Towards CAPE-OPEN 2.0

Thinking about the future

Mark Stijnman
Thermodynamics Expert




Disclaimer

The opinions in this talk are my own and don’t necessarily reflect those of Shell, CO-LaN or any of its SIGs.

Copyright of Shell International B.V. October 2019



Goal for this talk

m |dentify changes in the computing landscape

m |dentify changes in the process simulation landscape

m |dentify pain points in the current standard

m Present ideas on how CAPE-OPEN could adapt

—> Start a discussion of where CAPE-OPEN could/should be heading in the next years
m Plant seeds for a CAPE-OPEN 2.0

m Assumptions:

m Allow breaking changes

Copyright of Shell International B.V. October 2019



Overview

1. Landscape changes
Thermo

Unit Operations
Cloud

» LD

Copyright of Shell International B.V. October 2019



Landscape changes




Computing landscape

Multi-core and cloud
m The future is multi-core
m Computing power currently mostly grows by increasing the number of cores
m Especially true for virtual machines in the cloud
m Most process simulation software currently single-threaded
m This is expected to change in next-generation simulators
m The future is cloudy
m Simulators will move to the cloud
m Even if only as desktop applications running on a virtual machine in the cloud

m How to deal with plugins in a cloud environment?

Copyright of Shell International B.V. October 2019



Process simulation landscape

Dynamics and equation-oriented modeling
m The future is dynamic
m Steady-state often no longer enough
m Transient processes, startup, shutdown
m The future is equation-oriented
m Can be used for steady-state, dynamics, optimization etc.
m Sequential solving limits multi-core usage, while simultaneous allows better leverage of multi-core
computing
m Still in its infancy as compared to sequential modeling

= Needs to support “black-box” models and/or “classic” unit operation modules

Copyright of Shell International B.V. October 2019



Thermo




Thermo: life cycle

Some pain points in property package life cycle:
m Property Package can be stand-alone
m Property Package can be created from a preset in the Package Manager
= No way to create an empty or default package, to be configured or restored from a case file later
m If a preset doesn’t exist in the package manager, this is not an error
m This is essentially a workaround for the above issue
m Package can be edited
m Should the edits propagate back to the preset used?
m And to other packages using the same preset?
m Currently, the answer generally is no to both
m Package must be initialized

m This is where you may get errors that originated way earlier in the process

Copyright of Shell International B.V. October 2019



Thermo: multi-threading

Some pain points in property packages with multi-threading:
m Property Packages are inherently unsafe for multi-threading
m Even if underlying property calculations are thread-safe
m The cause: the context material
m Simulator must call SetMaterial for each material object it wants properties for
m The material object is used to store the outcome of the phase equilibrium and/or property
calculations
m This precludes using the same package on multiple material objects simultaneously
m A Material may also define subsets of component lists and phase lists
m May require partial or complete reload of the underlying model
m A current workaround would be to create multiple copies of a property package

m Use save/load functionality to initialize them to the same state

Copyright of Shell International B.V. October 2019

10



Thermo: proposed solution

Property packages become stateless
m Model a Property Package as a stateless, pure function object
m It calculates phase properties as a function of T, P and phase composition
m It calculates phase equilibrium as a function of input conditions
m Simplify life cycle
m Once created, never changes
m |s either created successfully, or not at all
m No invalid property packages possible
m Move complexity to the Package Manager
m Editing
m Saving/Loading

m Preset management

Copyright of Shell International B.V.

October 2019

1



Thermo: proposed solution

Some additional upsides:
m All inputs and outputs are explicit
m No side-effects
m Possible performance improvements: no need to move data into and out of a material object if its not
needed
m Define additional functionality on package manager:
m Add/remove components
m Integrate with native component selection user interface
m Define pseudo components
m No cyclic references

m A Material is associated with a property package, but a property package is no longer linked to a

material.

Copyright of Shell International B.V. October 2019

12



Thermo: proposed solution

Some downsides (and possible mitigation):
m No more support for subsets of component lists or phase lists
m Proposal is to move this to the package manager as well
m Might introduce a lot of extra complexity for the simplest cases
m Stand-alone property packages might suddenly need a package manager
m Property packages may still have hidden state that will need to be protected
m E.g. temperature-dependent that you want to store and only re-calculate when the temperature
changes
m Possible solutions: thread-specific storage, thread-safe least-recently used cache, etc
m May be necessary to allow package authors to indicate thread-safety level

m Simulators may apply workarounds as needed, like creating multiple copies with the same settings

Copyright of Shell International B.V. October 2019



Unit operations




Unit operations: equation-oriented modeling

Equation modeling
m There is currently no industry-standard equation modeling language
m Do we want one?
m Can CAPE-OPEN play a role here?
m Black-box modeling
m Implement equations in own code, return residuals
m Mostly for IP-protection reasons, but may also be more portable
m Derivatives generally also needed
= Need some way to support “classic” unit operations in an equation-oriented environment
m For backwards compatibility or easy upgrade path
m Who implements the wrapping code? Can we standardize this?

Copyright of Shell International B.V. October 2019

15



Unit operations: custom GUI

There is a need for custom user interfaces for unit operations
m Modal “Edit” functionality is often not enough
m Real-time display of current conditions
m Widget on the flowsheet showing graphs, tables, etc
m With COBIA, needs to be cross-platform
m Suggestion: use HTML5/CSS/Javascript
m Open standards
m Many frameworks available (React, Angular, Vue)
m Provide callback mechanism to push data to the widget (JSON)
m CAPE-OPEN could standardize element class names so that host apps may style the GUI to fit their

own style

Copyright of Shell International B.V. October 2019



Cloud




Cloud: Simulators are moving to the cloud

Simulator cloud strategies
m Provide a virtual machine to users that contains the software

m Simple and quick solution: pretty much runs the desktop version on a remote desktop in the cloud
m Provide a (thin) client that talks to a web API or server that runs in the cloud

m If the software doesn’t have a client-server architecture yet, this can require a costly redesign

Copyright of Shell International B.V. October 2019

18



Cloud: But what to do with plugins?

In both cases, plugins are a problem
m The easy solution would be to simply install the plugin on the cloud instance
m But not all users that access a particular virtual machine or web API will be allowed access to the same
plugins
m Licensing, IP protection
m Alternatively, for CAPE-OPEN we could establish a protocol where a CAPE-OPEN extension can be
published to the cloud
m Only publish meta-data to CAPE-OPEN, such as UUID and URL
m Hosted on supplier’s own cloud, so they can control their own authentication and authorization
m Binaries (DLLs and data files) downloaded on the fly, no installation required

m Might still need additional license protection

m Could be implemented in CAPE-OPEN middleware (COBIA)

Copyright of Shell International B.V. October 2019

19



Cloud: A CAPE-OPEN web API?

A Web APl for CAPE-OPEN could also be part of the solution
m Implement your plugin as a web API for your calculations
m Instead of a DLL and data files that are downloaded to a potentially untrusted PC or virtual machine,
the calculations safely take place in your own cloud
m We could define a CAPE-OPEN standardized web API that mirrors the DLL-based API
m Based on REST principles, or GraphQL, or similar open standards
m As close to a 1:1 mapping as possible
m Big downside of a web API is latency and overhead of message construction and parsing

m Design the API to allow bundling multiple calculation requests in one message

m The simulator may also have to be restructured to benefit from this

Copyright of Shell International B.V. October 2019

20



Questions and Answers







