## **Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems**



Stephen E. Zitney

Director, Collaboratory for Process & Dynamic Systems Research

stephen.zitney@netl.doe.gov

presented at

2007 Aspen Engineering Suite (AES) User Group Meeting

*Houston, TX April 10-11, 2007* 

### National Energy Technology Laboratory



**Office of Fossil Energy** 



## **Outline of Presentation**

- Introduction
  - NETL/Office of R&D/Process
     & Dynamic Systems Research
- Advanced Process Engineering Co-Simulator (APECS)
  - Brief Overview and History
  - Process/CFD Software
     Components and Features
- APECS Energy Applications
  - Fuel Cell Auxiliary Power Unit
  - FutureGen Power Plant
- Concluding Remarks



NETL Onsite R&D



#### **APECS Co-Simulation**



FutureGen Plant



## **National Energy Technology Laboratory**

- Only DOE national lab dedicated to fossil energy

   Fossil fuels provide 85% of U.S. energy supply
- One lab, five locations, one management structure
- 1,200 Federal and support-contractor employees
- NETL's Fossil Energy Mission
  - Implement an R&D and demonstration program to resolve the environmental, supply, and reliability constraints of producing and using fossil energy



Morgantown, WV



Pittsburgh, PA



Tulsa, Oklahoma



Albany, Oregon



Fairbanks, Alaska



Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

## **Accomplishing Our Mission**

### • Support energy policy development

- Clean Coal Power (IGCC), Hydrogen
- Clear Skies, Climate Change
- FutureGen

### Implement and manage extramural RD&D

- Over 1,800 research activities in U.S. and more than 40 foreign countries
- Total award value over \$9 billion
- Private sector cost-sharing over \$5 billion
- Conduct onsite research
  - Approximately 550 engineers and scientists
  - Over 150 PhDs
  - Office of Research and Development









**Office of Research and Development Creates and Transfers Innovative** Fossil Energy Technologies

### **Focus Areas**

- Energy System **Dynamics**
- Geological & **Environmental Science**
- Materials Science
- Computational & Basic **Science** 
  - Computational Chemistry
  - Multiphase Flow
  - Model Validation
  - Device-Scale Simulation





### Process & Dynamic Systems Research *R&D Focus Areas*

### • High-Fidelity Systems

- Advanced process engineering co-simulation (APECS)
- Virtual power plant simulation

### Dynamic Systems

- Dynamic simulation
- Process control
- Real-time applications

## Systems Optimization

- Plant-wide optimization
- Stochastic simulation for uncertainty/risk analysis



Cost estimation



#### APECS-based FutureGen Plant Simulation

## **Outline of Presentation**

- Introduction
  - NETL/Office of R&D/Process
     & Dynamic Systems Research
- Advanced Process Engineering Co-Simulator (APECS)
  - Brief Overview and History
  - Process/CFD Software
     Components and Features
- APECS Energy Applications
  - Fuel Cell Auxiliary Power Unit
  - FutureGen Power Plant
- Concluding Remarks



#### **NETL Onsite R&D**



#### **APECS Co-Simulation**



FutureGen Plant



### **Advanced Process Engineering Co-Simulator (APECS)**

- Co-simulation software framework for integration of process simulation with high-fidelity equipment simulations, including computational fluid dynamics (CFD)
- Enables analysis and optimization of overall plant performance with respect to complex thermal and fluid flow phenomena



**APECS Software Integration Framework** 



REACTION ENGINEERING INTERNATIONAL ALSTOM Carnegie Mellon Kowa State University Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

### Advanced Process Engineering Co-Simulator Brief History

- Phase-1 APECS R&D Project Start (2000)
- Steady-State Co-Simulation Prototype (2001)
- First Commercial Success (2004)
- R&D 100 Award (2004)
- APECS FutureGen Demo at Supercomputing (2004)
- 2<sup>nd</sup> Annual CAPE-OPEN Meeting at NETL (2005)
- Phase-2 APECS R&D Project Start (2005)
- US/APECS UK/VPDM Collaboration (2005)
- APECS/VE-Suite Integration Prototype (2006)
  - US Federal Technology Transfer Awards (2006/7



## **APECS Software Components and Features**

- Process Simulators
  - CAPE-OPEN compliant
  - Aspen Plus<sup>®</sup>, HYSYS

#### Equipment Models and Database

- CAPE-OPEN compliant
- CFD: FLUENT<sup>®</sup>
- Custom Models: e.g., INDVU
- ROMs: LR, NN

#### Integration Controller

- CAPE-OPEN v1.0 Interfaces
- Unit Ops, Phys Props, Reactions
- Configuration Wizards
  - FLUENT<sup>®</sup>, Custom Model, and ROM
- Solution/Analysis Tools
  - CAPE-OPEN compliant
  - Hybrid: Speed (ROM), Accuracy (CFD)
  - Stochastic, Optimization
- Distributed Execution
  - CAPE-OPEN COM/Corba Bridge
  - Windows/Linux, Serial/Parallel
- Virtual Engineering
  - CFD Viewer (2D), Paraview (3D)
  - VE-Suite





Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

## **Outline of Presentation**

- Introduction
  - NETL/Office of R&D/Process
     & Dynamic Systems Research
- Advanced Process Engineering Co-Simulator (APECS)
  - Brief Overview and History
  - Process/CFD Software
     Components and Features

### APECS Energy Applications

- Fuel Cell Auxiliary Power Unit
- FutureGen Power Plant
- Concluding Remarks



#### NETL Onsite R&D



#### **APECS Co-Simulation**



FutureGen Plant



Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

### **APECS Application - Fuel Cell APU Systems**

- Fuel cell systems are emerging as versatile energy solutions
- DOE-sponsored Solid state
   Energy Conversion Alliance
- Solid oxide fuel cells (SOFC)
- Auxiliary power units (APU) for transportation can reduce:
  - Diesel fuel consumption
  - Cost
  - Pollutant emissions



• Need to analyze fuel cell APU systems for low cost, high efficiency, and maximum integration





## **Modeling and Analysis Requirements**

### Device-scale Modeling

- Wide variety of key devices
  - Reformer, desulfurizer, fuel cell stack, combustor
- Complex 2-3D geometries
- Coupled multiphysics
  - Fluid flow, heat/mass transfer
  - Chemical reactions

### • System Analysis

- Many interlinked devices
- Tight process integration
  - Stack exhaust recycle
  - Heat/water management
- Couple in high-fidelity device models for improved design, analysis, and optimization



**Computational Fluid Dynamics (CFD)** 





### **CFD Model of SOFC in Aspen Plus**

### • Single cross-flow planar cell

- FLUENT 3D CFD (steady-state)
- H<sub>2</sub> and CO chemistry
- Cell area: 36 cm<sup>2</sup>
- Grid: 58k cells
- Specify I, calculate V and fuel use

### Stack Model

- Total number of cells: 360
- Use single cell FLUENT model
- Assume no cell-to-cell variations
- Connected to Aspen Plus by four material streams

CO parameters: current and voltage

NETL





Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

# **APECS Application - SECA Fuel Cell APU System**

- Aspen Plus process model of Auxiliary Power Unit (APU)
- FLUENT 3D CFD model of SECA solid oxide fuel cell
- Optimize process efficiency by varying CFD parameter (fuel cell current)
- Maximum system efficiency (LHV) of 45% at 18 amps
- Max. system power of 4.3 kW



urrent density for cathode

Temperature for anode







Zitney, S.E., Prinkey, M.T., Shahnam, M., and Rogers, W.A. (2004), "Coupled CFD and Process Simulation of a Fuel Cell Auxiliary Power Unit," In *Proc. of the ASME Second International Conference on Fuel Cell Science, Engineering, and Technology*, Eds. R. Shah and S.G. Kandlikar, Rochester NY, June 13-16, 2004, Paper 2490, pp. 339-345.

### U.S. DOE FutureGen Initiative Pathway to Zero Emissions

- 10-year, \$1B DOE project
- Commercial-scale, coal-fired, gasification-based plant
- Co-production of H<sub>2</sub> and electricity (275 MWe)
- Sequester >90% CO<sub>2</sub> with potential for ~100%
- Minimum 1-million tons/year CO<sub>2</sub> captured and sequestered
- "Living R&D laboratory" for cutting-edge technologies
- FutureGen Alliance



• On-line 2012





Zitney/NETL/CAPD Meeting, CMU, Pittsburgh, PA, March 12-13, 2007

## **FutureGen** Power/Hydrogen Production Plant

- IGCC with CO<sub>2</sub> capture and H<sub>2</sub> generation
  - Air separation unit (ASU) integrated with gas turbine
  - Entrained-flow, coal-slurry, oxygen-blown gasifier
  - Water gas shift
  - Gas cleanup for particulates, Cl<sub>2</sub>, and S<sub>2</sub>
  - Selexol for CO<sub>2</sub> capture with compression to liquid
  - Pressure-swing adsorption (PSA) for generating H<sub>2</sub>
  - GE 7FB gas turbine
  - Steam cycle with three pressure levels and HRSG



### FutureGen Process Diagram



 IGCC plant with advanced technology modules and aggressive integration, performance, and environment goals



## **APECS Application -** *FutureGen* **Plant**

### Process Simulation

- Aspen Plus<sup>®</sup>
   steady-state
- All major plant sections
- Over 250 unit ops

### CFD Simulations

- -Entrained-Flow Gasifier
  - FLUENT® 3D/ROM
  - Accurate calculation of synthesis gas composition
  - Embedded in syngas recycle loop



**APECS Co-Simulation of FutureGen Power Plant** 

- -Gas Turbine Combustor
  - FLUENT® 2D/3D/ROM
  - Accurate calculation of GT inlet temperature
  - Embedded in design spec loop to determine power/H2 production



## **Gasification CFD Model**

- Two-stage, entrained-flow, oxygen-blown, coal-slurry gasifier
- Fluid flow, heat and mass transfer, and chemical kinetics
- Eulerian-Lagrangian multiphase method
  - Continuous gas phase with reactions
  - Discrete Phase Model (DPM) for coal slurry
- Coal particle processes
  - Particle injections
  - Inert heating
  - Moisture release
  - Devolatilization
  - Char combustion and gasification
  - Ash inert heating

 $\bigcirc$ 

 $\mathbf{O}$ 

### **Two-Stage Entrained Flow Gasifier**

- Illinois #6 coal
- Rosin-Rammler distribution for particle size
  - 10-50 microns
  - Average of 30 microns
- Coal slurry: 39.7 kg/s, 450K
- Oxidant: 22.9 kg/s, 411K
   95%O<sub>2</sub>, 1.7N<sub>2</sub>, 3.3%Ar
- Particle volume fraction: 4%
- Operating pressure: 28 atm
- Chemical species: CO, H<sub>2</sub>, CO<sub>2</sub>, H<sub>2</sub>O, CH<sub>4</sub>, H<sub>2</sub>S, Ar, N<sub>2</sub>





### **FLUENT CFD Model Preparation**

- 12,256 hexahedral computatonal cells
- Converged using approximately 50,000 gas phase iterations
- Temperature of 2500K was patched in gasifier to initialize combustion reaction
- DPM calculations were performed at every 50th iteration of the fluid phase calculation





## **FutureGen Process/CFD Co-Simulation Results**

- Gas turbine inlet temperature specification of 1619.3 K is met when:
  - 43% of syngas is sent to GT combustor and remainder goes to PSA unit for H2 production
  - Net equivalent power output from plant is 243.8 MW, corresponding to HHV thermal efficiency of 53%





| Chemical<br>Species | Mole Fractions |        |
|---------------------|----------------|--------|
|                     | Aspen Plus     | FLUENT |
| СО                  | 0.339          | 0.359  |
| H <sub>2</sub>      | 0.212          | 0.229  |
| CO <sub>2</sub>     | 0.105          | 0.122  |
| CH <sub>4</sub>     | 0.021          | 0.017  |
| H <sub>2</sub> S    | 0.006          | 0.006  |
| Ar                  | 0.007          | 0.008  |
| N <sub>2</sub>      | 0.020          | 0.020  |
| H <sub>2</sub> O    | 0.290          | 0.239  |

#### **Synthesis Gas Composition**



Zitney, S.E., M.O. Osawe, L. Collins, E. Ferguson, D.G. Sloan, W.A. Fiveland, and J.M. Madsen, "Advanced Process Co-Simulation of the FutureGen Power Plant," *Proc. of the 31st International Technical Conference on Coal Utilization & Fuel Systems*, May 21-25, Clearwater, FL (2006).

## **Concluding Remarks**

- APECS facilitates the effective integration, solution, and analysis of process/CFD simulations
- APECS helps to optimize fluid flow and related phenomena that impact overall plant performance
- NETL is using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants











