPB 0.0099 0.0190

0.0043 0.0102 ICE 0.0033 0.0078

1.1350 Total Flux (LMH) 1.1249 Total Flux (LMH)

All mixture composition and total flux predictions get
marginally better (~3%)
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Ideal Solution vs. Real Mixture Predictions

After looking into the details, the feed and permeate activity coefficients are almost
identical and this acts to “cancel out” the nonideality on both sides.

Feed-side (phase I) Permeate-side (phase Ill)
activity coefficients activity coefficients

1.4445 TOL 1.4413

1.0969 MCH 1.1111

2.1656 MNP 2.0411

1.0138 DEC 0.991

0.9678 NOC 0.969

1.1228 10C 1.1317

1.0836 TBB 1.051

0.9311 TIPB 0.9001

0.7949 ICE 0.7895

-

\_

\
After arbitrarily setting the activity coefficients for phase Il to be different, IS vs RM

predictions were vastly different (50-100%). Generally, the use of real mixture predictions
is needed.

J
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Process Flowsheet Modeling and Membrane Unit-Ops

The advantages of including industrial membrane unit operation models within overall
process flowsheet simulations include’:

7. Kancherla, R., Nazia, S., Kalyani, S., and Sridhar, S. (2021). Modeling and simulation for design and analysis of membrane- Georgia&
based separation processes. Computers Chemical Engineering, 148:107258. Tech 79



Process Flowsheet Modeling and Membrane Unit-Ops

The advantages of including industrial membrane unit operation models within overall
process flowsheet simulations include’:

* Test membrane cascades in series or parallel arrangements with (or without)
recycle loops

Py,
P k)
Pe.ye o
B E. — . enriching
section
Py. Yo v
i E- » Rp,. Xg,
Y »
Rg s Xg
F,z, — S
Py yg
Ry, X; S-1 Py,
Y -, stripping
RS,| . XS: S-2 £ PS—m > ¥sm  f section
‘H‘..._’.... »
Ry,sXgy S-m

8. Avgidou, M. et. al. (2004). DOI:10.1016/j.memsci.2003.12.007 Georgia&
Tech 80



Process Flowsheet Modeling and Membrane Unit-Ops

The advantages of including industrial membrane unit operation models within overall
process flowsheet simulations include’:

Test membrane cascades in series or parallel arrangements with (or without)
recycle loops

Ability to simulate, design, and optimize overall process rather than an isolated
membrane module
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Process Flowsheet Modeling and Membrane Unit-Ops

The advantages of including industrial membrane unit operation models within overall
process flowsheet simulations include’:

* Test membrane cascades in series or parallel arrangements with (or without)
recycle loops

e Ability to simulate, design, and optimize overall process rather than an isolated
membrane module

e Use powerful thermodynamic models and component property databases
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Process Flowsheet Modeling and Membrane Unit-Ops

The advantages of including industrial membrane unit operation models within overall

process flowsheet simulations include’:

* Test membrane cascades in series or parallel arrangements with (or without)
recycle loops

e Ability to simulate, design, and optimize overall process rather than an isolated
membrane module

e Use powerful thermodynamic models and component property databases

* Predict process sustainability and techno-economic (TEA) competitiveness versus
energy intensive separation methods
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Process Flowsheet Modeling and Membrane Unit-Ops

Realistically, this work will be a step forward towards widespread industrial adoption
of membrane processes involving complex mixtures

B T ——
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