
www.colan.org

Method and Tools SIG Report

2014

Method and Tools SIG Report

2014

SIG Leader

Bill Barrett

www.colan.org

SIG Membership

Bill Barrett

US EPA

Jasper van Baten

AmsterCHEM

Jorge Martinis and

Michael Hlavinka

Bryan Research & Engineering

Loïc d'Anterroches

Céondo, Ltd.

Javier Fuentes

Process Systems Enterprise Limited

David Jerome

Krishna Penukonda

Schneider Electric/SimSci

Tony Garratt

Reaction Design

Daniel Wagner

www.colan.org

M&T SIG Charter

 Improve integration, and expand utilization of Computer-Aided Process

Engineering (CAPE) applications through identification and resolution of

identified CAPE-OPEN issues, develop mechanisms for use of CAPE

within other application domains, and incorporate advances in

information technology into the CAPE-OPEN standards.

 Key responsibilities

 Resolve issues with the common interface specifications.

 Develop and maintain standards and protocols for CAPE-OPEN

implementation.

 Incorporate advances in information technology into CAPE-OPEN.

 Identify novel uses of CAPE and provide standards for utilizing CAPE within

these applications.

www.colan.org

M&T SIG Current Projects

 Parameter

 Identification

 Error handling

 Persistence

 Utilities

 Flowsheet Monitoring

Review M&T Integrated Guidelines and Common Interface

Specifications

Identify issues exposed through implementation

Provide errata and clarification documents

Develop best practice guidance.

The M&T SIG is currently working on the following interface

specifications:

CAPE-OPEN Object Model development

www.colan.org

Parameter Common Interface

 Errata and clarification document under development

 Roles of Parameter Owners, Parameter Clients, and the PME

 The Parameter Owner is the object that owns the

Parameter Collection that contains the Parameter.

 The Parameter Client is any software component

accessing the Parameter.

 Clarification made on when a Parameter Collection can

change.

 Clarification made on when a Parameter value may

change

 Limits the need for PMEs to check parameter states.

www.colan.org

Parameter Common Interface, cont’d

 Parameter Specifications

 Lower and upper bounds, default values, and the options

list provide basic criteria for determining whether a

Parameter value is valid.

 Parameter Default Value need not be a valid value for the

parameter.

• This is needed for a case where there is no obvious default value

and the user needs to set a value.

 Lower and upper bounds, default value as well as the

value itself, may be UNDEFINED.

 UNDEFINED may or may not be a valid value, depending

on the Parameter.

www.colan.org

Parameter Common Interface, cont’d

 Parameter Validation

 Parameters can have CAPE_INVALID values!

 Validation checks whether the Parameter’s current value

complies with the Parameter’s specification and other

applicable criteria. Examples:
• Indicating that initial values are within a range where convergence is

considered likely

• Highlighting calculated results outside an acceptable range, e.g.

pressures and temperatures outside a safety threshold.

 After a successful call to Validate, the status must not be

CAPE_NOT_VALIDATED.

www.colan.org

Parameter Common Interface, cont’d

Dimensionality

 Formalizes the definition of the dimensionality object as a

real-valued array.

Array Parameters

 Provides a structure for the Array Object
• Value is a CapeArrayVariant, each element containing either a real, an

integer, a string, a Boolean, or a nested array

• Specification is a CapeArray of CapeObjects, each object supporting the

ICapeParameterSpec and appropriate ICape<TYPE>ParameterSpec

interface for the corresponding value element.

 Provides minimum support requirements

www.colan.org

Identification Common Interface

 Errata and clarification document peer review completed

and submitted to Management Board for final approval.

 ICapeIdentification.ComponentName (section 3.5.1)

 Minimum and maximum length

• Minimum length is one alphanumeric character

• No maximum length limit

 White space in names is allowed.

• First and last character of the name must not be whitespace.

 Character sets – Issue for M&T guidelines clarification.
• Character set dictated by middleware (COM: UTF16)

• No control characters.

www.colan.org

Identification Common Interface

 ICapeIdentification.ComponentDescription

 Minimum and maximum length

• No minimum or maximum length

 Character sets – Issue for M&T guidelines clarification.
• Character set dictated by middleware

• Should control characters be allowed?

– Line feed

– Carriage return

– Tab

– Form feed, delete, escape, bell,

– ….

www.colan.org

Collection Common Interface

Approved and posted on CO-LaN website

 Variant Value for ICapeCollection.Item method

clarified

Naming of Collection Members

 Uniqueness is enforced by Collection Owner

www.colan.org

Simulation Context COSE Interface

 Errata and Clarifications document approved and posted on

CO-LaN website.

 New Named Values proposed

 AbortCalculateRequested

 DefaultThermoVersion

 SimplifiedModelRequest

www.colan.org

Utilities Common Interface

 Errata and Clarifications document near completion

 Requirement for PMCs to implement ICapeUtilities

 PMC Primary Objects defined and identified.

 Types of PMC Primary Objects that require ICapeUtilities

tabulated.

 Edit Method Return Value

 Created a CapeEditResult enumeration with two values:

CapeModified = 0 = S_OK

CapeNotModified = 1 = S_FALSE

 Edit returns the appropriate CapeEditResult value.

 Use HRESULT for COM implementations.

www.colan.org

Utilities Common Interface, cont’d.

 Object Life Cycle clarified

 Create or instantiate object

CoCreateInstance or from manager object

 Set_Simulation_Context

 Select persistence mechanism (see next slide)

 InitNew (if appropriate)

 Load (if appropriate)

 ICapeUtilities.Initialize

 … use the object …

 ICapeUtilities.Terminate

PMC releases all external references

 Release all COM references

www.colan.org

Persistence Common Interface

 COM persistence is discussed as part of the Utilities

Common Interface Errata and Clarification document.

 Clarify use of COM persistence

 IPersistStream or IPersistStreamInit required

 Additional COM interfaces can be implemented for

various persistence options:

 IPersistMemory - Persist to an allocated memory location (i.e.,

fixed-size byte array).

 IPersistPropertyBag - Persist to a property bag container, such as

an XML text file.

 IPersistStorage - Persist to structured storage.

 IPersistMoniker - Persist to a moniker.

 Consistent use of persistence: InitNew

www.colan.org

Flowsheet Monitoring Interface

 Currently being reviewed and edited by the M&T SIG.

 Interested parties:

 Please request a copy of the current version.

 Join the conference calls organized (2nd Wednesdays)

www.colan.org

M&T Guidelines Issues

 .NET Primary Interop Assembly (PIA) provides a universal

set of .NET-based CAPE-OPEN interfaces.

 CO-LaN recommends using Microsoft .NET Framework 4.5.2

when developing CAPE-OPEN PMEs.

 .NET Framework is now a Windows Component and not an

independent product.

 .NET Framework is not a part of Visual Studio.

 .NET 1.0 and 2.0 no longer supported by Microsoft.

 .NET 3.5 SP1 is a Windows 7 and Windows 8.1 component and will be

supported as part of those OSs (Windows 8 EOL January 2023).

 .NET 3.5 SP1 is backward compatible with .NET 2.0.

 CAPE-OPEN development should be possible using free

tools, such as Visual Studio Express.

 Development tools lifecycle remains an issue.

www.colan.org

CAPE-OPEN Object Model

 Status

 Discussion of platforms to support: priority to Windows

 Identified user types for CAPE-OPEN

• End-users of process simulation tools

• Users that develop PMCs using tools such as gPROMS, MATLAB, Scilab, Excel or

script (Python)

• Software developers

– Not necessarily with COM experience

 Need to re-design a common interface definition language (for strong typing)

 Reasons to use middleware:
• Object registration

• Object lifecycle

• Memory management

• Marshalling between processes, computers or platforms

 Technical discussions on interface modifications (new error handling model,

eliminate VARIANTs, data types, character sets, strong typing, …)

 CO-LaN will distribute both source code and binaries for the Object Model.

www.colan.org

CAPE-OPEN Object Model

 Deliverables

 Revised Method and Tools Integrated Guidelines

 IDL Syntax and Compiler

 Registration Tool with specific registry component

 Middleware including object creation, marshalling and data type

management

 Requirements

 Need to incorporate COM interoperation to ensure backwards compatibility.

 Need bindings to different languages, plus stub generators.

 Need to support 32- and 64-bits.

 Cross-Platform Issues

 ISO-standard C++

 Targeted operating systems: MS Windows, Linux and MacOS.

 Compilers: MS Visual C++, GNU (gcc) C++ compiler.

www.colan.org

CAPE-OPEN Object Model Roadmap

 2014

 Scoping of the Object Model

 Revise M&T Integration Guidelines for Object Model

 2015

 Develop and test IDL compiler and registration tool for Windows and COM

support

 Prototype CAPE-OPEN Object Model middleware

 Complete the M&T Integration Guidelines

 2016

 Revise M&T SIG Common Interface Specifications to the Object Model
 This will incorporate issues raised in the Errata and Clarifications documents published.

 Work with other SIGs to transition to the Object Model.
 Likely minor modifications to Interface Specifications Documents

 Will require Object Model IDL for the interfaces.

 2017

 Finished Object Model in use.

 CO-LaN will maintain the code and provide updates as needed.

www.colan.org

2014 Deliverables

 Errata and Clarifications Documents

 COSE – Completed and on the web

 Collection – Completed and on the web

 Identification – Completed pending Management Board

Approval

 Parameters – Minor edits remain. Should be to peer

review this year.

 Utilities – Minor edits remain. Should be to peer reviewed

this year.

 Flowsheet Monitoring Interface Specification

 Currently being revised.

www.colan.org

Ongoing Activities

 Common Interface monthly conference calls

 First Wednesday at 11 AM Eastern US Time.

 Object Model monthly conference calls

 Last Wednesday at 10 AM Eastern US Time.

 Please contact either SIG Leader or CTO if you are

interested in participating:

 Bill Barrett – barrett.williamm at epa.gov

 Michel Pons – technologyofficer at colan.org

