

SIEMENS

CAPE-OPEN Annual Meeting 2020

PRESENTERS

SIEMENS

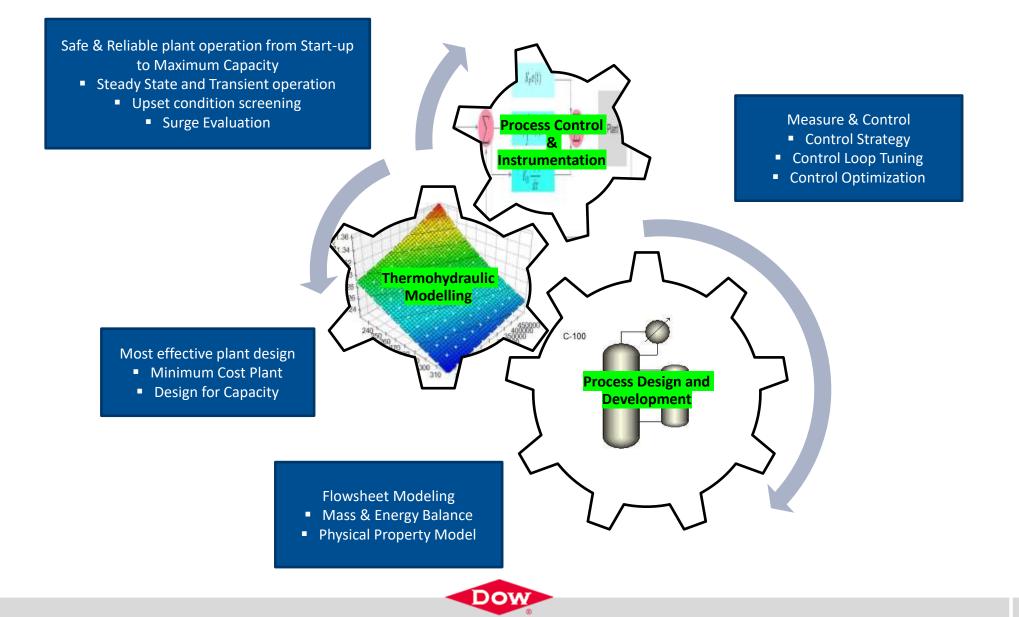
Name: Anusha Gurrapu

Company: Siemens Digital Industries Software

Department: Simcenter

Position: Team Lead | Software Engineer

Name: Bjoern Altendorf


Company: Dow Olefineverbund GmbH, Schkopau, Germany

Department: TES Process Engineering Technology Group

Position: Fluid Mechanics & Mixing Technology Expert | Reaction Engineering Subgroup Lead

Accuracy

Use of Integrated Physical Property Data

- Fast and easy data generation
- Limited number of components
- Property data for mixtures differs from in-house data

Use of NIST Database

- Pure components
- Limited amount of mixtures
- Data generation fairly simple

Use of Proprietary Data

- Generate data in proprietary platform
- High-accuracy data reviewed by internal Property SME's
- Manual data transfer tedious and prone to error

Speed

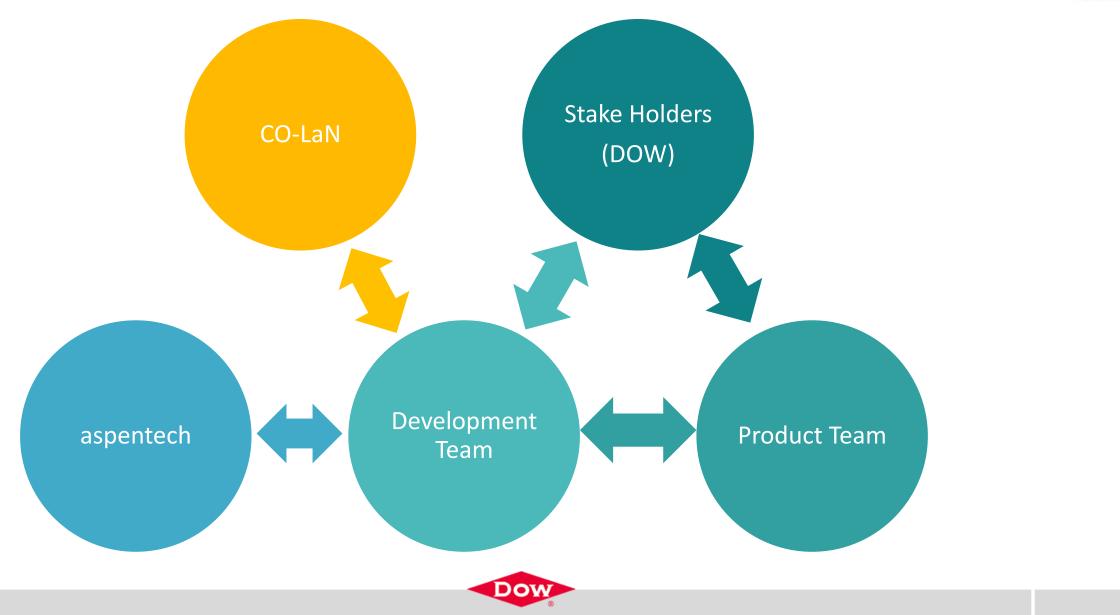
Dov

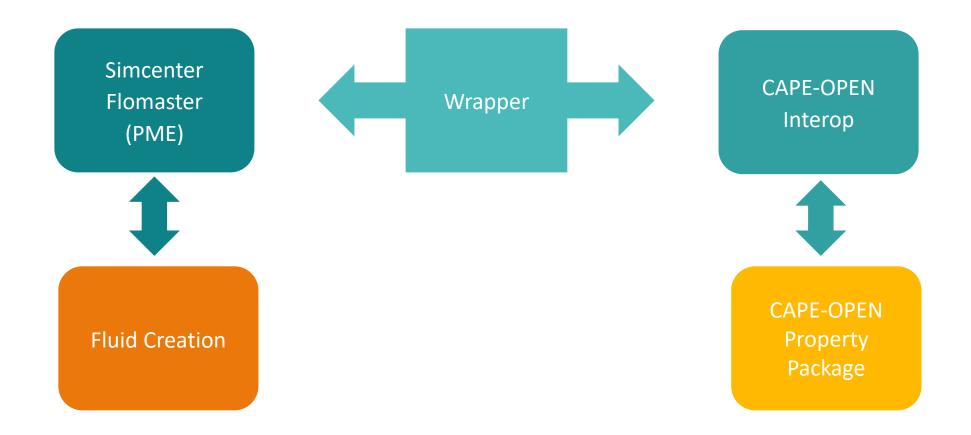
SIMCENTER FLOMASTER FOR ACCURATE PIPING SYSTEM ENGINEERING

Comprehensive solution for thermo-fluid systems
 of any size and complexity

Build thermo-fluid system digital twin Understand system behaviour anytime, anywhere

Reduce risk, costs and the development cycle




SIEMENS

HOW WE WORKED WITH DOW

DEVELOPMENT TIMELINE

October 2020

SIEMENS

Dow

Ingenuity for Life

DEMO - SIMCENTER FLOMASTER FLUID CREATION USING CAPE-OPEN

Similaritat Planastar - Planastar			0		~ a x
\odot					
Systems System Sub-System Component Material Performance Data	CARE-ONLY Rund Constraint - D X				
	CAPE-OPEN Fluid Selection Fluid Name Compound A Fluid Type Incompressible Material Path	Pressure Limits (bar) Minimum Maximum Thad Property Tolerances	Temperature Limits (*C) Monturn Maximum Pluid Info		
Tools Q Discover Sample Systems Configuration Logon Database Ucense	Materials/User-defined Available Property Packages TEA (CAPE-OPEN 1.1) Available Fluids C1_C2 Fraction Type Mass Compound Fraction Methane 0 Ethane	FLUID GENERATION PROGRESS			
			199475.		
Simcenter Flomaster	Support for Smcarter Planaster	On Demand Train On Demand Train Sincenter Floring	ing To Get Started with Doe Mil	Jence in Fluid System Design Ner on the Creation of Internal Flow S'and Sincenter Flowwater	Sincenter Flomaster Blogs. Blog Posts Highlighting New Features and Innovate Models

DOW

Seek

Together[™]