

Using COSMO*therm* predictions in process simulations

Dr. Jasper van Baten, Dr. Frank Eckert 2019 CAPE-OPEN Annual meeting Amsterdam, October 22/23, 2019

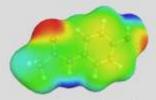
COSMOtherm

Property prediction for molecules in pure and mixed liquids

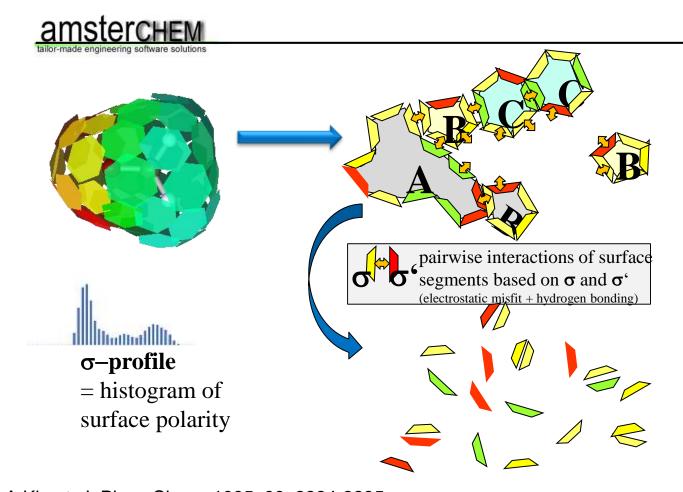
Prediction of thermodynamic properties

COSMOtherm is a software to predict thermodynamic properties such as solubilities, activity coefficients or vapor pressures in liquid mixtures.

Works without experimental data


COSMOtherm applies the fully predictive COSMO-RS model and requires no experimental data. All information is taken from COSMO files for each compound, which can be generated with quantum chemistry programs (e.g. TURBOMOLE) and stored for later use.

Your benefit


- · Guide your experiments to save lab time and improve your results
- Find new or unexpected solutions by screening large databases of possible solvents, co-solvents, entrainers, and other additives
- · Investigate new areas of chemistry without further adjustments

Application Areas

- Chemical engineering
- Drug design & development
- Chemistry
- Environmental science
- Formulation
- Quantum chemistry

COSMO surface of paracetamol

A.Klamt, J. Phys. Chem. 1995, 99, 2224-2235 A.Klamt, G.J.P. Krooshof, and R. Taylor: AIChE Journal 2002, **48**, 2332-2349

History: InGamma calculation routine

- Very early in CAPE-OPEN: 2006
- ICapeThermoCalculationRoutine (v1.0)
- ICapeThermoPropertyRoutine (v1.1)
- Direct access to COSMOtherm calculations
- Slow.... No composition derivatives.
- Unexpectedly little support for calculation routines (although seemingly useful concept)
- Only Property Package available to deal with COSMOtherm: COCO/TEA
- Using TEA, wide support. LITE with COCO.

- Constants
 - Critical properties
 - Molecular weight
 - Correlation inputs
- Correlations
 - T-dependent
 - $C_P(IG)$
 - P_{sat}
 - H_{vap}
 - Transport props

T, P, X Phase

- Constants
 - Critical properties
 - Molecular weight
 - Correlation inputs
- Correlations
 - T-dependent
 - $C_P(IG)$
 - P_{sat}
 - H_{vap}
 - Transport props

- Chemical potential
 - Fugacity
 - Activity

- Properties
 - H, S, ...
 - Mix props
 - Transport props

- Constants
 - Critical properties
 - Molecular weight
 - Correlation inputs
- Correlations
 - T-dependent
 - $C_P(IG)$
 - \bullet $P_{\rm sat}$
 - H_{vap}
 - Transport props

- Chemical potential
 - Fugacity
 Activity

- Properties
 - H, S, ...
 - Mix props
 - Transport props

- Constants
 - Critical properties
 - Molecular weight
 - Correlation inputs
- Correlations
 - T-dependent
 - $C_P(IG)$
 - P_{sat}
 - H_{vap}
 - Transport props

Mixture

- Chemical potential
 - Fugacity

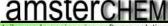
Activity

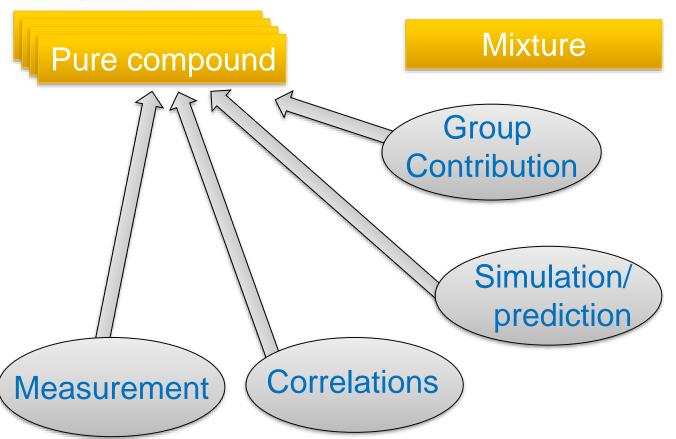
excess

Properties

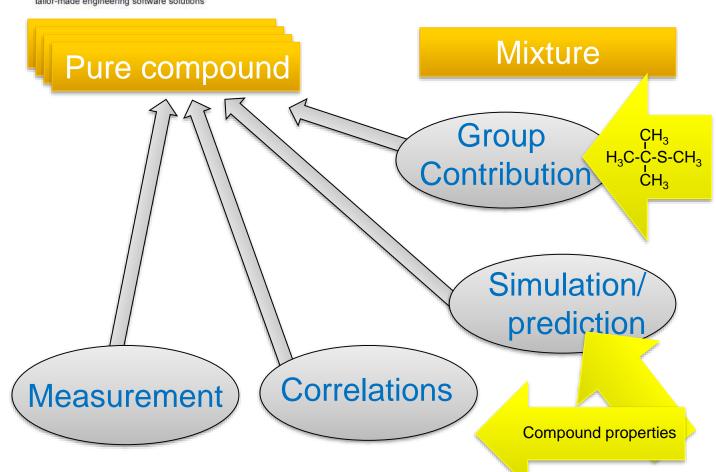
- H, S, ...
- Mix props
- Transport props

- Constants
 - Critical properties
 - Molecular weight
 - Correlation inputs
- Correlations
 - T-dependent
 - $C_P(IG)$
 - P_{sat}
 - H_{vap}
 - Transport props

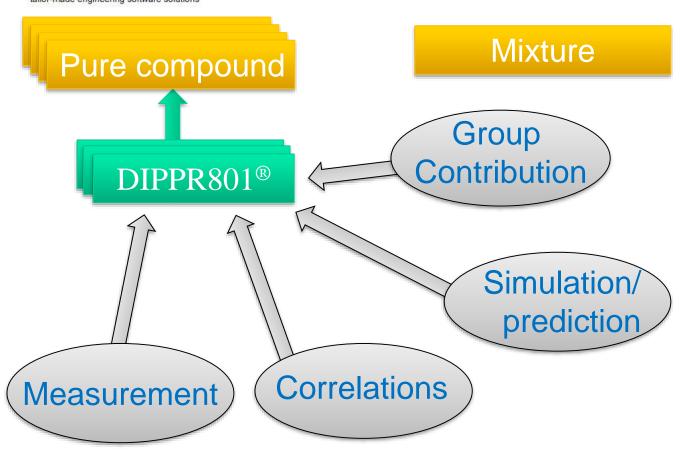

Mixture

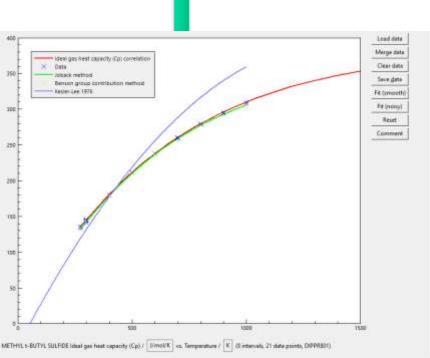

- Chemical potential
 - Fugacity
 - Activity

corresponding states


Properties

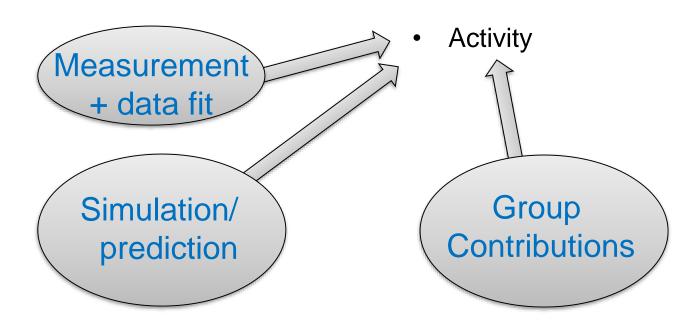
- H, S, ...
- mix rules Mix props
 - Transport props





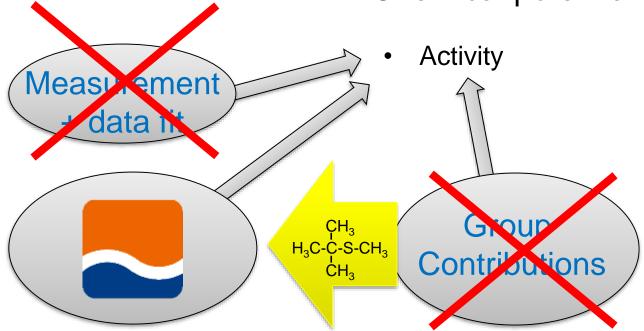
tailor-made engineering software solutions

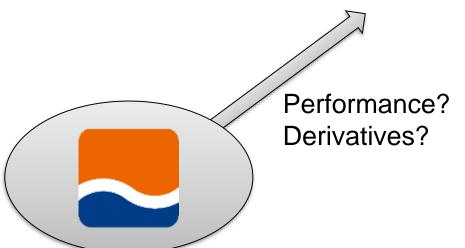
Pure compound



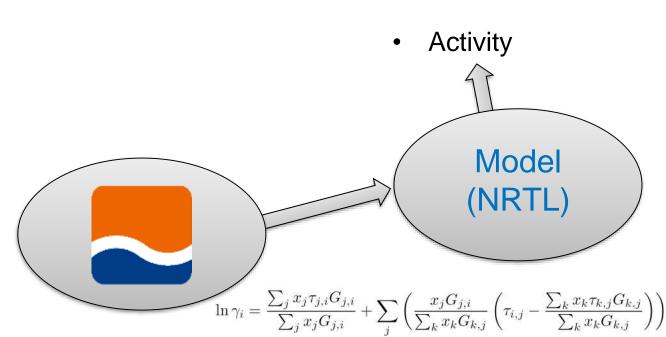
PromisPLIT				
			Qinniss	Lind
Add CAPE-OPEN package				
75-115-0 C131-11-10-10			Diames	1000
				-
Joback method		2000		- mingeogeom
		Dismits	2how	Use data
HeatCapacityCp/[J/reol/K]		0.1/1		
	X/mal/K X/mal/K/K			
C -0.0003798 / D 925e-08	l/mol/K/KZ l/mal/K/K3			
Valid between 273.15 K and				
	contribution meth	sed :		
deta poorts flencon group	contribution meti	Burnes	Slow	Lise data
il deta poorts flencon group		Domes	Skow	<u>[</u> be data
		Domes VL SULFIDE	1 (20)	
ii deta poorts flencon group		Domes	Show So	Lise data
il deta poorts flencon group	fyr "METHYL t-BUT	Domes Domes	go.	
ti deta poorts flerson group Group contribution helper f	fyr "METHYL t-BUT	Domes Domes	go.	
il deta poorts flerson group Group contribution helper f	for "METHYL t-807 define Vapor heat o	Dismits Dismits Dismits paperity correlation	go.	<u>Automatik</u> <u>Queens</u>

Mixture


Chemical potential


Mixture

Chemical potential


- Chemical potential
 - Activity

Mixture

Chemical potential

$$\ln \gamma_i = \frac{\sum_{j} x_j \tau_{j,i} G_{j,i}}{\sum_{j} x_j G_{j,i}} + \sum_{j} \left(\frac{x_j G_{j,i}}{\sum_{k} x_k G_{k,j}} \left(\tau_{i,j} - \frac{\sum_{k} x_k \tau_{k,j} G_{k,j}}{\sum_{k} x_k G_{k,j}} \right) \right)$$

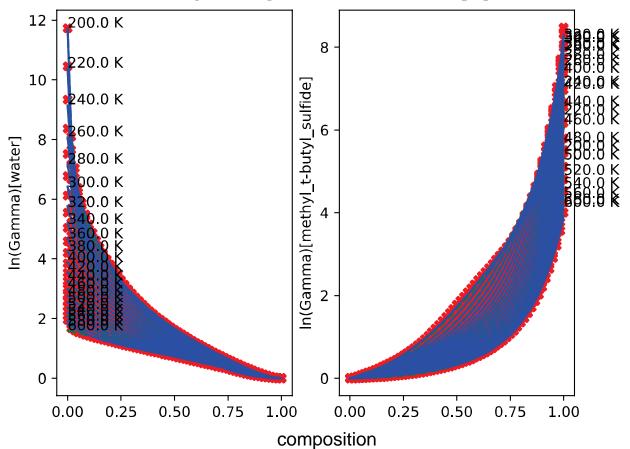
Each binary has 4 parameters, each of which can be a function of temperature

$$G_{i,j} = \exp(-\alpha_{i,j}\tau_{i,j}) = g_{i,j}(T)$$

$$G_{j,i} = \exp(-\alpha_{j,i}\tau_{j,i}) = g_{j,i}(T)$$

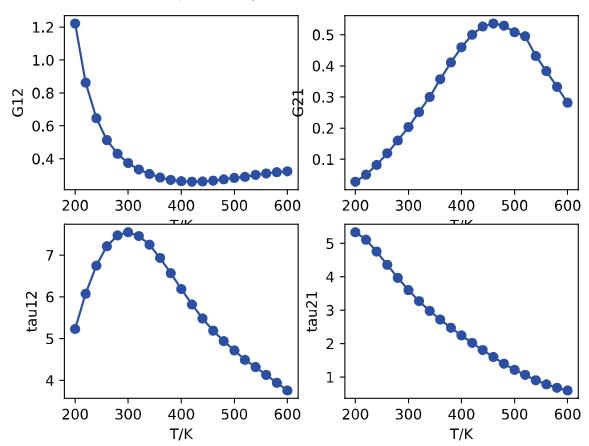
$$\tau_{j,i} = t_{j,i}(T)$$

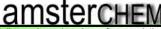
$$\tau_{j,i} = t_{j,i}(T)$$
Common 3 parameter form
$$\tau_{i,j} = \frac{A_{i,j}}{T}$$

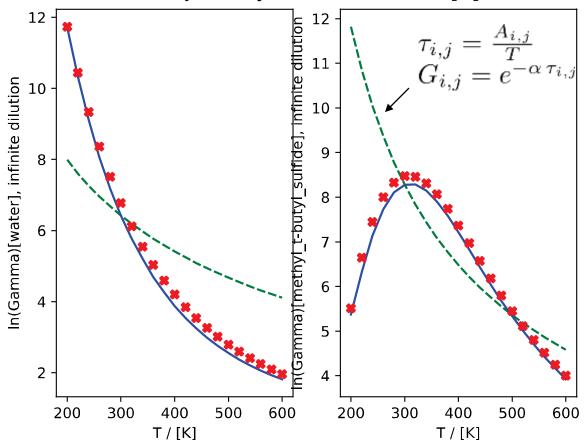

$$G_{i,j} = \exp(-\alpha\tau_{i,j})$$

Fit Procedure:

Fit $G_{\mathbf{j},\mathbf{i}}, G_{i,j}, \tau_{\mathbf{j},\mathbf{i}}, \tau_{\mathbf{i},\mathbf{j}}$ separately against $\gamma_{\mathbf{i},\mathbf{x}\mathbf{j}=1}$ and $\gamma_{\mathbf{j},\mathbf{x}\mathbf{i}=1}$ Fit all $G_{\mathbf{j},\mathbf{i}}, G_{i,j}, \tau_{\mathbf{j},\mathbf{i}}, \tau_{\mathbf{i},\mathbf{j}}$ to all data.



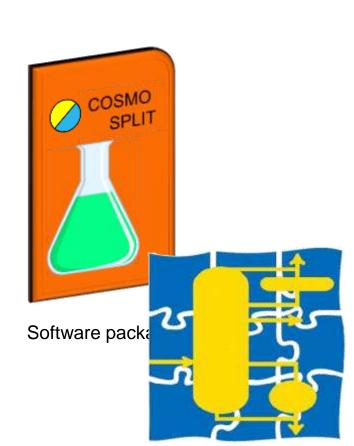

Water / methyl t-butyl sulfide, $200 \le T/[K] \le 600$


Water / methyl t-butyl sulfide, $200 \le T/[K] \le 600$

tailor-made engineering software solutions

Water / methyl t-butyl sulfide, $200 \le T/[K] \le 600$

- Pure compound libraries (e.g. DIPPR801)
- Expt. Data import + fitting
- Group contribution data
- Correlations
- Mixture property routines
- Transport properties
- Analytic derivatives
- Multi-phase equilibrium calculator
- NRTL fitting

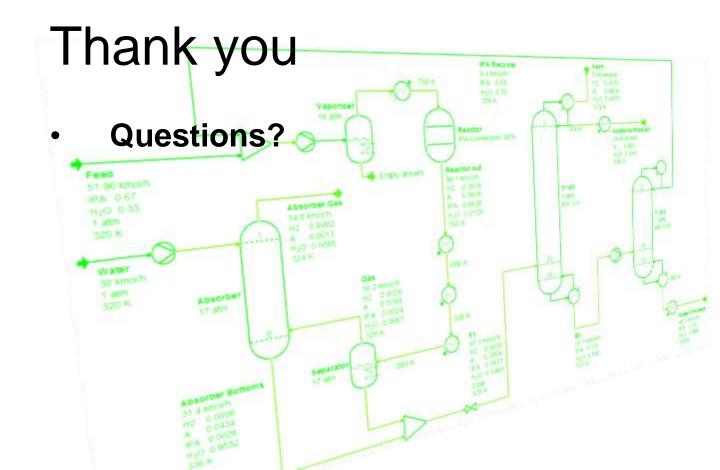


Software package

- Pure compound libraries (e.g. DIPPR801)
- Expt. Data import + fitting
- Group contribution data
- Correlations
- Mixture property routines
- Transport properties
- Analytic derivatives
- Multi-phase equilibrium calculator
- NRTL fitting

Flowsheet Simulators consuming thermo PMCs

(*) Plus a variety of in-house simulators(**) This is not an exhaustive list


Other thermo PMC client software

Summary

- Design requirements summarized for application framework for Using COSMOtherm predictions in process simulations
- Technology validated
- Exposed via CAPE-OPEN
- Ready for use

