

NATIONAL ENERGY TECHNOLOGY LABORATORY

Co-Simulation for Advanced Process Design and Optimization

Stephen E. Zitney, U.S. DOE/NETL Director, NETL Collaboratory for Process & Dynamic Systems Research Morgantown, WV <u>stephen.zitney@netl.doe.gov</u>

John Widmann, Sorin Munteanu, and Aseem Jain ANSYS Inc., Lebanon, NH

APECS Overview

- Workflow and Collaboration
- Software Features and Capabilities
- New Features
 - Reduced Order Models (ROMs)
 - Design Optimization
- APECS Co-Simulation Application
 - Polygeneration Plant
- Virtual Plant Co-Simulation
 - APECS/VE-Suite Integration
- Concluding Remarks

APECS Co-Simulation

APECS/VE Collaboration

Advanced Process Engineering Co-Simulator (APECS) High-Fidelity Process/Equipment Design and Optimization

- Collaborative co-simulation software framework for seamless and efficient integration of:
 - Process simulation

NETL ANSYS

- Detailed equipment simulations
 - Computational fluid dynamics (CFD) models
 - PDE-based custom equipment models (CEMs)
 - Reduced-order models (ROMs)
- Analysis and optimization of overall plant performance with respect to complex thermal and fluid flow phenomena

aspentec

NGINEERING

2004 R&D 100 Award (APECS) 2006,2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Awards (APECS) 2008 R&D 100 Award (APECS with EKM)

ENERGY TECHNOLOGY LABORATOR

ALSTOM Carnegie Mellon Iowa Stat

APECS Co-Simulation Workflow Separation of CFD and Process Simulation Tasks

8

APECS Co-Simulation Workflow

Seamless Integration of CFD/Process Simulation Tasks

- Fluid flow analyst creates CFD/CEMs/ROMs and uploads them to the model database
- Process engineer selects CFD/CEMs/ROMs from model database and seamlessly uses them in process simulation
- Process modeler does not need to be a CFD expert (and vice versa)

APECS with ANSYS[®] Engineering Knowledge Manager[™] (EKM[™])

- Manages equipment co-simulation data/model archiving and retrieval processes through the use of a single server-based, enterprise-wide repository
- Uses CAPE-OPEN software standard for plug-and-play model interoperability
- Benefits
 - Addresses challenge of managing the data, models, and engineering knowledge arising from advanced co-simulation applications
 - Improves workflow and asset utilization from plant innovation to design

APECS with EKM[™] Collaborative Co-Simulation

- Global companies can achieve new levels of simulation excellence and more rapid return on modeling investment through:
 - Better use of detailed equipment models to guide effective process systems engineering decisions
 - Collaborative detailed and process engineering solutions to enable global project execution

APECS Software Components and Features

Process Simulators

- CAPE-OPEN compliant
- e.g., Aspen Plus[®], HYSYS
- Equipment Models and Database
 - CAPE-OPEN compliant
 - ANSYS[®] EKM[™]
 - CFD: FLUENT[®]
 - CEMs: e.g., INDVU
 - ROMs: LR, NN, PCA
- Integration Controller
 - CAPE-OPEN v1.0 Interfaces
 - Unit Ops, Phys Props, Reactions
- Configuration Wizards
 - FLUENT[®], Custom Model, and ROM
- Solution/Analysis Tools
 - Hybrid: Speed (ROM), Accuracy (CFD)
 - Stochastic, Multi-objective Optimization
 - Geometry Parameterization
 - IGCC Cost Estimation
- Distributed Execution
 - CAPE-OPEN COM/Corba Bridge
 - Windows/Linux, Serial/Parallel
- Virtual Engineering
 - CFD Viewer (2D), Paraview (3D)
 - VE-Suite

Advanced Process Engineering Co-Simulator with

ANSYS[®] Enginering Knowledge Manager[™]

APECS Overview

- Workflow and Collaboration
- Software Features and Capabilities

New Features

- Reduced Order Models (ROMs)
- Design Optimization
- APECS Co-Simulation Application
 - Polygeneration Plant
- Virtual Plant Co-Simulation
 - APECS/VE-Suite Integration
- Concluding Remarks

APECS Co-Simulation

APECS/VE Collaboration

APECS Reduced Order Models (ROMs)

- APECS ROM Builder for automatic ROM generation from CFD simulations
- Design of experiments (DoE) using Latin Hypercube sampling
- CFD simulations can be run in advance and in serial/parallel on a remote cluster
- ROM methods include Regression and NN
- Principal Component Analysis (PCA) used to regenerate flow field and other contours
- Accuracy of ROMs can be compared to CFD results
- ROMs stored in EKM[™] model database
- ROMs run very fast for use in process simulation and optimization
- CFD Viewer available for displaying ROM results in process simulator

ROM Builder GUI

CFD/ROM Comparisons

PCA-based ROM Contours

Industrial Applications of APECS ROMs ALSTOM Power

IGCC with ANN ROM for HRSG

- Objective
 - Optimize heat integration
- CPU Time
 - FLUENT CFD: >1 CPU hour
 - ANN ROM: ~2 CPU seconds
- Convergence
 - Final ANN ROM flow rates for all streams are within 0.5% of FLUENT[®] CFD flow rates
- Reference
 - Osawe et al., AIChE Annual Meeting (2006)

IGCC with PCA ROM for RSC

- Objective
 - Analyze integration with gasifier via passing of multi-dimensional boundary conditions
 - · Optimize heat integration with overall plant
 - Work in progress at ALSTOM Power

250 MWe IGCC Co-Simulation with Artificial Neural Net (ANN) ROM for Heat Recovery Steam Generator (HRSG)

556 MWe IGCC Co-Simulation with ROM for Radiant Syngas Cooler (RSC)

APECS Geometry Parameterization Design Optimization

- Conduct geometry parameterization studies within process simulation
- Automated regeneration of CFD geometry and mesh via CAPE-OPEN parameters
 - GAMBIT => FLUENT[®] => Aspen Plus[®]
- Case study: Gasifier design optimization
 - Geometry and inlet cross-sections scale with coal throughput in order to preserve crosssectional velocities and residence times
 - Vary oxygen flow rate to maximize cold gas efficiency (CGE) for a given coal throughput

APECS Overview

- Workflow and Collaboration
- Software Features and Capabilities
- New Features
 - Reduced Order Models (ROMs)
 - Design Optimization
- APECS Co-Simulation Application
 - Polygeneration Plant
- Virtual Plant Co-Simulation
 - APECS/VE-Suite Integration
- Concluding Remarks

APECS Co-Simulation

APECS/VE Collaboration

APECS Application – Polygeneration Plant *Power and Hydrogen Production with CO*₂ *Capture*

Process Simulation

- Aspen Plus[®] steady-state
- All major plant sections
- Over 250 unit ops

CFD Simulations

- Entrained-Flow Gasifier
 - FLUENT[®] 3D/ROM
 - Embedded in syngas recycle loop
 - Accurate calculation of synthesis gas composition
 - Optimized flow of coal slurry and syngas recycle to 2nd stage

Coal

Slurry & Syngas =

Recycle

Coal

Slurry

APECS Co-Simulation of Polygeneration Plant

- Gas Turbine Combustor
 - FLUENT[®] 3D/ROM
 - Partially pre-mixed combustion
 - Embedded in design spec loop to determine power/H₂ production
 - Accurate calculation of GT inlet
 - temperature
 - Optimized cooling ^{(c} strategy to minimize NO_x ^{(B}

APECS Overview

- Workflow and Collaboration
- Software Features and Capabilities
- New Features
 - Reduced Order Models (ROMs)
 - Design Optimization
- APECS Co-Simulation Application
 - Polygeneration Plant
- Virtual Plant Co-Simulation
 - APECS/VE-Suite Integration
- Concluding Remarks

APECS Co-Simulation

APECS/VE Collaboration

Virtual Power Plant Co-Simulation APECS/VE-Suite Integration

20

Virtual Power Plant Co-Simulation APECS/VE-Suite Integration

- VE-Suite is a 3D immersive, interactive plant walkthrough environment for deployment of APECS process/CFD co-simulation results
- Provides graphic display of process simulation, CFD, and CAD data
- Supports hardware from the desktop to multi-wall caves
- Enables collaborative design and optimization for wide range of project stakeholders

Using VE-Suite to analyze gasifier CFD data from APECS co-simulation of IGCC plant

Using VE-Suite to overlay CFD results on 3D CAD for HRSG from APECS co-simulation of IGCC plant

APECS Overview

- Workflow and Collaboration
- Software Features and Capabilities
- New Features
 - Reduced Order Models (ROMs)
 - Design Optimization
- APECS Co-Simulation Application
 - Polygeneration Plant
- Virtual Plant Co-Simulation
 - APECS/VE-Suite Integration
- Concluding Remarks

APECS Co-Simulation

APECS/VE Collaboration

IGCC Power Plant

Concluding Remarks

- APECS is enabling software to facilitate effective integration, solution, and analysis of process/CFD co-simulations
- APECS helps to optimize fluid flow and related phenomena that impact overall plant performance
- APECS is built on the integrated access, workflow, and data services of EKM[™]
- APECS offers many advanced capabilities including ROMs, design optimization, stochastic analysis, parallel execution, and virtual plant co-simulations
- NETL is using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants

APECS/VE-Suite Collaboration

- For additional information on APECS, please contact:
 - Stephen E. Zitney, NETL
 - EML: <u>stephen.zitney@netl.doe.gov</u>
 - TEL: 304-285-1379