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M&T SIG Charter

 Improve integration, and expand utilization of Computer-Aided Process 

Engineering (CAPE) applications through identification and resolution of 

identified CAPE-OPEN issues, develop mechanisms for use of CAPE 

within other application domains, and incorporate advances in 

information technology into the CAPE-OPEN standards.

 Key responsibilities

 Resolve issues with the common interface specifications.

 Develop and maintain standards and protocols for CAPE-OPEN 

implementation.

 Incorporate advances in information technology into CAPE-OPEN.

 Identify novel uses of CAPE and provide standards for utilizing CAPE within 

these applications.
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M&T SIG Current Projects

 Parameter

 Identification

 Error handling

 Persistence

 Utilities

 Flowsheet Monitoring

Review M&T Integrated Guidelines and Common Interface 

Specifications 

Identify issues exposed through implementation

Provide errata and clarification documents

Develop best practice guidance. 

The M&T SIG is currently working on the following interface 

specifications:

CAPE-OPEN Object Model development
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Parameter Common Interface

 Errata and clarification document under development

 Roles of Parameter Owners, Parameter Clients, and the PME

 The Parameter Owner is the object that owns the 

Parameter Collection that contains the Parameter.

 The Parameter Client is any software component 

accessing the Parameter.

 Clarification made on when a Parameter Collection can 

change.

 Clarification made on when a Parameter value may 

change 

 Limits the need for PMEs to check parameter states.



www.colan.org

Parameter Common Interface, cont’d

 Parameter Specifications

 Lower and upper bounds, default values, and the options 

list provide basic criteria for determining whether a 

Parameter value is valid.

 Parameter Default Value need not be a valid value for the 

parameter. 

• This is needed for a case where there is no obvious default value 

and the user needs to set a value.

 Lower and upper bounds, default value as well as the 

value itself, may be UNDEFINED. 

 UNDEFINED may or may not be a valid value, depending 

on the Parameter.
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Parameter Common Interface, cont’d

 Parameter Validation

 Parameters can have CAPE_INVALID values!

 Validation checks whether the Parameter’s current value 

complies with the Parameter’s specification and other 

applicable criteria. Examples: 
• Indicating that initial values are within a range where convergence is 

considered likely

• Highlighting calculated results outside an acceptable range, e.g. 

pressures and temperatures outside a safety threshold. 

 After a successful call  to Validate, the status must not be 

CAPE_NOT_VALIDATED.
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Parameter Common Interface, cont’d

Dimensionality

 Formalizes the definition of the dimensionality object as a 

real-valued array.

Array Parameters

 Provides a structure for the Array Object
• Value is a CapeArrayVariant, each element containing either a real,  an 

integer, a string, a Boolean, or a nested array

• Specification is a CapeArray of CapeObjects, each object  supporting the 

ICapeParameterSpec and appropriate ICape<TYPE>ParameterSpec

interface for the corresponding value element.

 Provides minimum support requirements
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Identification Common Interface 

 Errata and clarification document peer review completed 

and submitted to Management Board for final approval.

 ICapeIdentification.ComponentName (section 3.5.1)

 Minimum and maximum length

• Minimum length is one alphanumeric character

• No maximum length limit

 White space in names is allowed.

• First and last character of the name must not be whitespace.

 Character sets – Issue for M&T guidelines clarification.
• Character set dictated by middleware (COM: UTF16)

• No control characters.
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Identification Common Interface 

 ICapeIdentification.ComponentDescription

 Minimum and maximum length

• No minimum or maximum length

 Character sets – Issue for M&T guidelines clarification.
• Character set dictated by middleware

• Should control characters be allowed?

– Line feed

– Carriage return

– Tab

– Form feed, delete, escape, bell,

– ….



www.colan.org

Collection Common Interface

Approved and posted on CO-LaN website

 Variant Value for ICapeCollection.Item method 

clarified

Naming of Collection Members

 Uniqueness is enforced by Collection Owner
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Simulation Context COSE Interface 

 Errata and Clarifications document approved and posted on 

CO-LaN website.

 New Named Values proposed

 AbortCalculateRequested

 DefaultThermoVersion

 SimplifiedModelRequest
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Utilities Common Interface

 Errata and Clarifications document near completion

 Requirement for PMCs to implement ICapeUtilities

 PMC Primary Objects defined and identified.

 Types of PMC Primary Objects that require ICapeUtilities

tabulated.

 Edit Method Return Value

 Created a CapeEditResult enumeration with two values:

CapeModified = 0 = S_OK

CapeNotModified = 1 = S_FALSE

 Edit returns the appropriate CapeEditResult value.

 Use HRESULT for COM implementations.
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Utilities Common Interface, cont’d.

 Object Life Cycle clarified

 Create or instantiate object

CoCreateInstance or from manager object

 Set_Simulation_Context

 Select persistence mechanism (see next slide)

 InitNew (if appropriate)

 Load (if appropriate)

 ICapeUtilities.Initialize

 … use the object …

 ICapeUtilities.Terminate

PMC releases all external references

 Release all COM references
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Persistence Common Interface

 COM persistence is discussed as part of the Utilities 

Common Interface Errata and Clarification document.

 Clarify use of COM persistence

 IPersistStream or IPersistStreamInit required 

 Additional COM interfaces can be implemented for 

various persistence options:

 IPersistMemory - Persist to an allocated memory location (i.e., 

fixed-size byte array).

 IPersistPropertyBag - Persist to a property bag container, such as 

an XML text file.

 IPersistStorage - Persist to structured storage.

 IPersistMoniker - Persist to a moniker.

 Consistent use of persistence: InitNew
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Flowsheet Monitoring Interface

 Currently being reviewed and edited by the M&T SIG.

 Interested parties:

 Please request a copy of the current version.

 Join the conference calls organized (2nd Wednesdays)
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M&T Guidelines Issues

 .NET Primary Interop Assembly (PIA) provides a universal 

set of .NET-based CAPE-OPEN interfaces.

 CO-LaN recommends using Microsoft .NET Framework 4.5.2 

when developing CAPE-OPEN PMEs.

 .NET Framework is now a Windows Component and not an 

independent product.

 .NET Framework is not a part of Visual Studio.

 .NET 1.0 and 2.0 no longer supported by Microsoft.

 .NET 3.5 SP1 is a Windows 7 and Windows 8.1 component and will be 

supported as part of those OSs (Windows 8 EOL January 2023). 

 .NET 3.5 SP1 is backward compatible with .NET 2.0.

 CAPE-OPEN development should be possible using free 

tools, such as Visual Studio Express.

 Development tools lifecycle remains an issue.
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CAPE-OPEN Object Model

 Status

 Discussion of platforms to support: priority to Windows

 Identified user types for CAPE-OPEN

• End-users of process simulation tools

• Users that develop PMCs using tools such as gPROMS, MATLAB, Scilab, Excel or 

script (Python)

• Software developers

– Not necessarily with COM experience

 Need to re-design a common interface definition language (for strong typing)

 Reasons to use middleware:
• Object registration 

• Object lifecycle

• Memory management

• Marshalling between processes, computers or platforms

 Technical discussions on interface modifications (new error handling model, 

eliminate VARIANTs, data types, character sets, strong typing, …)

 CO-LaN will distribute both source code and binaries for the Object Model.
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CAPE-OPEN Object Model

 Deliverables

 Revised Method and Tools Integrated Guidelines

 IDL Syntax and Compiler

 Registration Tool with specific registry component

 Middleware including object creation, marshalling and data type 

management

 Requirements

 Need to incorporate COM interoperation to ensure backwards compatibility. 

 Need bindings to different languages, plus stub generators.

 Need to support 32- and 64-bits.

 Cross-Platform Issues

 ISO-standard C++

 Targeted operating systems: MS Windows, Linux and MacOS. 

 Compilers: MS Visual C++, GNU (gcc) C++ compiler.
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CAPE-OPEN Object Model Roadmap

 2014

 Scoping of the Object Model

 Revise M&T Integration Guidelines for Object Model

 2015

 Develop and test IDL compiler and registration tool for Windows and COM 

support

 Prototype CAPE-OPEN Object Model middleware

 Complete the M&T Integration Guidelines

 2016

 Revise M&T SIG Common Interface Specifications to the Object Model
 This will incorporate issues raised in the Errata and Clarifications documents published.

 Work with other SIGs to transition to the Object Model.
 Likely minor modifications to Interface Specifications Documents

 Will require Object Model IDL for the interfaces.

 2017

 Finished Object Model in use.

 CO-LaN will maintain the code and provide updates as needed.
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2014 Deliverables

 Errata and Clarifications Documents

 COSE – Completed and on the web

 Collection – Completed and on the web

 Identification – Completed pending Management Board 

Approval

 Parameters – Minor edits remain. Should be to peer 

review this year.

 Utilities – Minor edits remain. Should be to peer reviewed 

this year. 

 Flowsheet Monitoring Interface Specification

 Currently being revised.
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Ongoing Activities

 Common Interface monthly conference calls

 First Wednesday at 11 AM Eastern US Time.

 Object Model monthly conference calls

 Last Wednesday at 10 AM Eastern US Time.

 Please contact either SIG Leader or CTO if you are 

interested in participating:

 Bill Barrett – barrett.williamm at epa.gov

 Michel Pons – technologyofficer at colan.org


