
CAPE-OPEN
Expanding Process Modelling Capability

Through Software Interoperability Standards

Flowsheet Monitoring

Interface Specification

www.colan.org

2

ARCHIVAL INFORMATION

Filename Monitoring Interface Specification.docx

Authors CO-LaN consortium

Status Public release

Date July 2019

Version version 1.58

Number of pages 76

Versioning

 Version 1.55 edited on September 27, 2017

 Version 1.56 edited on November 1, 2018

 Version 1.57 edited on May 22, 2019

 Version 1.58 edited on July 8, 2016

Additional material

Web location

Implementation

specifications version

Comments

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.

CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied warrant

or fitness for a particular purpose. The entire risk arising out of the use or performance of any sample code ---

or any other software described by the CAPE-OPEN Laboratories Network --- remains with you.

Copyright © 2019 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non-for-profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a

trademark claim, the designations have been printed in caps or initial caps.

4

SUMMARY

Flowsheet Monitoring is the ability to access all elements in a flowsheet without interfering with the flowsheet.

Flowsheet Monitoring Components are software components that can be plugged into a flowsheet and have

access to all thermodynamic property calculation methods, all Streams and all Unit Operations.

Flowsheet Monitoring Components gain read-only access to flowsheet elements via Collection interfaces

exposed by a new interface, ICapeFlowsheetMonitoring, implemented by the Simulation Context. The

Flowsheet Monitoring Component can be invoked via the methods of its

ICapeFlowsheetMonitoringComponent interface, or by means of responding to events. The event handlers are

methods on a new interface, ICapeFlowsheetMonitoringEventSink, that are invoked by the PME.

5

ACKNOWLEDGEMENTS

The initial Flowsheet Monitoring interface specification was designed by Jasper van Baten (AmsterCHEM)

and Bill Barrett (United States Environmental Protection Agency). Subsequent revisions by the Methods &

Tools Special Interest Group of the CAPE-OPEN Laboratories Network (CO-LaN) led to the current

document.

6

CONTENTS

CAPE-OPEN DOCUMENT ROADMAP ... 8

1. INTRODUCTION .. 9

2. REQUIREMENTS ... 11

2.1 FLOWSHEET MONITORING .. 11
2.2 TEXTUAL REQUIREMENTS .. 12
2.3 ARCHITECTURE .. 16
2.4 USE CASES ... 20

2.4.1 Use Case Priorities ... 20
2.4.2 Actors .. 20
2.4.3 List of Use Cases ... 20
2.4.4 Use Cases Map ... 21
2.4.5 Use Cases .. 23

3. ANALYSIS AND DESIGN ... 41

3.1 OVERVIEW ... 41
3.2 COMPONENT DIAGRAMS ... 41
3.3 COLLABORATION DIAGRAM ... 43
3.4 STATE DIAGRAMS... 44
3.5 INTERFACE DIAGRAMS ... 45

3.5.1 Interface ICapeFlowsheetMonitoring ... 45
3.5.2 Interface ICapeFlowsheetMonitoringComponent... 45
3.5.3 Interface ICapeFlowsheetMonitoringEventSink ... 46
3.5.4 Interface ICapeStream .. 46

3.6 INTERFACE DESCRIPTIONS .. 46
3.6.1 ICapeFlowsheetMonitoring .. 47
3.6.2 ICapeFlowsheetMonitoringComponent .. 54
3.6.3 ICapeFlowsheetMonitoringEventSink .. 57
3.6.4 ICapeStream ... 67

3.7 SCENARIOS .. 71
3.7.1 Thermodynamic calculations on a specific Stream ... 71
3.7.2 Calculation of physical and chemical exergy of a material stream .. 71
3.7.3 Archival of multiple runs of a Flowsheet .. 71
3.7.4 Connectivity analysis .. 71

4. NOTES ON THE INTERFACE SPECIFICATIONS .. 72

4.1 VERSIONING ... 72

5. PROTOTYPES IMPLEMENTATION.. 74

6. SPECIFIC GLOSSARY TERMS ... 75

7. BIBLIOGRAPHY .. 76

7

LIST OF FIGURES

FIGURE 1: HIERARCHY OF OBJECTS ACCESSIBLE BY FLOWSHEET MONITORING COMPONENTS VIA THE SIMULATION

CONTEXT. ... 17
FIGURE 2: INTERFACES IMPLEMENTED BY THE SIMULATION CONTEXT. NOT ALL PMES IMPLEMENT

ICAPEMATERIALTEMPLATESYSTEM. ... 19
FIGURE 3: CLASS DIAGRAM OF THE FLOWSHEET MONITORING COMPONENT .. 19
FIGURE 4. USE CASES WITH HUMAN ACTORS ... 21
FIGURE 5. USE CASES WITH FLOWSHEET MONITORING COMPONENT MANAGER AS ACTOR ... 22
FIGURE 6. USE CASES WITH PME AND FLOWSHEET MONITORING COMPONENT AS ACTORS .. 22
FIGURE 7 UNIT OPERATION COLLECTION COMPONENT DIAGRAM ... 41
FIGURE 8 STREAM COLLECTION COMPONENT DIAGRAM ... 41
FIGURE 9 MATERIAL OBJECT COMPONENT DIAGRAM .. 42
FIGURE 10 ENERGY STREAM CLASS DIAGRAM .. 42
FIGURE 11 INFORMATION STREAM CLASS DIAGRAM ... 42
FIGURE 12 INTERFACES IMPLEMENTED BY SIMULATION CONTEXT AND FLOWSHEET MONITORING COMPONENT 43
FIGURE 13. MONITORING COMPONENT STATE DIAGRAM. ... 44

8

CAPE-OPEN Document Roadmap

This document belongs to the documentation set of CAPE-OPEN interface specifications in its version 1.1.

This imposes that for Microsoft COM Flowsheet Monitoring Components implementing the interfaces defined

in this document, the CapeVersion registry key must be set at the value “1.1”.

The interfaces specified in this document are intended to work with version 1.1 of the Thermodynamic and

Physical Properties interface specification and with future versions of CAPE-OPEN interfaces in general

including UNIT. Version 1.0 of the Thermodynamic and Physical Properties interfaces have been deprecated,

and support for them is not considered by this specification.

This document is intended primarily for software engineers, who are interested in developing CAPE-OPEN

compliant Flowsheet Monitoring Components (FMCs), or providing support for these components in Process

Modelling Environments (PMEs).

All other readers need not go beyond Section 2 Requirements.

9

1. Introduction

Steady-state flowsheet simulation is a computer technique used by process engineers for modeling entire

(chemical) processes or parts thereof. Such flowsheet simulations typically consist of several process model

units (unit operations) linked together by material, energy, and information streams. Underlying the unit

operation models and streams, there are thermodynamic and physical property models. Flowsheet simulations

are used to model a complete chemical process to - for example - assess process design, train process operators,

and to close mass and energy balances. The unit operation models are combined in a Process Flow Diagram,

referred to as a Flowsheet, showing connections between unit operations. Throughout this document the

connections between unit operations will be referred to as Streams.

This document describes the interface requirements for a broad class of process-based applications that require

process information that can most effectively be obtained directly from the Flowsheet. Typically, these

applications do not modify the Flowsheet itself, but rather acquire information about the process being

investigated directly from objects in the Flowsheet. Flowsheet monitoring is a mechanism for providing this

direct access to the objects contained in the Flowsheet. These applications typically perform analysis of the

Flowsheet after it has been calculated to a converged state. Examples of applications that can benefit from the

direct access to the Flowsheet include:

• applications that perform overall Flowsheet calculations, including component-, mass-, and energy

balances. This category includes environmental monitoring applications such as the WAR algorithm
[1, 2];

• applications that perform generic thermodynamic and physical property calculations in the context of

a Flowsheet, without the need for any information on the Flowsheet structure. Example applications

include phase envelope calculators and residue curve calculators;

• applications that perform thermodynamic and physical property calculations in the context of specific

Flowsheet elements. These applications perform post-processing and validation at the found solution.

Example applications include wax formation calculations or hydrate deposition calculations in pipes

represented by specific Streams;

• applications that conduct performance rating calculations for a particular class of unit operation;

• applications that analyze the structure of the Flowsheet and the specific coupling of Flowsheet

elements, for example for heat integration by pinch technology [3];

• archiving applications that store each found solution of a particular Flowsheet to a database (goal could

be generation of short-cut models by linearizing between previously found rigorous solutions);

• applications that make use of previously archived solutions to advise the user on an initial starting

point for a Flowsheet solution. Such an application can be executed by the Flowsheet User prior to

solving the Flowsheet;

• model-based control applications that perform a simulation of the current state of an actual physical

process and want to report new control targets to an external application. A separate mechanism is

required for this class of applications to provide the simulation with measurements of the current state

of the process (e.g. feed conditions);

• applications that perform synthesis studies on a Flowsheet and advise the User on possible optimal

structure. These applications act on the structure of the Flowsheet and possibly not on any other piece

of information so these applications can be executed by the Flowsheet User prior to solving the

Flowsheet.

In the past, a common practice for obtaining information about material flows within a Flowsheet has involved

creating a collection of pass-through unit operations that collect stream information without performing

operations on the Flowsheet Streams. These unit operations are typically placed strategically within the

10

Flowsheet to collect flow information and can only collect information from the Streams that they are placed

within. This approach has severe drawbacks: if information is required from various places of the Flowsheet,

this includes inserting multiple monitoring unit operations, convoluting the actual flow diagram. Moreover,

each unit operation must perform an equilibrium calculation on each of the outlet Streams, which can

substantially increase the time it takes to calculate the Flowsheet. Additionally, the Flowsheet User cannot

change the monitored Streams without invalidating the Flowsheet. As a result, the solution status of the

Flowsheet is affected by the action of inserting such Unit Operations. Flowsheet Monitoring provides a generic

solution for a broad class of process evaluation and improvement applications to gain access to all parts of the

Flowsheet, without changing the state of the Flowsheet (in a read-only manner). Such components will be

called Flowsheet Monitoring Components.

Flowsheet Monitoring Components gain read-only access to Flowsheet elements via collection interfaces

exposed by a new interface, ICapeFlowsheetMonitoring, implemented by the Simulation Context. The

Flowsheet Monitoring Component can be invoked via its Monitor method, or by means of responding to

events. The event handlers are methods on a new interface, ICapeFlowsheetMonitoringEventSink, that are

invoked by the PME.

11

2. Requirements

This section lists the functionalities expected from Flowsheet Monitoring Components then gathers textual

requirements for Flowsheet Monitoring Components, PMEs and Unit Operations. The relationship between

Flowsheet elements and Flowsheet Monitoring Components is also listed and described.

2.1 Flowsheet monitoring

The following functionality is available to a Flowsheet Monitoring Component:

• access to the thermodynamic and physical property system (e.g. enumeration of compounds, phases,

…);

• ability to perform physical and thermodynamic property calculations (on duplicated Material Objects

or on Material Objects obtained from the Material Template System);

• access to the Stream Collections of a Flowsheet;

• for each of the material Streams, access to all its properties (pressure, temperature, composition, flow,

phase equilibrium);

• for each of the Information Streams access to the parameter-based data;

• for each of the Energy Streams, access to the parameter-based data;

• access to a Collection describing all Unit Operations present in the Flowsheet;

• ability to determine connectivity of Unit Operations (determine which Unit Operations are connected

by which Streams);

• access to all Public Unit Parameters exposed by a Unit Operation;

• ability to perform event driven calculations (viz. automatically performing a calculation when a new

solution of the Flowsheet is found);

• ability to be invoked manually;

• ability to be invoked by the Flowsheet Solver as part of solving the Flowsheet.

• ability to be configured by the Flowsheet User through a GUI.

• ability for storing and loading (persistence) along with the Flowsheet.

To maintain a modular design, existing interfaces already defined by CAPE-OPEN are used to get information

from the PME. For instance, Stream data is acquired using the appropriate thermodynamic interfaces, while

Unit Operation Ports and Parameters are obtained through the Unit Operation’s Port and Parameter Collections.

The Flowsheet Monitoring Component is only allowed to present a modal dialog during ICapeUtilities::Edit.

This restriction includes the use of message boxes.

ICapeFlowsheetMonitoringComponent::Monitor may present results in the form of output Public Parameters,

or through a non-CAPE-OPEN defined mechanism (file Input/Outputs for example), or may not present any

output at all but merely update its internal state for later presentation of the results.

When a PME supports Flowsheet Monitoring, it is expected that at least invocation of ICapeUtilities::Edit is

supported by the PME. During Edit, monitoring may be exercised so Stream and Unit Collections should be

available to the Flowsheet Monitoring Component and functional at that time. If the task of monitoring is itself

interactive and requires always a GUI, then Edit is the only place where monitoring is exercised and

ICapeFlowsheetMonitoringComponent::Monitor may remain un-implemented.

If the Flowsheet Monitoring Component has output Public Parameters, then the PME may choose to take the

values of these Output Parameters as variables in the Flowsheet equations. As a consequence, the Flowsheet

Monitoring Component must then be evaluated using ICapeFlowsheetMonitoringComponent::Monitor during

the resolution of the Flowsheet. Although to the PME it is clear which parts of the Flowsheet depend on the

output Parameters of the Flowsheet Monitoring Component, the Flowsheet Monitoring Component may

depend on any other pieces of information provided by the Flowsheet.

12

2.2 Textual requirements

Textual requirements are listed hereafter and referenced by mentioning the software component to which each

requirement applies and its number in the global list of requirements. The acronym “FMC” in a requirement

reference relates to a Flowsheet Monitoring Component, the acronym “PME” refers to a Process Modelling

Environment and the acronym “UO” refers to a Unit Operation.

REQ-FMC-01: a Flowsheet Monitoring Component is a PMC Primary Object.

Rationale: A Flowsheet Monitoring Component is created directly by the PME and consequently is a PMC

Primary Object.

REQ-FMC-02: Flowsheet Monitoring Components must not modify any Flowsheet element.

Rationale: Flowsheet Monitoring Components are intended to obtain information about elements in the

Flowsheet, and to make use of the information contained within these elements directly without making

changes to the Flowsheet itself. By making the PMCs on the Flowsheet available to the Flowsheet Monitoring

Components through existing CAPE-OPEN interfaces, it is therefore possible to modify these objects. It is

important to stress that although the Flowsheet Monitoring Components will have access to interfaces that

allow modification of the Flowsheet elements, the access to these elements is restricted to read-only.

For example, Parameter values can be obtained, but must not be set or reset, Unit Operation Ports may not be

disconnected, Unit Operations may not be calculated, Stream values may not be modified and no

thermodynamic or physical property calculations or Phase Equilibrium calculations may be performed directly

on the Material Objects that represent material Streams. Modifications (and the consequences thereof) made

by Flowsheet Monitoring Components to the Flowsheet elements cannot be foreseen by the PME and may

disrupt normal operations of the Flowsheet. Further, changes of these values will invalidate the Flowsheet and

the Flowsheet will no longer be in a solved state.

REQ-FMC-03: Flowsheet Monitoring Components must not connect or disconnect Streams from Ports of

Unit Operations.

Rationale: disconnecting Streams from Unit Operations would constitute a change to the Flowsheet.

Connecting a Stream to a Unit Operation would likewise constitute a change to the Flowsheet. Since such

changes are prohibited, Flowsheet Monitoring Components must not connect or disconnect Streams from Unit

Operations.

REQ-FMC-04: Flowsheet Monitoring Components must request thermodynamic and physical property

calculations only on duplicates of Material Objects.

Rationale: thermodynamic and physical property calculations can be performed by Flowsheet Monitoring

Components but must not be performed on the original Material Objects, but rather on duplicates thereof.

REQ-PME-05: all Material Objects must implement support for CAPE-OPEN Thermodynamic and Physical

Properties interface standard 1.1 or higher.

Rationale: version 1.1 supersedes version 1.0.

REQ-FMC-06: all Flowsheet Monitoring Components that use thermodynamics must support CAPE-OPEN

Thermodynamic and Physical Properties interface standard 1.1 or higher.

Rationale: version 1.1 supersedes version 1.0.

REQ-PME-07: all Stream objects must implement ICapeIdentification interface.

REQ-PME-08: all Unit Operations must implement ICapeIdentification interface.

REQ-PME-09: PME must enforce that no two items of the Stream Collection carry the same name.

13

REQ-PME-10: PME must enforce that no two items of the Unit Operation Collection carry the same name.

REQ-PME/UO-11: all Ports of any Unit Operation must implement ICapeIdentification interface.

REQ-PME/UO-12: no two items within the Port Collection of any single Unit Operation may carry the same

name.

Rationale (for 07 through 12): ICapeIdentification is used to identify Streams, Unit Ports and Unit Operations.

Therefore, it is important that Stream names are unique (no two Streams with the same name should be present

in a Flowsheet), that Unit Operation names are unique (no two Unit Operations with the same name should be

present in a Flowsheet) and that Port names within a given Unit Operation are unique. The Flowsheet User can

generally change names of Streams and Unit Operations in the Flowsheet. The Collection Owner has the

responsibility of disallowing duplicate names within a Collection. The PME owns the Collections of Streams

and Unit Operations. A Unit Operation owns its Collection of Ports. Internal Unit Operations are solely

managed by the PME.

The Streams are made available to the Flowsheet Monitoring Component as a Collection of CAPE-OPEN

objects and the Unit Operations are made available to the Flowsheet Monitoring Component as a Collection

of Unit Operations.

REQ-PME-13: all Stream objects must implement ICapeStream interface.

Rationale: type of Streams as well as connectivity need to be identifiable by the Flowsheet Monitoring

Component. The ICapeStream interface gives access to the Stream type and to upstream as well as downstream

connections.

REQ-PME-14: all Streams must be represented as CAPE-OPEN objects.

Rationale: generally, when a PME has CAPE-OPEN support, it already has an implementation to represent a

material stream as a CAPE-OPEN Material Object; these CAPE-OPEN Objects can be exposed as-is, without

the need for an additional CAPE-OPEN implementation to represent the Streams. For any Stream type for

which support of CAPE-OPEN is not already present, the CAPE-OPEN representation may be partial; methods

that modify the Stream content do not need to be implemented. See table 1 for a list of methods that do not

need to be implemented.

For more information on which interface(s) must be implemented on any Stream present in Collections

provided by PME, see the relevant CAPE-OPEN interface specification documents.

REQ-PME-15: Flowsheet Monitoring Components must be able to request thermodynamic calculations.

Rationale: the ability to use the thermodynamic sub-system of the PME is necessary for any Flowsheet

Monitoring Component in order to perform a full range of operations as part of the monitoring process.

Although streams may have a partial CAPE-OPEN implementation, this requirement implies that Material

Objects obtained through ICapeThermoMaterial::CreateMaterial must have a fully functional implementation

of a Material Object.

The Material Object should be functional to the point it has been configured. This implies that property

calculations must be available for a Material Object that corresponds to a thermodynamic sub-system for which

compounds, phases and property methods are defined.

REQ-PME-16: all Unit Operations must be represented as CAPE-OPEN Unit Operations.

Rationale: the Flowsheet Monitoring Component requests access to the Port and Parameter Collections of the

Unit Operation. Furthermore, the Flowsheet Monitoring Component requests access to the members of these

Collections, represented as appropriate CAPE-OPEN objects. Therefore, a CAPE-OPEN representation of the

Unit Operation object must be exposed by the PME. In accordance with REQ-FMC-02, not all methods of this

14

CAPE-OPEN representation need to be functional. For example, ICapeUnit::Calculate does not need to be

implemented since Calculate modifies the state of the Unit Operation. See table 1 for a list of methods that do

not need to be implemented.

CAPE-OPEN Unit Operations may be exposed directly to the Flowsheet Monitoring Component without any

additional container.

For more information on which interface must be implemented on any Unit Operation present in Collections

provided by PME, see the relevant CAPE-OPEN interface specification documents 4.

REQ-FMC-17: a Flowsheet Monitoring Component must not call methods modifying objects in any

Collection provided by PME.

Rationale: this is a direct consequence of REQ-FMC-02. Methods that must not be called by the Flowsheet

Monitoring Component consequently need not be implemented on objects that are only exposed to a Flowsheet

Monitoring Component. Since in this case the methods are not called, the return code is inconsequential.

The following table lists methods that do not need to be implemented and must not be called by any Flowsheet

Monitoring Component. Please note the explicit exception mentioned in REQ-PME-15.

15

Object Interface
Methods

Material Object

in Stream

Collection

ICapeThermoMaterial
ClearAllProps

SetOverallProp

SetPresentPhases

SetSinglePhaseProp

SetTwoPhaseProp

 ICapeThermoPropertyRoutine
CalcSinglePhaseProp

CalcTwoPhaseProp

 ICapeThermoEquilibriumRoutine CalcEquilibrium

Unit Operation ICapeUnit Calculate

 Validate

 ICapeUnitPort Connect

 Disconnect

Parameter ICapeParameter put_value

 Reset

 Validate

 put_Mode

Any object ICapeIdentification put_ComponentName

 put_ComponentDescription

 ICapeUtilities Terminate

 Initialize

 Edit

 setSimulationContext

 IPersist* Load

 InitNew

 Save (with fClearDirty flag)

Table 1

Other interfaces have the potential to modify the Material Stream content. Examples are the Petroleum

Fractions and the Chemical Reaction interfaces. The same requirement holds: no function needs to be

implemented that modifies the content of a Stream since a Flowsheet Monitoring Object is not allowed to call

them.

For Unit Operations that have been inserted as a CAPE-OPEN object into the Flowsheet, a CAPE-OPEN

interface is readily available as implemented by the Unit Operation software component itself. Such an

interface can be readily exposed via the Unit Operation Collection. For Unit Operations in the Flowsheet that

are not CAPE-OPEN objects, a layer needs to be present around any non-CAPE-OPEN Unit Operation to

expose the Unit Operation as an ICapeUnit interface (with a Collection of Port objects and Parameter objects).

16

The implementation of this CAPE-OPEN layer around non-CAPE-OPEN Unit Operations however can be

limited; because of the read-only nature of Flowsheet Monitoring, many methods of the Unit Operation

interfaces need not be implemented. For example, ICapeUnit::Calculate does not require an implementation.

The functionality that the CAPE-OPEN layer around non-CAPE-OPEN Unit Operations must implement is:

• Expose a name (and possibly description) via ICapeIdentification

• Expose a Collection of Parameters via ICapeUtilities

• Expose a Collection of Ports via ICapeUnit

• Optionally expose reports via ICapeUnitReport (see REQ-FMC-18 below)

• Expose error interfaces if an error can occur in any of the implemented functionality

Such Unit Operation implementations should not be registered as CAPE-OPEN Unit Operations that can be

instantiated.

The Parameter implementation requires obtaining the Parameter specification and the Parameter value; the

Flowsheet Monitoring Component should not change the value of any Parameter of any Unit Operation.

Consequently, SetValue and Reset do not require to be functional for Parameter implementations that are only

accessed by Flowsheet Monitoring Components.

The ICapeUnitPort implementations require (read-only) implementation of ICapeIdentification and exposing

the connected object (get_ConnectedObject). The Flowsheet Monitoring Component should not attempt to

rename, connect or disconnect a Port. Consequently ICapeUnitPort::Connect and ICapeUnitPort::Disconnect

do not require implementation for Port implementations that are only accessed by Flowsheet Monitoring

Components.

REQ-FMC-18: the Flowsheet Monitoring Component must maintain the selected report on any Unit

Operation.

Rationale: obtaining a report from ICapeUnitReport implemented by a Unit Operation involves modifying the

Unit Operation to select the current report. As an exception to REQ-FMC-02, a Flowsheet Monitoring

Component is allowed to make this change on the Unit Operation in order to ask the Unit Operation to produce

any report. However, if a Flowsheet Monitoring Component changes the selected report, the PME is not aware

of it. Consequently, the Flowsheet Monitoring Component must restore the originally selected report prior to

returning control to the PME, if the Flowsheet Monitoring Component changed the selected report.

REQ-FMC-19: Flowsheet Monitoring Component registers for the events it requires.

Rationale: A Flowsheet Monitoring Component may need one or several events to be fired by the PME in

order to perform its activity. Consequently, there is a need for the Flowsheet Monitoring Component to figure

out if any given event is available or not. If the Flowsheet Monitoring Component would not function because

the event(s) it requires are not supported, ICapeUtilities::Initialize will not return successfully.

REQ-PME-20: Flowsheet Monitoring Component should be able to get the list of events supported by the

PME.

Rationale: this allows the Flowsheet Monitoring Component to query for event support without subscribing to

events.

2.3 Architecture

A Flowsheet Monitoring Component is a primary Process Modeling Component (PMC) that can be loaded

into a Process Modeling Environment (PME). Flowsheet Monitoring Components that are installed on a

system are registered using the following COM Category ID [13]:

CATID_MONITORING_COMPONENT = {7BA1AF89-B2E4-493d-BD80-2970BF4CBE99}

As a PMC and Primary Object, a Flowsheet Monitoring Component implements the common CAPE-OPEN

interfaces ICapeUtilities [5] and ICapeIdentification [6], and optionally interfaces allowing for object persistence

17

[7]. The ICapeIdentification interface allows the component to be identified by name and description. The

ICapeUtilities interface allows for general operations such as configuration of the component (Edit),

initialization (Initialize) and termination (Terminate), exposing a Parameter Collection [8], and access to the

Simulation Context. If configuration changes can be made through the Edit method, persistence should be

supported for the configuration changes to be saved. Figure 1 shows an overview of objects accessible by

Flowsheet Monitoring Components via the Simulation Context. Each of the objects shown is identified by

name using ICapeIdentification.

The Flowsheet Monitoring Component gains access to the ICapeFlowsheetMonitoring interface of the PME

through the Simulation Context. The ICapeFlowsheetMonitoring interface exposes the Stream Collections

(GetStreamCollection) of any (material-, information-, energy-) streams in the Flowsheet, as well as the Unit

Operation Collection (GetUnitOperationCollection) of the Flowsheet. Each of these Collections can be

enumerated using the ICapeCollection interface. The Stream Collections allows enumeration of the material-,

energy- and information-Streams available in the Flowsheet, using the interfaces appropriate to the type of

Stream[4, 10, 11, 12]. This allows the Flowsheet Monitoring Component to duplicate Material Objects and perform

physical and thermodynamic property calculations through any duplicated Material Object. The Flowsheet

Monitoring Component can also enumerate the Unit Operations, access their Public Unit Parameters and Ports,

and obtain the Streams connected to Ports. This enables the Flowsheet Monitoring Component to identify

attached Streams by name, and by comparison with the names of the enumerated Streams, determine the

connectivity of the Flowsheet elements. The PME also exposes the validity and calculation status of the

Flowsheet to the Flowsheet Monitoring Component, which can be used to determine whether it is worthwhile

for the Flowsheet Monitoring Component to perform its evaluation of the Flowsheet.

Figure 1: hierarchy of objects accessible by Flowsheet Monitoring Components via the Simulation

Context.

Material

Template
Material

Template
Material

Template

Material

Object
Material

Object
Material

Object

StreamStreamStream

Unit

Operation
Unit

Operation
Unit

Operation

PortPortPort

ParameterParameterParameter

PME

Simulation

Context

Material

Template

System

Monitoring

Interface

Stream

Collection

Unit

Operation

Collection

Information

Object

Energy

Object

18

The above satisfies all requirements for flowsheet monitoring, as stated earlier, except for the requirement to

perform event driven calculations. The only event available from the above discussion is user invocation by

means of the ICapeFlowsheetMonitoringComponent::Monitor method. The applications of online control and

storage systems exemplify the requirement for events fired by the PME and handled by the Flowsheet

Monitoring Component.

To this purpose, another new interface definition is required: ICapeFlowsheetMonitoringEventSink. This

interface is implemented by the Flowsheet Monitoring Component, only if the Flowsheet Monitoring

Component has a need to handle events. For each of the available events, the

ICapeFlowsheetMonitoringEventSink interface has a specific entry point that is to be called by the PME. The

events include changes to the Flowsheet structure, changes with respect to the state of a Flowsheet element,

and changes in the solution state of the Flowsheet. Events include:

• A Unit Operation has been added; this event occurs after insertion of a Unit Operation into the

Flowsheet.

• A Unit Operation has been removed; this event occurs after removal of a Unit Operation from the

Flowsheet.

• A Unit Operation has been renamed; this event occurs after a Unit Operation’s name has changed

(which may be a result of invoking ICapeUtilities::Edit on the Unit Operation). The name change

event is relevant because Unit Operations are identified by name.

• A Stream has been added; this event occurs after insertion of a Stream into the Flowsheet.

• A Stream has been removed; this event occurs after removal of a Stream from the Flowsheet.

• A Stream has been renamed; this event occurs after a Stream’s name has changed. The name change

event is relevant because Streams are identified by name.

• A Stream has been connected or disconnected; the event arguments identify the Stream, the Unit

Operation and the Port where connection or disconnection took place. This event occurs after

successfully connecting or disconnecting a stream.

• The solution status of the Flowsheet has changed; this event occurs after the solution status has

changed, e.g. when the Flowsheet has solved or if the solved Flowsheet has been changed by the

Flowsheet User.

• The time integration of the Flowsheet has progressed to the next time step; this event occurs upon

completion of each time step in a dynamic simulation.

The two interfaces described in this document to facilitate flowsheet monitoring are

ICapeFlowsheetMonitoring and ICapeFlowsheetMonitoringEventSink. ICapeFlowsheetMonitoring is

implemented by the PME and exposed via the Simulation Context object.

ICapeFlowsheetMonitoringEventSink is optional and may be implemented by the Flowsheet Monitoring

Component. If implemented, PMEs that support event driven operation call the appropriate

ICapeFlowsheetMonitoringEventSink methods.

19

Figure 2: Interfaces implemented by the Simulation Context. Not all PMEs implement

ICapeMaterialTemplateSystem.

Figure 3: Class diagram of the Flowsheet Monitoring Component

Whereas Unit Operations are generally present in the Flowsheet, it is envisioned that Flowsheet Monitoring

Components are not. Depending on the simulation environment application front-end, the PME can make the

Flowsheet Monitoring Component available for example from a Plug-in or Add-in menu.

Multiple Flowsheet Monitoring Components can be present in a single Flowsheet.

20

2.4 Use Cases

This section and the following present the requirements in a more formal way using UML models: Use Cases,

Use Case Maps and Sequence Diagrams.

2.4.1 Use Case Priorities

❑ High. Essential functionality for a Flowsheet Monitoring Component. Functionality without

which the operation usability or performance of a Flowsheet Monitoring Component might be

seriously compromised

❑ Medium. Very desirable functionality that will make Flowsheet Monitoring Components

more usable, transportable or versatile. The essence of a Flowsheet Monitoring Component is

not compromised by this Use Case, although the usability and acceptance of the component

can be.

❑ Low. Desirable functionality that will improve the performance of Flowsheet Monitoring

Components. If this Use Case is not met, usability or acceptance can decrease.

2.4.2 Actors

• PME. Process Modeling Environment, i.e. the simulation application

• Flowsheet Builder. The person who sets up the Flowsheet, the structure of the Flowsheet, chooses

thermodynamic models and unit operation models that are in the Flowsheet. This person hands over a

working Flowsheet to the Flowsheet User. The Flowsheet Builder can act as a Flowsheet User.

• Flowsheet User. The person who uses an existing Flowsheet. This person will put new data into the

Flowsheet, rather than change the structure of the Flowsheet.

• Flowsheet Monitoring Component. Software component (PMC) inserted in the Flowsheet to

perform operations that require information on some or all Flowsheet elements.

• Flowsheet Monitoring Component Manager. The part of a PME that provides a list of available

Flowsheet Monitoring Components, allows the instantiation of a Flowsheet Monitoring Component

and enables it to be maintained and activated.

2.4.3 List of Use Cases

UC-001 Select a Flowsheet Monitoring Component

UC-002 Create a Flowsheet Monitoring Component

UC-003 Restore a Flowsheet Monitoring Component

UC-004 Initialize a Flowsheet Monitoring Component

UC-005 Get Streams of the Flowsheet

UC-006 Get Unit Operations of the Flowsheet

UC-007 Determine Validation Status of the Flowsheet

UC-008 Determine Flowsheet Solution Status

UC-009 Validate the Flowsheet Monitoring Component

UC-010 Monitor Flowsheet

21

UC-011 Show Graphical User Interface

UC-012: Save A Flowsheet Monitoring Component

UC-013 Get Supported Events

UC-014 Register for Events

UC-015 Unregister for Events

UC-016 Fire Event

UC-017 Handle Event

UC-018 Delete Flowsheet Monitoring Component

2.4.4 Use Cases Map

Figure 4. Use Cases with Human Actors

22

Figure 5. Use Cases with Flowsheet Monitoring Component Manager as Actor

Figure 6. Use Cases with PME and Flowsheet Monitoring Component as Actors

23

2.4.5 Use Cases

UC-001: SELECT A FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Builder>

Priority: <High>

Status: <This requirement is fulfilled by mechanisms provided by software technology.>

Pre-conditions: <There is at least one registered Flowsheet Monitoring Component on the system.>

Flow of events:

The Flowsheet Builder asks the Flowsheet Monitoring Component Manager for the list of available Flowsheet

Monitoring Components. The Flowsheet Monitoring Component Manager provides the list to the Flowsheet

Builder who selects one from the list.

Post-conditions: <A Flowsheet Monitoring Component has been selected.>

Errors: <None>

Uses: <None>

24

UC-002: CREATE A FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component Manager>

Priority: <High>

Status: <This requirement is fulfilled by mechanisms provided by software technology and by persistence

interfaces.>

Pre-conditions: <The Flowsheet Builder has selected a Flowsheet Monitoring Component using UC-001.>

Flow of events:

The Flowsheet Builder requests the Flowsheet Monitoring Component Manager to create an instance of the

selected Flowsheet Monitoring Component. The Flowsheet Monitoring Component Manager creates an

instance of the selected Flowsheet Monitoring Component.

If using COM, the Flowsheet Monitoring Component Manager calls the InitNew method (if implemented on

the selected persistence interface).

The Flowsheet Monitoring Component Manager initializes the Flowsheet Monitoring Component using UC-

004.

Post-conditions: <Creation of the Flowsheet Monitoring Component has succeeded.>

Errors: <Creation of the Flowsheet Monitoring Component has failed.>

Uses: <UC-004 Initialize a Flowsheet Monitoring Component>

25

UC-003: RESTORE A FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component Manager>

Priority: <High>

Status: <This requirement is fulfilled by mechanisms provided by software technology and persistence

interfaces.>

Pre-conditions: <The Flowsheet User requests the PME to load a previously stored Flowsheet.>; <All Streams

have been loaded.>; <All Units have been loaded and initialized.>; <All stream connections have been

restored.>; <The Flowsheet Solution status is available.>

Flow of events:

The Flowsheet Monitoring Component Manager creates an instance of the previously saved Flowsheet

Monitoring Component.

The Flowsheet Monitoring Component Manager invokes Load on the persistence interface that was earlier

used to persist the Flowsheet Monitoring Component.

The Flowsheet Monitoring Component Manager initializes the Flowsheet Monitoring Component using UC-

004.

Post-conditions: <Flowsheet Monitoring Component has been successfully restored.>

Errors: <Flowsheet Monitoring Component fails to create.>; < Flowsheet Monitoring Component fails to

load.>

Uses: <UC-004 Initialize a Flowsheet Monitoring Component>

26

UC-004: INITIALIZE A FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component Manager>

Priority: <High>

Status: <This Use Case is only used by UC-002 and UC-003.>; <This requirement is fulfilled by methods of

ICapeUtilities.>

Pre-conditions: <The Flowsheet Monitoring Component has been created but not yet initialized.>

Flow of events:

Basic path:

The Flowsheet Monitoring Component Manager sets the Simulation Context invoking the

ICapeUtilities::put_SimulationContext method of the Flowsheet Monitoring Component. The Flowsheet

Monitoring Component must have access to the Simulation Context in order to obtain the Stream and Unit

Operation Collections.

The Flowsheet Monitoring Component Manager then calls the ICapeUtilities::Initialize method of the

Flowsheet Monitoring Component. During Initialize, the Flowsheet Monitoring Component obtains the

ICapeFlowsheetMonitoring interface from the Simulation Context.

Optional steps:

The Flowsheet Monitoring Component may obtain the list of events supported by the PME as described in

UC-013. The Flowsheet Monitoring Component may register for events as described in UC-014 (Register for

Events) and may fail initialization if events required for proper operation are not supported by the PME. Events

will not be fired while the Flowsheet Monitoring Component is initialized. The Flowsheet Monitoring

Component may execute any monitoring action according to UC-010.

Post-conditions: <Flowsheet Monitoring Component is initialized.>

Errors: <Initialization failed because required events are not supported.>; <Initialization has failed (generic

failure).>

Uses: <UC-010 Monitor Flowsheet>; <UC-013 Get Supported Events>; <UC-014 Register for Events>

27

UC-005: GET STREAMS OF THE FLOWSHEET

Actors: <Flowsheet Monitoring Component>

Priority: <High>

Status: <This Use Case is fulfilled by using ICapeFlowsheetMonitoring::GetStreamCollection.>

Pre-conditions: <The Flowsheet Monitoring Component is processing UC-010.>

Flow of events:

The Flowsheet Monitoring Component invokes ICapeFlowsheetMonitoring::GetStreamCollection on the

PME, specifying which types of streams (Material Streams, Energy Streams, Information Streams or all

Streams) are to be included in the Stream Collection returned by the PME. The PME returns the requested

Stream Collection. The Flowsheet Monitoring Component then uses the ICapeCollection interface to obtain

the number of Streams in the Stream Collection and to access the individual Streams in the Stream Collection.

The Stream Collection obtained from the PME should be considered by the Flowsheet Monitoring Component

as a temporary object, and consequently the Stream Collection must not be stored by the Flowsheet Monitoring

Component between method calls on the Flowsheet Monitoring Component.

The PME must not change the Stream Collection while the Flowsheet Monitoring Component is executing

any method call.

Any change in any Stream Collection can be tracked by the Flowsheet Monitoring Component by handling

appropriate events if supported.

Any object in a Stream Collection implements at least the ICapeIdentification and ICapeStream interfaces.

The type of stream determines which additional interfaces are required on the object.

Post-conditions: <Flowsheet Monitoring Component has access to the requested Stream Collection.>

Errors: <An argument is invalid.>

Uses: <None>

28

UC-006: GET UNIT OPERATIONS OF THE FLOWSHEET

Actor: <Flowsheet Monitoring Component>

Priority: <High>

Status: <This Use Case is fulfilled by using ICapeFlowsheetMonitoring::GetUnitOperationCollection.>

Pre-conditions: <The Flowsheet Monitoring Component is processing UC-010.>

Flow of events:

The Flowsheet Monitoring Component invokes ICapeFlowsheetMonitoring::GetUnitOperationCollection on

the PME. The PME returns the Unit Operation Collection. The Flowsheet Monitoring Component then uses

the ICapeCollection interface to obtain the number of Unit Operations in the Unit Operation Collection and to

access the individual Unit Operations in the Unit Operation Collection.

The PME must not change the Unit Operation Collection while the Flowsheet Monitoring Component is

executing any method call. The Unit Operation Collection obtained from the PME should be considered by

the Flowsheet Monitoring Component as a temporary object, and consequently the Unit Operation Collection

must not be stored by the Flowsheet Monitoring Component between method calls on the Flowsheet

Monitoring Component. Any change in the Unit Operation Collection can be tracked by the Flowsheet

Monitoring Component by handling appropriate events if supported.

Post-conditions: <PME has access to the Unit Operation Collection.>

Errors: <None>

Uses: <None>

29

UC-007: DETERMINE VALIDATION STATUS OF THE FLOWSHEET

Actor: <Flowsheet Monitoring Component>

Priority: <Medium>

Status: <This Use Case is fulfilled by requesting value of the following property:

ICapeFlowsheetMonitoring::get_ValStatus.>

Pre-conditions: <The Flowsheet Monitoring Component is processing UC-010.>

Flow of events:

The Flowsheet Monitoring Component requests the value of the Flowsheet validation status from the PME.

The PME returns the value of the Flowsheet validation status.

Post-condition: <The Flowsheet validation status is known to the Flowsheet Monitoring Component.>

Errors: <None>

Uses: <None>

30

UC-008: DETERMINE FLOWSHEET SOLUTION STATUS

Actor: <Flowsheet Monitoring Component>

Priority: <Medium>

Status: <This Use Case is fulfilled by requesting value of the following property:

ICapeFlowsheetMonitoring::get_SolutionStatus.>

Pre-conditions: <The Flowsheet Monitoring Component is processing UC-010.>

Flow of events:

The Flowsheet Monitoring Component requests the value of the Flowsheet solution status from the PME. The

PME returns the value of the Flowsheet solution status.

Post-conditions: <The Flowsheet solution status is known to the Flowsheet Monitoring Component.>

Errors: <None>

Uses: <None>

31

UC-009: VALIDATE THE FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component>

Priority: <Low>

Status: <This Use Case is fulfilled by mechanisms internal to the Flowsheet Monitoring Component and

methods of ICapeFlowsheetMonitoringComponent interface.>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003).>; <Flowsheet Monitoring Component is requested to validate by the PME.>

Flow of events:

Flowsheet Monitoring Component checks status and consistency of its Public Parameters (if any) and any

configuration data. Purpose of validation of the Flowsheet Monitoring Component is not to assert that the

Flowsheet is in a state where monitoring can be executed. Flowsheet Monitoring Component returns whether

it is valid or not. If not valid, Flowsheet Monitoring Component returns a text describing the reason.

Afterwards the validation status of the FMC, which can be obtained by the PME through

ICapeFlowsheetMonitoringComponent::GetValidationStatus, cannot be CAPE_NOT_VALIDATED.

Post-conditions: <Flowsheet Monitoring Component has been validated.>; <Validation status is not

CAPE_NOT_VALIDATED.>

Errors: <None>

Uses: <None>

32

UC-010: MONITOR FLOWSHEET

Actor: <Flowsheet Monitoring Component>

Priority: <High>

Status: <This Use Case may be fulfilled by invoking either the

ICapeFlowsheetMonitoringComponent::Monitor method or any of the ICapeFlowsheetMonitoringEventSink

methods.>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003) or is in the process of being initialized (UC-004).>; <The Flowsheet Monitoring

Component registered itself for invocation via events (UC-003) (if needed).>; <Stream Collections reflect the

current state of the Flowsheet.>; <Unit Operation Collection reflects the current state of the Flowsheet.>;

<Each Material Object exposes the functionality of the underlying thermodynamic sub-system as currently

configured.>

Flow of events:

The Flowsheet Monitoring Component performs its monitoring operation, due to one of the following:

 ICapeFlowsheetMonitoringComponent::Monitor is invoked

 An event handler is invoked that requires calculation of the Flowsheet Monitoring Component (UC-017)

 Monitoring is required through the Graphical User Interface (UC-011)

 The Flowsheet Monitoring Component determines the state of the Flowsheet during initialization (UC-004)

Unless invoked from UC-011, no modal dialog box should be shown by the Flowsheet Monitoring Component.

Any result from the monitoring sequence that requires interaction via a modal dialog should be accessed

through ICapeUtilities.Edit (UC-011).

During monitoring the Flowsheet Monitoring Component updates its internal status and its results which may

include output parameters. The Flowsheet Monitoring Component may also update results which may reside

outside the Flowsheet Monitoring Component itself (for example file or database) or report execution activity

through ICapeDiagnostic.LogMessage. During monitoring, the Flowsheet Monitoring Component may access,

in a read-only manner, the Stream Collections and Unit Operation Collection of the Flowsheet, the flowsheet

solution status and the flowsheet validation status, as outlined in UC-005, UC-006, UC-007 and UC-008.

Post-conditions: <Flowsheet has been monitored.>

Errors: <Invalid Operation>

Uses: <UC-005 Get Streams of the Flowsheet>; <UC-006 Get Unit Operations of the Flowsheet>, <UC-007

Determine Validation Status of the Flowsheet>; <UC-008 Determine Flowsheet Solution Status>

33

UC-011: SHOW GRAPHICAL USER INTERFACE

Actor: <Flowsheet User>

Priority: <High>

Status: <This Use Case is fulfilled by invoking the ICapeUtilities::Edit method>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003).>; <Stream Collections reflect the current state of the Flowsheet.>; <Unit Operation

Collection reflects the current state of the Flowsheet.>; <Each Material Object exposes the functionality of the

underlying thermodynamic sub-system as currently configured.>

Flow of events:

ICapeUtilities::Edit may be invoked for three different reasons: to configure the Flowsheet Monitoring

Component, to perform monitoring (UC-010) or to inspect monitoring results. Flowsheet Monitoring

Component typically responds to ICapeUtilities::Edit by showing a modal dialog to guide the Flowsheet User

through any of these tasks.

Post-conditions: <Validation status may be changed to any CapeValidationStatus value.>

Errors: <Edit is not implemented.>

Uses: <UC-010 Monitor Flowsheet>

34

UC-012: SAVE A FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component Manager>

Priority: <High>

Status: <This Use Case is fulfilled by mechanisms provided by software technology and persistence interfaces

[7].>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003).>

Flow of events:

The Flowsheet Monitoring Component Manager invokes Save on its preferred persistence interface of the

Flowsheet Monitoring Component. The Flowsheet Monitoring Component saves all its relevant data.

Post-conditions: <Save has succeeded.>

Errors: <The Flowsheet Monitoring Component fails to save.>

Uses: <None>

35

UC-013 GET SUPPORTED EVENTS

Actor: <Flowsheet Monitoring Component>

Priority: <High>

Status: <This Use Case is fulfilled by ICapeFlowsheetMonitoring::GetSupportedEvents.>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003) or is in the process of being initialized (UC-004).>; <Simulation Context has been set.>

Flow of events:

The Flowsheet Monitoring Component obtains the ICapeFlowsheetMonitoring interface through the

Simulation Context. The Flowsheet Monitoring Component, eventually during its initialization step, asks the

PME to provide the list of events it supports. The PME returns the list.

Post-conditions: <The Flowsheet Monitoring Component has obtained the list of events supported by the

PME.>

Errors: <None>

Uses: <None>

36

UC-014 REGISTER FOR EVENTS

Actor: <Flowsheet Monitoring Component>

Priority: <Medium>

Status: <This Use Case is fulfilled by ICapeFlowsheetMonitoring::RegisterForEvents.>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003) or is in the process of being initialized (UC-004).>; <Simulation Context has been set.>

Flow of events:

Basic path

The Flowsheet Monitoring Component obtains the list of supported events using <UC-013>. The Flowsheet

Monitoring Component calls RegisterForEvents specifying all events it wishes to handle.

Alternative path

The Flowsheet Monitoring Component calls RegisterForEvents specifying all the events it requires. If

RegisterForEvents raises an ECapeLimitedImpl error, the Flowsheet Monitoring Component concludes that at

least one event required by the Flowsheet Monitoring Component is not supported by the PME.

Post-condition: <The Flowsheet Monitoring Component is registered only for the specified events. Any prior

event registration has been cancelled.>

Errors: <A required event is not supported by the PME.>

Uses: <UC-013 Get Supported Events>

37

UC-015 UNREGISTER FOR EVENTS

Actor: <Flowsheet Monitoring Component>

Priority: <Medium>

Status: <This Use Case is fulfilled by ICapeFlowsheetMonitoring::RegisterForEvents.>

Pre-conditions: <The Flowsheet Monitoring Component has been created (UC-002) or restored from

persistence (UC-003) or is in the process of being initialized (UC-004).>; <Simulation Context has been set.>;

<UC-014 has been used.>

Flow of events:

Using <UC-014> the Flowsheet Monitoring Component registers only those events it wishes to continue to

handle. All other event registrations are automatically cancelled.

Post-condition: <Same as UC-014 Register For Events.>

Errors: <None>

Uses: <UC-014 Register For Events>

38

UC-016 FIRE EVENT

Actor: <PME>

Priority: <Medium>

Status: <This Use Case is fulfilled by methods internal to the PME and by

ICapeFlowsheetMonitoringEventSink.>

Pre-conditions: <The PME supports events.>; <An event has taken place.>

Flow of events:

The PME iterates in arbitrary order over all Flowsheet Monitoring Components which have previously

registered for this event (UC-014). The PME calls the method of ICapeFlowsheetMonitoringEventSink

corresponding to this event on each registered Flowsheet Monitoring Component. The Flowsheet Monitoring

Component exercises UC-017.

Post-condition: <The event has been processed.>

Errors: <None>

Uses: <UC-017 Handle Event>

39

UC-017 HANDLE EVENT

Actor: <Flowsheet Monitoring Component>

Priority: <Medium>

Status: <This Use Case is fulfilled by methods of ICapeFlowsheetMonitoringEventSink and by mechanisms

internal to the Flowsheet Monitoring Component.>

Pre-conditions: <The Flowsheet Monitoring Component has registered for the event.>; <UC-016 is being

exercised.>

Flow of events:

The Flowsheet Monitoring Component performs monitoring tasks as the Flowsheet Monitoring Component

sees fit using UC-010.

Post-condition: <The Flowsheet Monitoring Component has handled the event.>; <The Validation status may

have changed.>

Errors: <The Flowsheet Monitoring Component tries to register or unregister for events while handling the

event.>

Uses: <UC-010 Monitor Flowsheet>

40

UC-018: DELETE FLOWSHEET MONITORING COMPONENT

Actor: <Flowsheet Monitoring Component Manager>

Priority: <High>

Status: <This Use Case is fulfilled by using middleware-defined functionality as well as the following method:

ICapeUtilities::Terminate.>

Pre-conditions: <The Flowsheet Monitoring Component has been created or restored from persistence.>

Flow of events:

The Flowsheet Builder requests that the Flowsheet Monitoring Component Manager deletes the selected

Flowsheet Monitoring Component instance. The Flowsheet Monitoring Component Manager calls the

ICapeUtilities::Terminate method of the Flowsheet Monitoring Component. During Terminate, the Flowsheet

Monitoring Component releases all external references including the Simulation Context. Using middleware-

defined functionality, the Flowsheet Monitoring Component Manager then releases all references to the

Flowsheet Monitoring Component instance. As a result, the Flowsheet Monitoring Component deletes itself.

Post-conditions: <Terminate proceeded successfully.>; <All references to the Flowsheet Monitoring

Component have been released and the Flowsheet Monitoring Component has been deleted.>

Errors: <None>

Uses: <None>

41

3. Analysis and design

3.1 Overview

This section provides component diagrams explaining the interfaces implemented on new software objects

introduced by this specification or added to software objects described in other CAPE-OPEN interface

specifications. A collaboration diagram is provided to explain the relationship between the PME and a

Flowsheet Monitoring Component. Then a State Diagram describes the different possible ways to perform

monitoring. Subsequently interface diagrams display the methods supported by each of the new interfaces

introduced before giving a detailed description of each method of each of these interfaces.

3.2 Class diagrams

The Flowsheet Monitoring interface specification introduces additional objects in the form of new Collections:

the Unit Operation Collection and the Stream Collection. The Flowsheet Monitoring interface specification

also introduces additional interfaces on objects previously defined within the UNIT interface specification 4.

Figure 7 Unit Operation Collection class diagram

Figure 8 Stream Collection class diagram

The design chosen introduces also modifications to the Material Object, Energy Stream and Information

Stream objects through the introduction of the ICapeStream interface.

42

Figure 9 Material Stream class diagram

Figure 10 Energy Stream class diagram

Figure 11 Information Stream class diagram

43

3.3 Collaboration diagram

A collaboration diagram has been drawn in order to describe the relationships between the different objects.

It has a similar objective as Figure 3-9 of the Unit Operation interface specification.

Simulation Context

ICapeIdentificationICapeSimulationContext

ICapeMaterialTemplateSystem

ICapeCOSEUtilities

ICapeDiagnostic

ICapeFlowsheetMonitoring

Flowsheet Monitoring Component

ICapeIdentification

Error interfaces

ICapeUtilities

ICapeFlowsheetMonitoringComponent

ICapeFlowsheetMonitoringEventSink

Persistence interface

Figure 12 Interfaces implemented by Simulation Context and Flowsheet Monitoring Component

44

3.4 State diagrams

Flowsheet Operating

Perform Monitoring

Edit Monitoring Object

Show GUI

Show Editing GUI

Editing a Flowsheet Monitoring Object
can either cause the monitoring to occur
or allow the user to configure the object
through the edit dialog.

Monitoring can be initiated
by the flowsheet perfoming
a notifying event, executing the
monitoring object or editing the
monitoring object.

After monitoring, the
monitoring object can
either show an edit dialog,
show a monitor dialog, or
return control to the
flowsheet.

Figure 13. Monitoring Component State Diagram.

45

3.5 Interface diagrams

3.5.1 Interface ICapeFlowsheetMonitoring

3.5.2 Interface ICapeFlowsheetMonitoringComponent

46

3.5.3 Interface ICapeFlowsheetMonitoringEventSink

3.5.4 Interface ICapeStream

3.6 Interface descriptions

The ICapeFlowsheetMonitoring interface is implemented by the PME and obtained through the Simulation

Context so that the Flowsheet Monitoring Component can gain access to the Stream Collections and to the

Unit Operation Collection in the Flowsheet. The ICapeFlowsheetMonitoringComponent interface is

implemented by the Flowsheet Monitoring Component and provides methods for invocation and validation.

The ICapeFlowsheetMonitoringEventSink interface implements event handlers for event driven operation of

Flowsheet Monitoring Components.

47

3.6.1 ICapeFlowsheetMonitoring

Interface Name ICapeFlowsheetMonitoring

Method Name GetStreamCollection

Returns CapeCollection

Description

Returns an ICapeCollection that enumerates available Streams of the requested type.

CapeStreamType

Named Value Integer Value Description

CAPE_ANY_STREAMS 0 Returns a Collection containing all Streams.

CAPE_MATERIAL_STREAM 1 Returns a Collection containing all material

Streams.

CAPE_ENERGY_STREAM 2 Returns a Collection containing all energy

Streams.

CAPE_INFORMATION_STREAM 3 Returns a Collection containing all information

Streams.

Arguments

Name Type Description

[in] type CapeStreamType Specification of which streams are to be included in the Collection:

CAPE_MATERIAL_STREAM for a Collection that contains all

Material Streams, CAPE_ENERGY_STREAM for a Collection that

contains all Energy Streams, CAPE_INFORMATION_STREAM for

a Collection that contains all Information Streams, or

CAPE_ANY_STREAM for a Collection containing all Streams.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

In case of an empty Stream Collection, the PME returns a collection object containing zero items. A NULL

pointer is not a valid return value.

48

Interface Name ICapeFlowsheetMonitoring

Method Name GetUnitOperationCollection

Returns CapeCollection

Description

Returns an ICapeCollection that enumerates all available Unit Operations.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

The objects in the Unit Operation Collection implement at least ICapeIdentification and ICapeUnit.

In case of an empty Unit Collection, the PME returns a Collection object containing zero items. A NULL

pointer is not a valid return value.

49

Interface Name ICapeFlowsheetMonitoring

Method Name get_SolutionStatus

Returns CapeSolutionStatus

Description

Returns the current solution status of the Flowsheet. Valid values for the solution status are:

CapeSolutionStatus

Named Value Integer Value Description

CAPE_SOLVED 0 The Flowsheet is solved

CAPE_NOT_SOLVED 1 The Flowsheet is not solved

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

Any status that is not CAPE_SOLVED should be considered as CAPE_NOT_SOLVED. For possible future

extensions, solution status is kept as an enumeration rather than a Boolean.

50

Interface Name ICapeFlowsheetMonitoring

Method Name get_ValStatus

Returns CapeValidationStatus

Description

Returns the validation status of the entire Flowsheet.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

Returns CAPE_VALID if the Flowsheet is ready for solving from the PME’s point of view,

CAPE_NOT_VALID in case the Flowsheet is not ready for solving or CAPE_NOT_VALIDATED in case a

validation has not yet been performed.

51

Interface Name ICapeFlowsheetMonitoring

Method Name RegisterForEvents

Returns --

Description

Subscribes to a specified set of events. The specified events should be among the supported events returned

by the GetSupportedEvents method.

Arguments

Name Type Description

[in] component CapeInterface The FMC requesting the registration (the FMC that handles the event).

[in] events CapeArrayEnu

meration

Set of events for which the FMC is registering for. Must be one of the

events listed in the Notes. EMPTY list means unregistering.

Errors

ECapeLimitedImpl - should be returned by the PME in case any of the events is not supported.

ECapeBadInvOrder - should be returned by the PME in case the method is called while an event is being

handled by the Flowsheet Monitoring Component.

Notes

This method may be called at any time except when any event is being handled by the Flowsheet Monitoring

Component. However, it is advised that Flowsheet Monitoring Components register for events during the

ICapeUtilities::Initialize method so that in case of events that are required by the Flowsheet Monitoring

Component but not supported by the PME, the Flowsheet Monitoring Component may raise an initialization

failure exception.

The Flowsheet Monitoring Component should only call RegisterForEvents if the Flowsheet Monitoring

Component implements ICapeFlowsheetMonitoringEventSink.

The set of events should be the complete set of events necessary to the Flowsheet Monitoring Component.

Calling RegisterForEvents cancels previously registered events not in the argument list.

List of possible events

CapeMonitoringEvent Integer value ICapeFlowsheetMonitoringEventSink

CAPE_UNIT_OPERATION_ADDED 0 UnitOperationAdded

CAPE_UNIT_OPERATION_RENAMED 1 UnitOperationRenamed

CAPE_UNIT_OPERATION_REMOVED 2 UnitOperationRemoved

CAPE_STREAM_ADDED 3 StreamAdded

CAPE_STREAM_RENAMED 4 StreamRenamed

52

CAPE_STREAM_REMOVED 5 StreamRemoved

CAPE_CONNECTION_CHANGED 6 ConnectionChanged

CAPE_FLOWSHEET_SOLUTION_STATUS_CHANGED 7 FlowsheetSolutionStatusChanged

CAPE_NEXT_TIME_STEP 8 NextTimeStep

All related events must be explicitly fired, for example, deleting a connected Unit Operation leads to the

following sequence of actions:

1. Flowsheet User requests PME to delete a Unit Operation

2. For each connected stream

o PME disconnects stream from Unit Operation

o PME fires CAPE_CONNECTION_CHANGED event

3. PME removes the Unit Operation from the Unit Operation Collection

4. PME fires CAPE_UNIT_OPERATION_REMOVED event

o FMCs release references to the Unit Operation

5. PME invokes ICapeUtilities::Terminate on the Unit Operation

o Unit Operation releases all external references

6. PME deletes Unit Operation

o PME releases references to the Unit Operation

CAPE_FLOWSHEET_SOLUTION_STATUS_CHANGED event may also be fired at any point of this

sequence.

53

Interface Name ICapeFlowsheetMonitoring

Method Name GetSupportedEvents

Returns CapeArrayEnumeration

Description

Returns the list of events supported by the PME.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

The PME should use the list of events mentioned in the description of the RegisterForEvents method.

If the PME does not support any events, the method returns an empty array (VT_EMPTY or an array with zero

elements).

54

3.6.2 ICapeFlowsheetMonitoringComponent

Interface Name ICapeFlowsheetMonitoringComponent

Method Name Monitor

Returns

Description

Monitors the Flowsheet.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

ECapeInvalidOperation

Notes

Execution of the Flowsheet Monitoring Component may update its internal status, modify its output parameters

but should not lead to a GUI popping up. See 2.2 (Flowsheet Monitoring) for different ways to execute

Flowsheet Monitoring Component, one of which being this one.

55

Interface Name ICapeFlowsheetMonitoringComponent

Method Name Validate

Returns CapeBoolean

Description

Checks whether the Flowsheet Monitoring Component is ready to monitor the Flowsheet.

Arguments

Name Type Description

[ACTUALLYout]

message

CapeString A message describing the result of the validation. This is a

description of the reason that the validation status was set to

CAPE_INVALID.

Notes

The Flowsheet Monitoring Component validation criteria is established by the developer of the Flowsheet

Monitoring Component and can include having all Flowsheet Monitoring Component Parameters with

CAPE_VALID status. The Flowsheet Monitoring Component developer will provide a description of the

validation of the component, and potential causes for the result of the validation process being

CAPE_INVALID.

Validation is optional prior to calling the ICapeFlowsheetMonitoringComponent::Monitor method. The

purpose of validation is to guide the Flowsheet User into proper configuration of the Flowsheet Monitoring

Component prior to solving the flowsheet, if solving the Flowsheet Monitoring Component is part of the

flowsheet solution.

Following a successful validation of the Flowsheet Monitoring Component, the validation status of the

component will either be CAPE_VALID or CAPE_INVALID.

Return value is true if the resulting validation status is CAPE_VALID, and false if the resulting validation

status is CAPE_INVALID.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

ECapeInvalidOperation – Indicates that the component validation process was not successfully completed.

The validation status of the Flowsheet Monitoring Component will be set to CAPE_NOT_VALIDATED.

56

Interface Name ICapeFlowsheetMonitoringComponent

Method Name GetValidationStatus

Returns CapeValidationStatus

Description

Returns the CapeValidationStatus value of the Flowsheet Monitoring Component.

Arguments

None

Notes

The Flowsheet Monitoring Component validation status may be CAPE_NOT_VALIDATED if:

• Validate has not yet been called

• An input Parameter has changed since the last call to Validate

• ICapeUtilities::Edit has been invoked since the last call to Validate.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

57

3.6.3 ICapeFlowsheetMonitoringEventSink

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name UnitOperationAdded

Returns -

Description

Raises the event that a Unit Operation has been added into the Flowsheet.

Arguments

Name Type Description

[in] unit CapeInterface The Unit Operation added to the Flowsheet.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

58

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name UnitOperationRemoved

Returns -

Description

Raises the event that a Unit Operation has been removed.

Arguments

Name Type Description

[in] unit CapeInterface The Unit Operation that has been removed from the Flowsheet. The

Unit Operation Collection no longer contains this Unit Operation.

Notes

This event occurs after removal of a Unit Operation from the Flowsheet (after disconnecting streams from the

Unit Operation’s ports, but before termination of the Unit Operation).

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

59

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name UnitOperationRenamed

Returns -

Description

Raises the event that a Unit Operation has been renamed.

Arguments

Name Type Description

[in] unit CapeInterface The Unit Operation that has been renamed. The Unit Operation’s

ICapeIdentification will provide its new name.

[in] oldName CapeString Name of the Unit Operation before it was renamed

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

60

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name StreamAdded

Returns -

Description

Raises the event that a Stream has been added to the Flowsheet.

Arguments

Name Type Description

[in] stream CapeInterface The Stream that has been added to the Flowsheet.

[in] type CapeStreamType Type of stream: CAPE_MATERIAL, CAPE_ENERGY or

CAPE_INFORMATION

Notes

This event fires before connecting the Stream.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

61

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name StreamRemoved

Returns -

Description

Raises the event that a Stream has been removed from the Flowsheet.

Arguments

Name Type Description

[in] stream CapeInterface The Stream that has been removed from the Flowsheet. The Stream

Collection no longer contains this Stream.

[in] type CapeStreamType Type of stream: CAPE_MATERIAL, CAPE_ENERGY or

CAPE_INFORMATION

Notes

This event occurs after removal of a Stream from the Flowsheet (after disconnecting the Stream from the ports

of a Unit Operation).

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

62

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name StreamRenamed

Returns -

Description

Raises the event that a Stream has been renamed.

Arguments

Name Type Description

[in] stream CapeInterface The Stream that has been renamed. Its ICapeIdentification will

provide the new name.

[in] oldName CapeString Name of the Stream before it was renamed

[in] type CapeStreamType Type of stream: CAPE_MATERIAL, CAPE_ENERGY or

CAPE_INFORMATION

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

63

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name ConnectionChanged

Returns -

Description

Raises the event that the Flowsheet has been modified through connection or disconnection of a Stream from

a Port.

Arguments

Name Type Description

[in] stream CapeInterface The Stream that was connected or disconnected.

[in] type CapeStreamType Type of Stream: CAPE_MATERIAL, CAPE_ENERGY or

CAPE_INFORMATION

[in] port CapeInterface Port to which stream was connected or from which Stream was

disconnected. ICapeUnitPort::get_ConnectedObject can be used

to determine whether the event pertains to connecting or

disconnecting the Stream.

[in] unit CapeInterface Unit Operation to which the Port belongs.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

64

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name FlowsheetSolutionStatusChanged

Returns -

Description

Raises the event that the Flowsheet has gone from a solved status to an unsolved status as a result from a

change to the Flowsheet, or the Flowsheet has gone from an unsolved status to a solved status.

Arguments

Name Type Description

[in] solutionStatus CapeSolutionStatus New solution status of the Flowsheet. CAPE_SOLVED in case a

solution was reached. See

ICapeFlowsheetMonitoring::get_SolutionStatus for details.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

65

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name FlowsheetValidationStateChanged

Returns -

Description

Raises the event that the validation status of the Flowsheet has changed.

Arguments

Name Type Description

[in] validationStatus CapeValidationStatus Current validation status of the Flowsheet. CAPE_VALID if the

Flowsheet is ready for solving. CAPE_INVALID if the

Flowsheet is not ready for solving. CAPE_NOT_VALIDATED

if the validation has not taken place since the last configuration

change.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

66

Interface Name ICapeFlowsheetMonitoringEventSink

Method Name NextTimeStep

Returns -

Description

Raises the event that the time integration of the Flowsheet has progressed to the next time step.

Arguments

None

Notes

This event occurs upon completion of each time step in a dynamic simulation.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

67

3.6.4 ICapeStream

Interface Name ICapeStream

Method Name GetStreamType

Returns CapeStreamType

Description

Provides the Stream type among the following types: CAPE_MATERIAL_STREAM,

CAPE_ENERGY_STREAM or CAPE_INFORMATION_STREAM.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

68

Interface Name ICapeStream

Method Name GetStreamObject

Returns CapeInterface

Description

Returns the interface to the underlying Material, Energy or Information Stream object.

Arguments

None

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

69

Interface Name ICapeStream

Method Name GetUpstreamPortConnection

Returns

Description

Returns names of the upstream Port and Unit.

Arguments

Name Type Description

[ActuallyOut]

upstreamPort

CapeString The name of the outlet Port to which the Stream is connected

upstream.

[ActuallyOut]

upstreamUnit

CapeString The name of the Unit Operation to which the outlet Port belongs.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

Should the Stream not be connected to any upstream outlet Port, the method returns UNDEFINED (i.e. NULL)

for both arguments.

Instead of the Port and Unit Operations objects themselves, their names are returned. To get access to the Unit

Operation object, use the Unit Operation Collection. The Port object can be obtained from the Port Collection

of the Unit Operation.

70

Interface Name ICapeStream

Method Name GetDownstreamPortConnection

Returns

Description

Returns names of the downstream Port and Unit.

Arguments

Name Type Description

[ActuallyOut]

downstreamPort

CapeString The name of the inlet Port to which the Stream is connected

downstream.

[ActuallyOut]

downstreamUnit

CapeString The name of the Unit Operation to which the inlet Port belongs.

Errors

ECapeUnknown - No specific errors and no specific meaning of defined errors.

Notes

Should the Stream not be connected to any downstream inlet Port, the method returns UNDEFINED (i.e.

NULL) for both arguments.

Instead of the Port and Unit Operations objects themselves, their names are returned. To get access to the Unit

Operation objects, use the Unit Operations Collection. The Port object can be obtained from the Port Collection

of the Unit Operation.

71

3.7 Scenarios

3.7.1 Thermodynamic calculations on a specific Stream

One typical scenario for post-processing application is making a series of thermodynamic calculations on a

specific Stream. The Flowsheet Monitoring Component accesses the list of Material Objects within the

Flowsheet, i.e. the Collection of Material Objects. The Flowsheet User selects a Stream from the Collection of

Material Objects. The Flowsheet Monitoring Component retrieves the current conditions on the selected

Material Object. The Flowsheet User defines the set of thermodynamic calculations to be run: variation of

temperature, pressure, composition, type of calculations. The Flowsheet Monitoring Component duplicates the

selected Material Object. The Flowsheet Monitoring Component requests the selected calculations on the

Duplicated Material Object and presents the results to the Flowsheet User.

3.7.2 Calculation of physical and chemical exergy of a material stream

The conditions for the Reference Environment are provided as default values within the Flowsheet Monitoring

Component or configured by the end-user in the Flowsheet Monitoring Component.

The Flowsheet Monitoring Component calculates the physical exergy and the chemical exergy of any material

stream. For the physical exergy, its calculation relies on enthalpy and entropy, two thermodynamic properties

that the Flowsheet Monitoring Component may obtain the calculation from by duplicating the Material Object

and requesting such calculations. This scenario calls for configuration of the Flowsheet Monitoring Component

regarding the reference environment, which is defined through temperature, pressure but also composition.

The composition of the reference environment is typically one of air surrounding the process.

3.7.3 Archival of multiple runs of a Flowsheet

An end-user conducts a series of simulation runs on the same Flowsheet, changing each time one or several

values of parameters or feed conditions. The FMC decides on a database scheme and data storage

methodology. At the end of each run, when the end-user considers it proper for archiving, the end-user asks

the Flowsheet Monitoring Component to save the results obtained. The Flowsheet Monitoring Component

collects the information from each Stream in the Flowsheet so that the state of each stream is completely

known. The Flowsheet Monitoring Component collects the information on each Unit Operation by retrieving

values of each of its Public Parameter. The FMC populates its database with the information collected at each

run. The Flowsheet Monitoring Component is managing a database of the runs performed and an analysis of

these runs can be exercised by the Flowsheet Monitoring Component at the end-user request.

3.7.4 Connectivity analysis

One typical scenario for post-processing applications is the requirement to analyze the flowsheet connectivity

(which streams connect to which unit operations). Connectivity can be analyzed by using the

GetUpstreamPortConnection and GetDownstreamPortConnection methods on the ICapeStream interface in

combination with the connected objects and the directions of Unit Operation Ports.

Streams that do not originate from a Unit Operation should be considered as feed Streams to the entire

Flowsheet. Streams that do not go to a Unit Operation should be considered as product Streams of the entire

flowsheet. Some simulation environments use feed and product Unit Operations. This can be accounted for in

the above analysis when iterating over Unit Operations. If a Unit Operation has a single Material Port, it must

be a feed or product Unit Operation. If it is an inlet Port, the Unit Operation is a product Unit Operation and

the Stream connected to it must be considered as a product of the entire Flowsheet. If it is an outlet Port, the

Unit Operation is a feed Unit Operation and the Stream connected to it must be considered as a feed to the

entire Flowsheet.

72

4. Notes on the interface specifications

4.1 Versioning

Experiences with interoperability testing revealed a shortcoming of the current mechanism used to

communicate which version of the CAPE-OPEN interfaces (IDL/type library) an object supports. For example,

there is no way for a process modeling environment (PME) to know which versions of the thermodynamic

specification that a process modeling component (PMC) such as a Flowsheet Monitoring Component supports.

Currently, the version of CAPE-OPEN supported by a PMC is indicated through the CapeVersion registry key

in Microsoft COM implementations. While this key provides general information about the overall CAPE-

OPEN support of an object, it does not provide the granularity needed to indicate support for multiple versions

of CAPE-OPEN, as in the case presented by the release of Thermodynamics version 1.1. As a result, a new

versioning scheme needs to be developed to provide information regarding which versions of individual

standards an object supports.

The ‘Implemented Categories’ registry key is a mechanism to provide more granular information about version

support to the PME and other objects. Currently, ‘Implemented Categories’ is used primarily to distinguish

between types of PMCs; for instance, a Flowsheet Monitoring Component will include Category FMC GUID

(CATID) of {7BA1AF89-B2E4-493d-BD80-2970BF4CBE99}. This is sufficient to inform the PME that the

FMC supports CAPE-OPEN version 1.0 Flowsheet Monitoring specifications. However, this does not provide

the PME, or other objects, with any information regarding whether this Flowsheet Monitoring Component is

capable of supporting Thermodynamics version 1.1 or a later version. Using additional CATID values, as

described below, will enable the object to provide more granular version information. For example, exposing

the proper CATID combinations will enable a Flowsheet Monitoring Component to clearly indicate that it only

supports version 1.1 of the CAPE-OPEN Thermodynamics standards.

It is useful for the PME to know whether a Flowsheet Monitoring Component needs access to the

thermodynamic subsystem. In order to provide this information, the Flowsheet Monitoring Component should

be registered with the following CATID:

Consumes_Thermo_CATID: {4150C28A-EE06-403f-A871-87AFEC38A249}

Presence of Consumes_Thermo_CATID informs the PME that the Flowsheet Monitoring Component will

require thermodynamic interfaces specified further by the CATIDs listed below. In the event that the Flowsheet

Monitoring Component does not indicate that it consumes thermodynamics, the Flowsheet Monitoring

Component either will not require access to the thermodynamic subsystem. Flowsheet Monitoring

Components that consume thermodynamics will use the following CATID to indicate that version 1.1 of the

thermodynamic interface is supported:

SupportsThermodynamics11_CATID: {4667023A-5A8E-4CCA-AB6D-9D78C5112FED}

For future versions of the thermodynamic interfaces, CATIDs will be defined as these become available.

Based upon which registry key is present, the PME can choose which version of the thermodynamic interfaces

is most appropriate to interact with the Flowsheet Monitoring Component.

Following the same logic, it is advantageous for the PME to know which version of the UNIT interface

specification is used by the Flowsheet Monitoring Component, if any. In case the Unit Operation is accessed

by the Flowsheet Monitoring Component, the Flowsheet Monitoring Component should be registered with the

following CATID:

Monitors_UNIT_CATID: {C049C4FC-FB57-4865-A263-C68815D99079}

Flowsheet Monitoring Components that monitor Unit Operations will use the following CATID to indicate

which version of the UNIT interfaces is supported:

73

SupportsUNIT10_CATID: {42A06BA3-03EA-42CD-8609-30A7D2186445}

This scheme will allow support for future versions of CAPE-OPEN Thermodynamic and UNIT interfaces.

74

5. Prototypes implementation

The information in this section will be accurate once the interface specification is considered final.

For testing implementations of Flowsheet Monitoring Components, a prototype socket is implemented in

COCO Simulator[14]; this implementation does not (at point of this writing) include support for event driven

activation of Flowsheet Monitoring Components. It has been tested to work with below mentioned

implementations of plugs.

For testing implementations of Flowsheet Monitoring Support in simulation environments, two plugs are

available:

• US-EPA’s WAR implementation[15]

• TERNYP (ternary phase envelope and property plotting utility), included in the COCO[14] installation

Neither of these implementations require or use event driven operation.

75

6. Specific glossary terms

Event: an action or occurrence originating from an action or change in the flowsheet. The firing of the event

triggers handling of the event by software components listening to the event.

Flowsheet: a model of a process made within the PME using Unit Operations connected by Streams. A

Flowsheet contains thermodynamic property models shared between Streams and Unit Operations.

Flowsheet Monitoring: The process of performing (post-processing) calculations by using information from

one or more flowsheet elements (such as Streams and Unit Operations).

Parameter: in- or output information to a PMC, containing of a name, description, data type, a value and meta

information about the value (such as default value, data limits, dimensionality and list of possible options)

PMC: Process Modeling Client. CAPE-OPEN plug implementation, e.g. Unit Operation, Thermodynamic

Property Package, Flowsheet Monitoring Component, …

PME: Process Modeling Environment. CAPE-OPEN enabled simulation environment, e.g. Flowsheeting

application.

Port: Connection point defined by Unit Operation for connecting a Stream

Simulation Context: object exposed by the PME and passed to PMCs, representing the environment (or

application) that the PMC is currently embedded in.

Stream: container for information that flows between Ports of Unit Operations. Material streams contain

matter, Energy Streams describe energy transfer, Information Streams can contain any data in the form of

parameters. Material Streams implement a CAPE-OPEN Material Object, Information and Energy Streams

implement a CAPE-OPEN Collection of CAPE-OPEN Parameters.

Unit Operation: PMC model representation of simulated physical equipment in a process.

76

7. Bibliography

[1] Young, D., Scharp, R. and Cabezas, H. (2000), “The waste reduction (WAR) algorithm: environmental

impacts, energy consumption, and engineering economics”, Waste Management, Vol 20 no 8 pp 605-

615.

[2] Ahmad K. Hilaly & Subhas K. Sikdar (1994) Pollution Balance: A New Methodology for Minimizing

Waste Production in Manufacturing Processes, Air & Waste, 44:11, 1303-1308, DOI:

10.1080/10473289.1994.10467325.

[3] Linnhoff B. et al (1982), "User Guide on Process Integration for the Efficient Use of Energy", IChemE,

Rugby, U.K.

[4] Unit Operations Interfaces, available from http://www.colan.org/index-33.html

[5] Utilities Common Interface, available from http://www.colan.org/index-35.html

[6] Identification Common Interface, available from http://www.colan.org/index-35.html

[7] Persistence Common Interface, available from http://www.colan.org/specifications/persistence-

common-interface-specification-2/

[8] Parameter Common Interface, available from http://www.colan.org/index-35.html

[9] Simulation Context Interfaces, available from http://www.colan.org/index-34.html

[10] Thermodynamics and Physical Properties Interfaces, version 1.0, available from

http://www.colan.org/index-33.html

[11] Collection Common Interfaces, available from http://www.colan.org/index-35.html

[12] Thermodynamics and Physical Properties Interfaces, version 1.1, available from

http://www.colan.org/index-37.html

[13] Methods & Tools Integrated Guidelines, available from http://www.colan.org/index-32.html

[14] COCO, the CAPE-OPEN to CAPE-OPEN Simulator. URL: http://www.cocosimulator.org/

[15] US-EPA URL: http://www.epa.gov/nrmrl/std/mtb/p2tools/cape.htm

[16] Fermeglia, M., Longo, G., Toma, L., COWAR: A CAPE OPEN Software Module for the Evaluation of

Process Sustainability. Environmental Progress, Vol.27, No.3, p 373 (2008).

[17] Barrett, W.M., van Baten, J.M. and Martin, T., Implementation of the waste reduction (WAR)

algorithm utilizing flowsheet monitoring, Computers and Chemical Engineering 35 (2011) 2680-2686.

	reqNoChange
	idenFirst
	idenLast
	reqReport
	HighPriority
	MediumPriority
	LowPriority
	PME
	Builder
	User
	FMC
	FMCManager
	UC001
	UC002
	UC31001
	UC31009
	UC003
	UC004
	UC005
	UC31010
	UC006
	UC007
	UC008
	UC009
	UC010
	UC011
	UC012
	UC013
	UC014
	UC015
	UC016
	UC017
	UC31007
	UC018
	GetStreamCollection
	Monitor
	Ref01
	Ref02
	Ref03
	Ref04
	Ref05
	Ref06
	Ref07
	Ref08
	Ref09
	Ref10
	Ref11
	Ref12
	Ref13
	Ref14
	Ref15
	Ref16
	Ref17

