

Integrating a proprietary simulation tool into a commercial process simulator

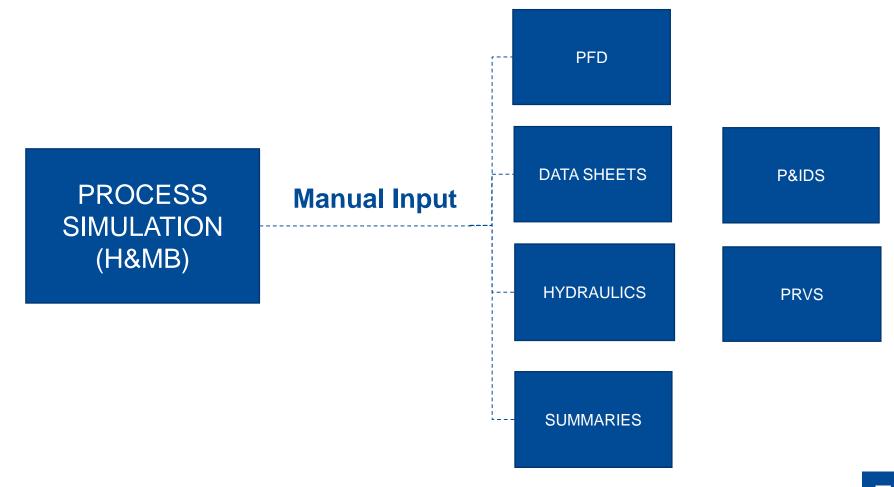
<u>Ralf Notz¹</u>, <u>Aubrey Kelm³</u>, Rafael Rocha³, Kailee Fujimoto², Torsten Katz¹, Jens Schwärzli¹, Agnes Dittel¹, Myrian Schenk⁴

1) BASF SE, Ludwigshafen, Germany

- 2) BASF Corporation, Houston, Texas, United States of America
- 3) KBR inc., Houston, Texas, United States of America
- 4) KBR, Leatherhead, United Kingdom

August 19, 2020 // 2020 AIChE Virtual Spring Meeting

EPC Work Flow

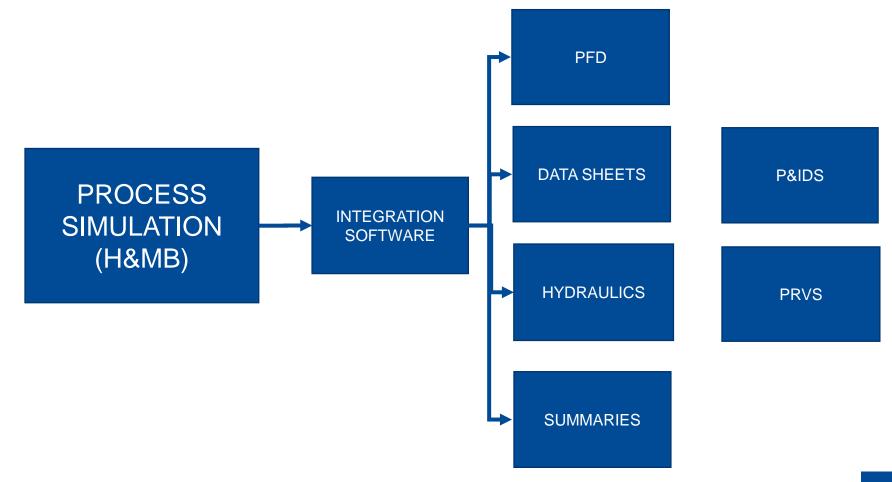


Motivation

Basic Engineering Work Flow

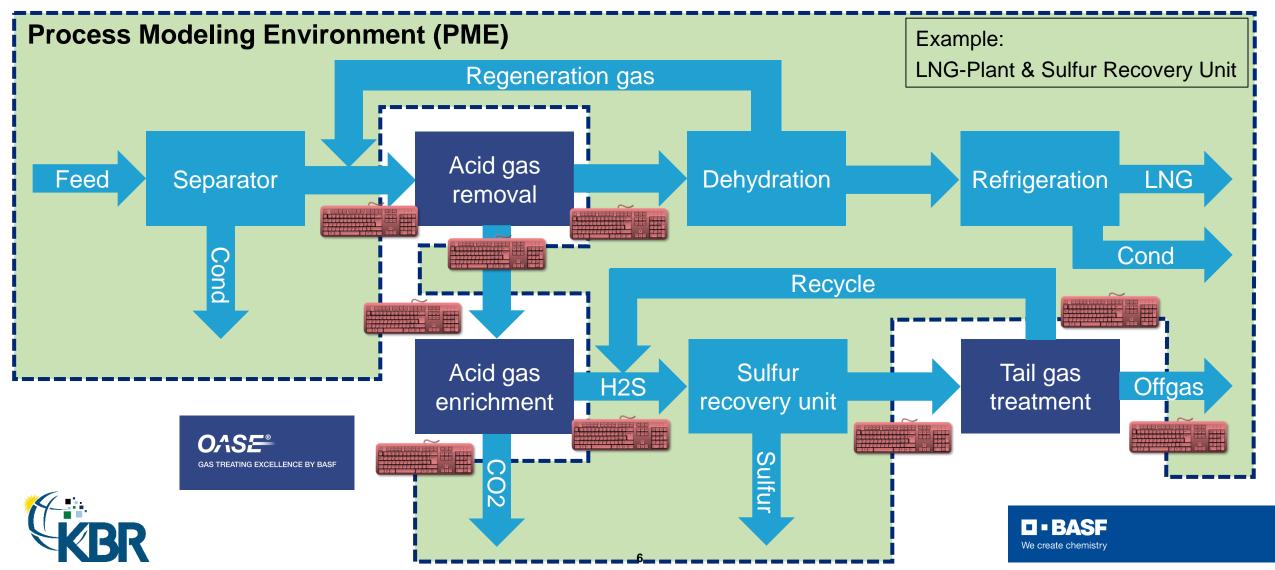
Disadvantages of manual data transfer in current workflow

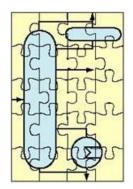
- Breaks the digitalization process/flow
- Engineering workflow interrupted
- Time and resource consuming
- Prone to errors and inconsistencies
 - During creation of heat and material balance
 - When processing change requests
- Complicates collaboration as a global team, if e.g.
 - Heat and material balance
 - Equipment data sheets are generated in different office locations



Motivation

Basic Engineering Work Flow





Interaction with in-house or proprietary simulation tools in process

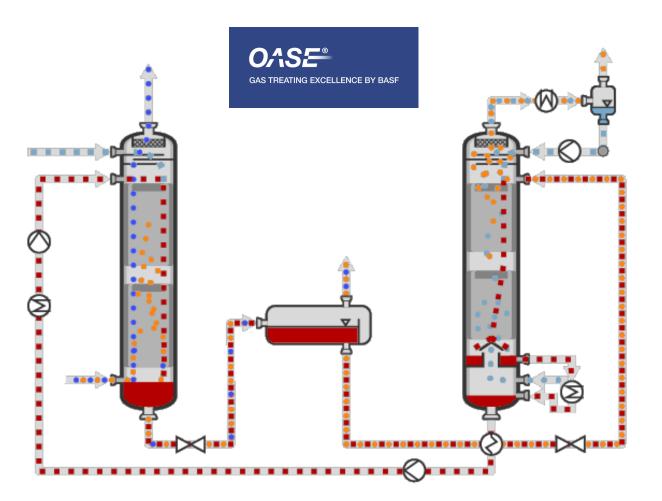
simulation \rightarrow Manual transfer of input and output data required

CAPE-OPEN

The CAPE-OPEN Standard

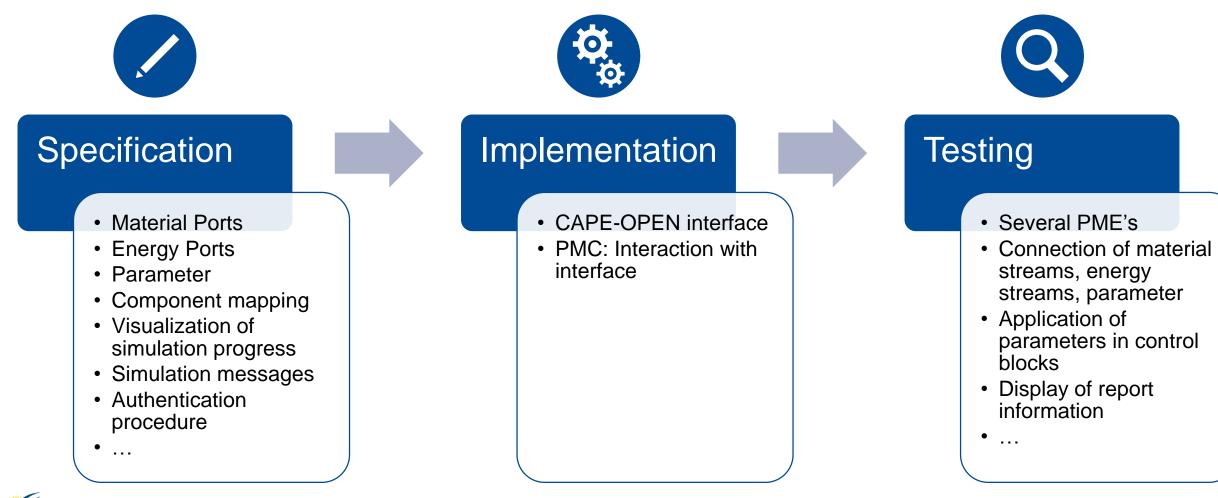
- ... defines rules and interfaces that allow CAPE (Computer-Aided Process Engineering) applications to interoperate
 - Examples: Interfaces for thermodynamic models and for unit operations

- CO-LaN (<u>http://www.colan.org/</u>)
 - ... is a not-for-profit member society established in France in 2001
 - manages the CAPE-OPEN standard
 - In facilitates the implementation of CAPE-OPEN interfaces through software tools and services

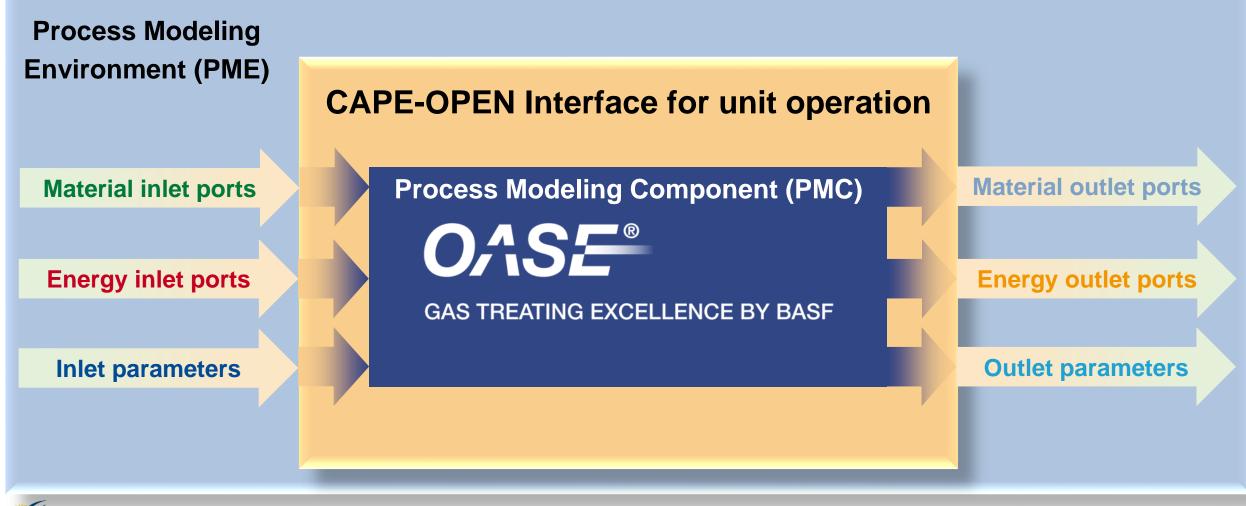


CAPE-OPEN interfaces – What are we talking about?

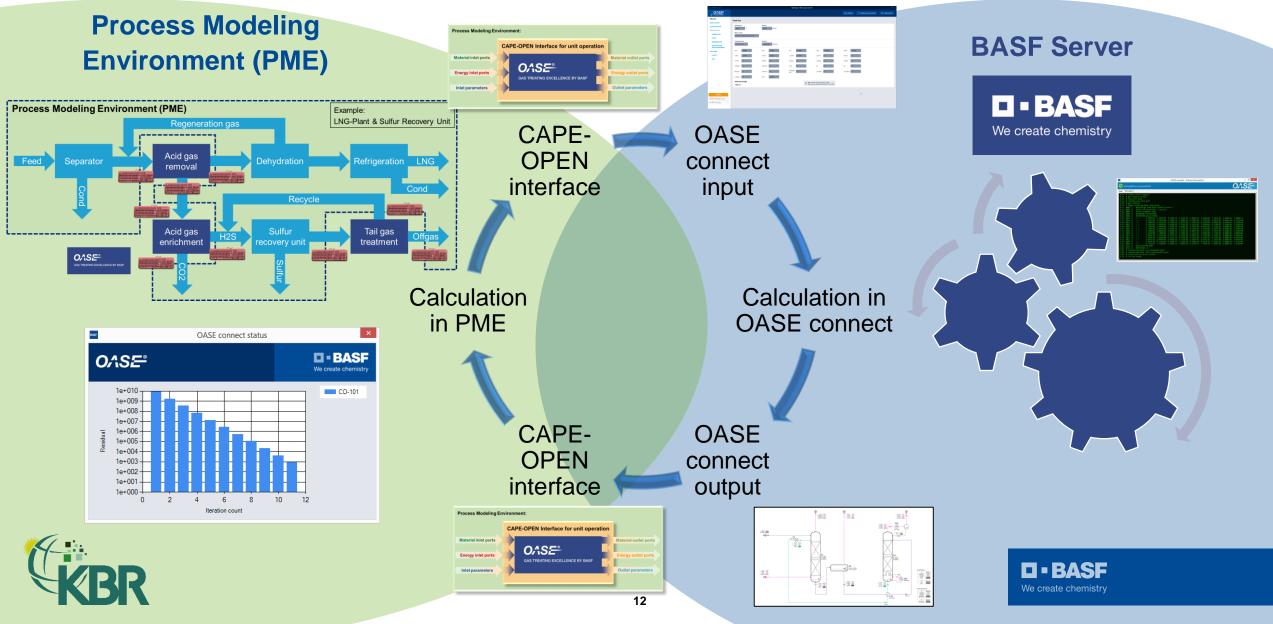
Process Modeling Environment (PME)	CAPE-OPEN interface	Process Modeling Component (PMC)	
Software environment that supportsconstruction of a process modelprocess simulation or optimization	Communication between CAPE applications	Software component, which is intended to carry out a well-defined function with limited scope	
 Flow sheet simulator, e.g. Aspen Plus[®] Aspen HYSYS[®] COFE ProMax[®] Pro/II UniSim[®] Design 	Material Streams	Examples:Computation of physical properties	
	Energy Streams	 Simulation of a particular unit operation 	
	Parameters	 Numerical solution of certain types of mathematical problems 	
KBR	Others 8	D = BASF We create chemistry	

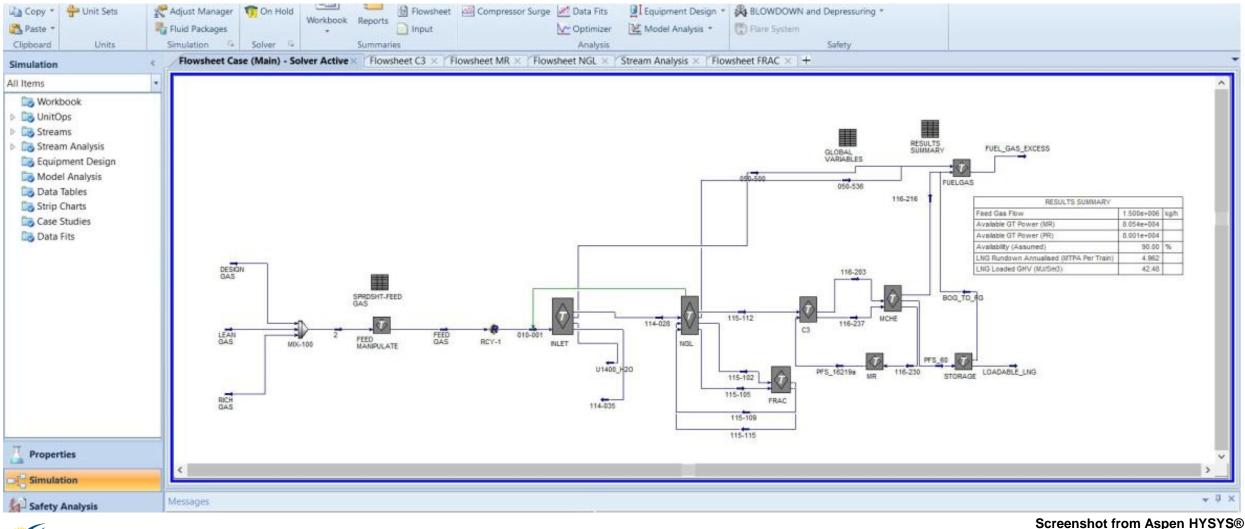

Example for PMC

- BASF's OASE[®] gas treatment technology for removal of acid gases
- Acid gas removal unit (AGRU) is part of large production plants, e.g.
 - LNG plants / natural gas processing plants
 - Ammonia plants / synthesis gas plants
- Proprietary simulation tool OASE connect:
 - Allows rigorous calculation of BASF's OASE[®] gas treatment technology
 - Is provided as server client application

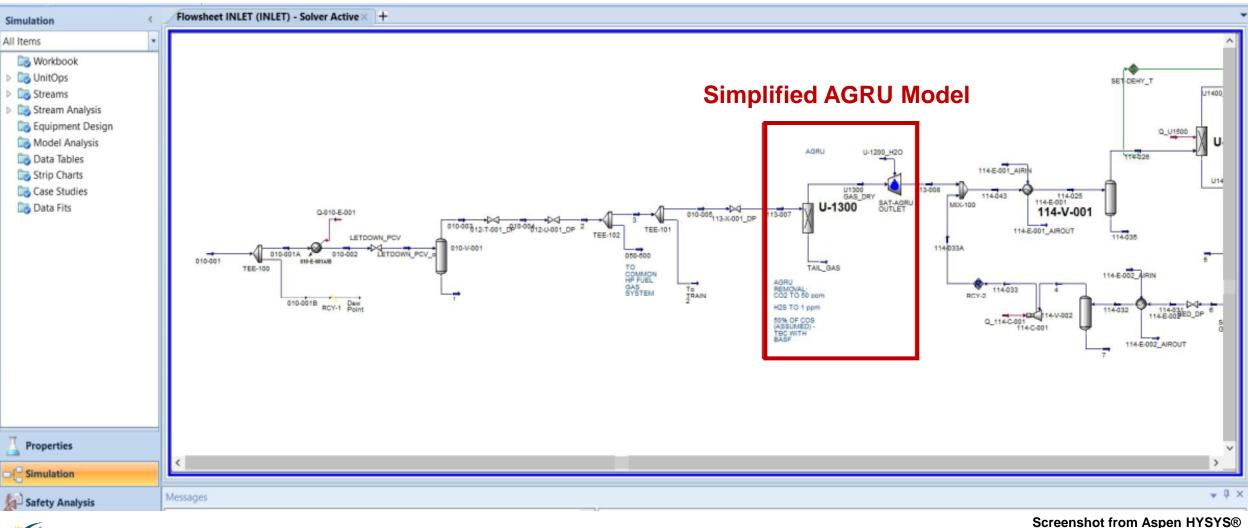


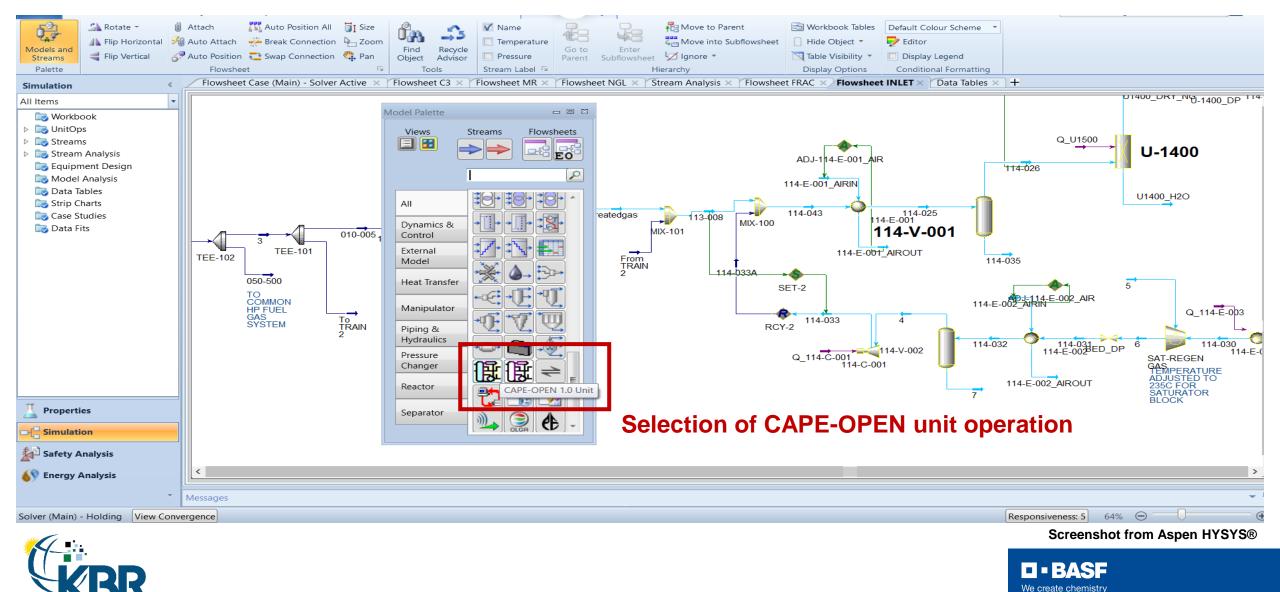
Realization of CAPE-OPEN interface in OASE connect

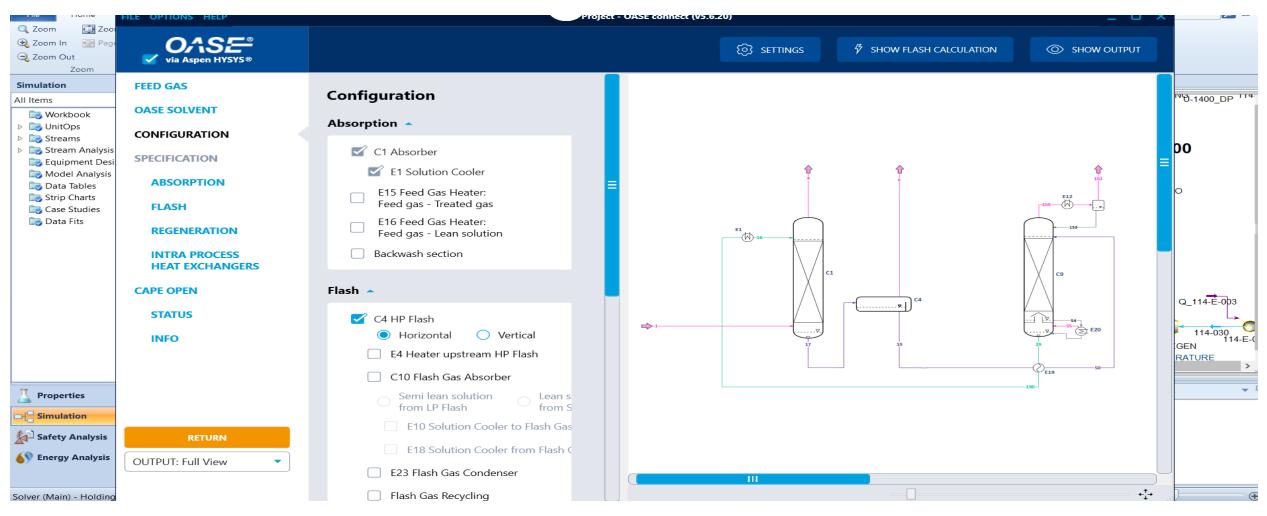

CAPE-OPEN interface allows communication between PME and PMC



Interaction between PME and OASE connect via CAPE-OPEN interface




D • BASE

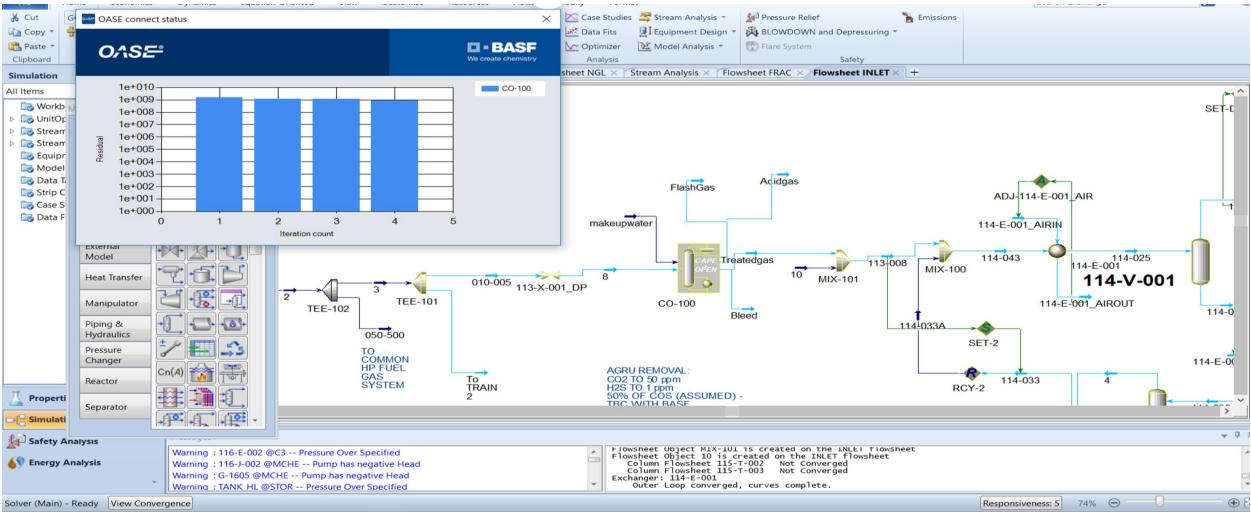

We create chemistry

D = BASF We create chemistry

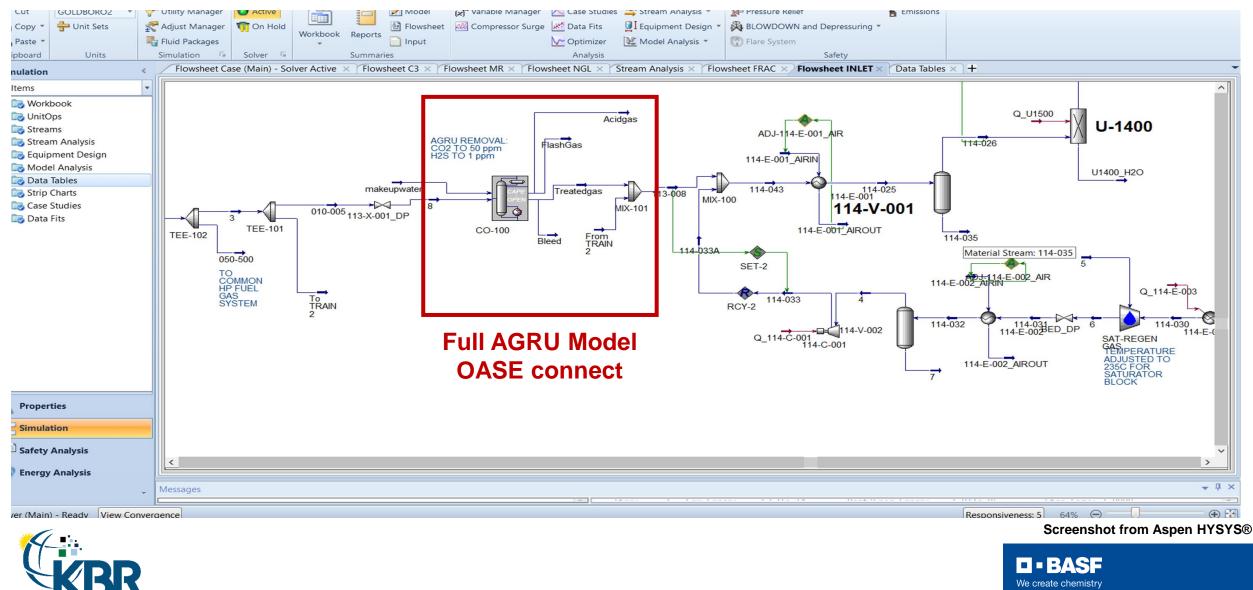
Screenshot from Aspen HYSYS®

Clipboard Units	Simulation	Solver Im	Summai	les		Analysis		Safety		
Simulation	< Flowshee	et Case (Main) - Solver A	ctive × Flow	sheet C3 × Flowsheet M	VIR × Flowsh	eet NGL × Stream Analys	is \times Flowsheet FRAC \times	Flowsheet INLET × Data Ta	bles × +	
All Items	•									<u></u>
Contraction workbook										
👂 📷 UnitOps										
👂 📷 Streams	(€ CO-100)				×		_			0.111500
Stream Analysis	_	S Unit Variables Genera					Acidgas	3	┌-�़	Q_U1500 →
Contraction Equipment Design Contraction Model Analysis	-	reams and Material Ports	·		~	AGRU REMOVAL:	FlashGas	AD	J-114-E-001_AIR	1114-026
Data Tables			Discritica			AGRU REMOVAL: CO2 TO 50 ppm H2S TO 1 ppm	riasiioas	114 5		114-020
Strip Charts	Port ID FeedGas	Port type Material	Direction Inlet	Material name				114-E-	-001_AIRIN	
Case Studies	WaterMakeUp	Material	Inlet							→
📷 Data Fits	TreatedGas	Material	Outlet	Treatedgas			Treatedgas	113-008 + 114-0 MIX-100	114-E-001	
	AcidOffGas	Material	Outlet	Acidgas	01_D	- 8	MIX-1	101	114-V-001	U
	Bleed	Material	Outlet	Bleed					114-E-001_AIROUT	
	FlashGas	Material	Outlet	FlashGas		CO-100	Bleed From TRAIN 2		114-E-00T_AIROUT	114-035
	Purge	Material	Outlet				2			
	E20	Energy	Outlet					SET-2		Ą
	E1	Energy	Outlet							ADJ=114-E-002_AIR 114-E-002_AIRIN
	E12	Energy	Outlet			Connecti	ng the		14-033 4	
							-	RCY-2	4	
						CAPE-OP	EN		-	114-032 014-031 114-E-002 ED
								Q_1	14-C-001 114-C-001	114-E-002 ^{9ED}
						unit opera	ation		114-C-001 🥌	
	F	eed port FeedGas is no	tconnected	Show U	hit GUI	unit oper				114-E-002_AIROUT
A Properties										7
Simulation										
Aralysis										
🔊 Energy Analysis										<u> </u>
	Messages									▼ .
Solver (Main) - Holding	ew Convergence								Responsiveness: 5 649	% ⊝ ──── €
										ot from Aspen HYSYS®
									BASF	

🕑 i 🖬 🤊 🌾 🚍 🔤 🗉 🔻	FILE OPTIONS HELP	TIONS HELP New Project - OASE connect (v5.6.20) _							
File Home Economics					SETTINGS	SHOW FLASH CALCULATION	SHOW OUTPUT		
R Streams Streams Flip Vertical	FEED GAS								
Simulation All Items	OASE SOLVENT								
PD Workbook	CONFIGURATION	Save converged run as	:	Open Dialog					
 Image: Streams Image: Stream Analysis Image: Stream Analysis Image: Stream Analysis 	SPECIFICATION ABSORPTION	Component mapp	ing						
Model Analysis Data Tables Strip Charts	FLASH	via Aspen HYSYS®		OASE connect					
Case Studies	REGENERATION	Component	Mapping	Component	_				
8	INTRA PROCESS HEAT EXCHANGERS	Hydrogen	CAS 🔹	H2					
	CAPE OPEN	Helium	CAS	HE					
ų	STATUS	Nitrogen	CAS 🔹	N2					
	INFO	CO2	CAS 🔹	CO2					
Pt Z Properties		H2S	CAS 🔹	H2S					
Simulation		Methane	CAS 🔹	CH4					
Safety Analysis	RETURN	Ethane	CAS 🔹	С2Н6					
-	OUTPUT: Full View	Ethylene	Unspecified •	Unset					
Solver (INLET) - Ready View Converg									


Screenshot from Aspen HYSYS®

File Home Econo Cono Models and Streams Palette	FEED GAS	mole % (wet)	874901.92 Nm3/hr	SHOW FLA	ASH CALCULATION	
Simulation All Items	OASE SOLVENT	CO2 1.9995	H2S 3.9332E-04	N2 1.4997		
© Workbook ▷ © UnitOps	SPECIFICATION	CH4 90.6313	C2H6 4.7649	C3H8 0.6419		
 Streams Stream Analysis Equipment Design 	ABSORPTION	C4H10 0.1940	i-C4H10 0.1100	C5H12 0.0720		
lie Model Analysis lie Data Tables lie Strip Charts	REGENERATION	C6H14 0.0280	C7H16 0.0130	C8H18 0.0070		
Case Studies 🕞 Data Fits	INTRA PROCESS HEAT EXCHANGERS	С9Н20 0.0040	C10H22 0.0020	CH3SH 2.2288E-04		
	CAPE OPEN	C2H5SH 0	СЗН7ЅН 0	COS 7.4372E-04		
	STATUS	02 0	HE 0.0050	Benzene 0.0050		11
		Toluene 0.0050	Ethylbenz 5.0016E-04	o-Xylene 3.3000E-04		
		m-Xylene 3.3000E-04	p-Xylene 3.4000E-04	H2O 0.0100		~
		H2 0.0050				
최고 Safety Analysis	OUTPUT: Full View	Total percentage	- Č- Tip: To right-c	set the total percentage to 100%, lick the input field and choose "Fill to 100%"		- 4 ×
Solver (INLET) - Ready View	Convergence					


BASF We create chemistry

Screenshot from Aspen HYSYS®

Embedding OASE® connect into a Process Modeling Environment via the CAPE-OPEN interface

Benefits:

Provide a **fully closed heat and material balance** as basis for the **generation of technical datasheets** and **further equipment design**

Changes in operating or design parameters are automatically reflected in all connected downstream engineering steps

Boosts the efficiency of collaboration in teams with a global setup

Significant savings in

