
CAPE-OPEN
Expanding Process Modelling Capability

through Software Interoperability Standards

Errata and Clarifications for

Utilities Common Interface specification

www.colan.org

2

ARCHIVAL INFORMATION

Filename Utilities_Errata_1.0.docx

Authors CO-LaN consortium: M&T SIG

Status Approved for public release

Date January 2018

Version Version 1.024

Number of pages 13

Versioning 0.000 created on Dec 3, 2013 by Bill Barrett

(USEPA)

 1.001 Created by Bill Barrett on April 1, 2014

 1.002 Created by Bill Barrett on March5, 2014

 1.003 Created by Bill Barrett on March 19, 2014

 1.004 Created by Bill Barrett on April 1, 2014

 1.005 Created by Bill Barrett on April 1, 2014

 1.006 Edited by Jasper van Baten on April 21,

2014

 1.007 Edited by Bill Barrett on May 20, 2014

 1.011 edited by Bill Barrett on July 24, 2014

 1.012 edited by Michel Pons on July 28, 2014

 1.014 edited by M&T SIG on November 4, 2015

 1.018 edited by M&T SIG on July 7, 2016

 1.021 edited by CTO on December 14, 2017

 1.022 edited by M&T SIG on January 3, 2018

 1.023 modified by M&T SIG on January 10, 2018

 1.024 edited by CTO on January 17, 2018

Additional material

Web location

Implementation specifications

version

Version 1.0

Comments

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.

CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied warrant

or fitness for a particular purpose. The entire risk arising out of the use or performance of any sample code ---

or any other software described by the CAPE-OPEN Laboratories Network --- remains with you.

Copyright © 2018 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as

trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a

trademark claim, the designations have been printed in caps or initial caps.

Microsoft, and the Component Object Model (COM) are registered trademarks of Microsoft Corporation.

4

SUMMARY

The Errata and Clarifications document for the Utilities Common Interface specification 1.0 provides

clarification of the distinction between primary and secondary PMCs, as well as about the requirement for

primary PMCs to implement the ICapeUtilities interface. The document provides a mechanism for the

ICapeUtilities::Edit method to indicate whether changes were made to a PMC through the use of the S_FALSE

(0x01) HRESULT. The document justifies allowing the Simulation Context to be set on a PMC prior to

initializing the PMC. The document provides clarification on the lifecycle of a CAPE-OPEN Primary PMC

object, indicating the process for creating an instance of the object, setting the Simulation Context, restoring

the object from persistence, calling the ICapeUtilities::Initialize method and ICapeUtilities::Terminate

method. The document clarifies operations that can be performed by the PME on the PMC during each of these

stages of a PMC’s lifecycle.

5

CLARIFICATIONS

1. Requirement to implement ICapeUtilities

Context: implementation of ICapeUtilities is necessary for a PMC to expose a Collection of Parameters and

to configure the PMC using an Edit method.

Issue: the requirement to implement ICapeUtilities is not clearly stated within each CAPE-OPEN Business

Interface Specification.

Discussion: the summary of the Utilities Common Interface document [0] states that “This interface has to be

provided by any PMC primary object. That allows any PME to manage Simulation Context, to collect

Parameters of PMC and to edit the PMC.” The Introduction to the Utilities Common Interface Specification

states that the notion of a primary and secondary PMC is provided by the Method and Tools (M&T) Integrated

Guidelines [0]. Section 9.2.1 of the M&T Integrated Guidelines defines primary and secondary PMCs.

Under this model, the SIGs responsible for proposing PMCs are responsible for stating which PMCs are PMC

primary objects requiring implementation of ICapeUtilities. In general, any category of PMC that requires

editing, parameterization, access to the Simulation Context of the PME, or that references any PME object

(and therefore must act on Terminate), needs to implement ICapeUtilities.

The ICapeUtilities interface was developed concurrently with the development of the CAPE-OPEN Business

Interface specifications. As such, some business specifications either do not indicate the need for the primary

PMC objects to implement the ICapeUtilities interface, or the interface specification incorporates methods

from the ICapeUtilities into the interface design. The present document is intended to provide consistency and

develop uniformity in the requirement for implementation of ICapeUtilities.

Clarification 1: PMC primary objects are PMCs that can be instantiated directly by the PME or indirectly

through the use of a manager (e.g. objects implementing ICapeThermoSystem or

ICapeThermoPropertyManager).

Clarification 2: Table 1 lists all PMCs that are currently considered PMC primary objects within the Business

Interface Specification that defines them.

Requirement 1: all PMC primary objects must implement the ICapeUtilities interface.

An exception to requirement 1 is that some interfaces for PMC primary objects have been designed prior to

the definition of ICapeUtilities (see discussion above).These interfaces provide services similar to the

ICapeUtilities interface. These PMC primary objects do not need to implement ICapeUtilities. Such PMC

primary objects are identified in Table 1. If specifications for these objects are updated in the future, these

Primary PMC objects will be required to implement ICapeUtilities and the defining interface for the PMC will

not include any ICapeUtilities-like functionality.

2. ICapeUtilities.Edit Return Value

Context: editing of Process Modelling Component (PMC) objects is performed using the CAPE-OPEN

ICapeUtilities::Edit method. It would be useful to a Process Modelling Environment (PME) to know whether

a call to ICapeUtilities::Edit method resulted in a change to any aspect of the PMC. This would allow the PME

to decide whether to rescan the PMC to update any information presented by the PME’s graphical user

interface, whether to mark the Unit Operation as not solved, etc.

6

Issue: the ICapeUtilities::Edit method currently does not have a return value to indicate whether a change has

occurred to the PMC as a result of the editing.

Discussion 1: use of a return value for the ICapeUtilities::Edit method would allow the PMC to communicate

whether call to the ICapeUtilities::Edit method resulted in a change to the PMC. Two options were considered:

• Boolean value: A return of TRUE would indicate that a change had occurred and a return of FALSE

would indicate that no change had been made.

• An enumerated type, CapeEditResult: Two values could be used, (0) for CAPE_MODIFIED, and (1)

for CAPE_NOT_MODIFIED

Modifying the ICapeUtilities::Edit method to return the CapeEditResult enumerated type provides a clearer

indication of the result of the call to the ICapeUtilities::Edit method, and is the selected option. In order to

make this change, the ICapeUtilities Interface Specification document will need to be updated to reflect the

change to the return value of the ICapeUtilities::Edit method. Modification of the ICapeUtilities Interface

Specification will be completed as part of the creation of the CAPE-OPEN Binary Interoperability Architecture

(COBIA).

Discussion 2: currently, there is a desire to provide the PME with the information regarding whether the PMC

was modified by the call to the ICapeUtilities::Edit method for existing COM-based CAPE-OPEN

implementations. Since the proposed enumerated type return value can be treated as an integer, use of the

COM HRESULT return value has been identified as a means to return this information. The COM-based

function signature of the ICapeUtilities::Edit method utilizes the standard COM HRESULT return value. This

section discusses the implications of the use of the HRESULT to provide the CapeEditResult return value in

existing COM implementations.

The HRESULT is a 32-bit signed integer used to indicate whether the function was successful, through the

return of a non-negative value, or an error occurred, through the return of a negative value. In standard usage,

returning an HRESULT value of S_OK (0) indicates that an error did not occur during performance of the

function, and S_OK is typically the only success HRESULT used in CAPE-OPEN.

The table below shows the evaluation of whether there would be any side effects of adopting this option. Non-

negative HRESULT values indicate success conditions, and negative results indicate an error/failure occurred

during the method call. COM provides two macros to determine whether a call to a COM method resulted in

an error, SUCCEEDED and FAILED. SUCCEEDED returns a Boolean TRUE value if the function call returns

a non-negative HRESULT, indicating that the method call was successful; and FAILED returns a Boolean

TRUE if the function call returns a negative value, indicating an error occurred.

 CapeEditResult HRESULT Numerical

value

SUCCEEDED

return value

FAILED

return value

OK and

modified

CAPE_MODIFIED S_OK 0 TRUE FALSE

OK and not

modified

CAPE_NOT_MODIFIED S_FALSE 1 TRUE FALSE

Error Not applicable Any

HRESULT

error value

Any

HRESULT

error

value

FALSE TRUE

Recommendation 1: modify the ICapeUtilities Interface Specification as part of COBIA development to

incorporate an enumerated type, CapeEditResult, valued return for the ICapeUtilities::Edit method during the

creation of the CAPE-OPEN Object Model.

7

Recommendation 2: in COM-based CAPE-OPEN implementations, a workaround can be made using the

HRESULT result value to provide the equivalent of the CapeEditResult value. A PMC may return an S_FALSE

HRESULT value if no changes have been made during the invocation of the ICapeUtilities::Edit method. The

PME may interpret the S_FALSE HRESULT as an indication that the PMC was not modified.

We expect no backward compatibility problems for COM-based PMEs that use the SUCCEEDED and

FAILED macros to test the ICapeUtilities::Edit return value as these macros return TRUE for S_OK and

S_FALSE. We also expect no backward compatibility issues for existing COM-based PMCs returning S_OK.

PMEs that test the ICapeUtilities::Edit return value by erroneously comparing it to S_OK, and erroneously

conclude that Edit has failed on S_FALSE returns: in this case, the behaviour of the PME is undefined as the

PME will likely consider this an edit failure, and may proceed as if the PMC does not have an editor [see

Unit Use Case UC-31-017 Set Unit Specific Data].

 Usage Notes:

For .NET-based implementations of the ICapeUtilities::Edit method, the ICapeUtilities::Edit method

signature in the CO-LaN provided Primary Interop Assembly (PIA) has been modified to return an int32 value.

The CapeEditResult::CAPE_MODIFIED value can be returned by returning zero (0). The

CapeEditResult::CAPE_NOT_MODIFIED value is returned by returning one (1).

As a result, a .NET PME calling a COM PMC will receive an integer having a value of zero (0) for

CAPE_MODIFIED and a value of one (1) for CAPE_NOT_MODIFIED. Likewise, the .NET PMC called by

a COM PME will return a value of zero (0) for CAPE_ MODIFIED and one for CAPE_NOT_MODIFIED.

Conversion between the enumeration for the COM and the .NET integer is handled by the standard COM/.NET

interoperability.

3. Ability to set the Simulation Context prior to calling
ICapeUtilities.Initialize

Context: PMCs are not considered fully initialized until a call to ICapeUtilties::Initialize has been completed.

However, the Simulation Context provides logging tools that may be useful to diagnose problems occurring

during instantiation, restoration from persistence and initialization process.

Issue: the mechanism for the PMCs to provide information to the PME and Flowsheet User is through the

ICapeDiagnostic interface available on the Simulation Context set by the PME through the ICapeUtilities

interface. In order to provide the PMC with access to ICapeDiagnostic capabilities, PMEs need to be able to

set the value of the ICapeUtilities::SimulationContext property after object instantiation, after calling

middleware-specific object initialization or restoration from persisted states and prior to calling the

ICapeUtilities::Initialize method. The benefit of setting a Simulation Context early in the object life cycle is

that it would allow use of the CAPE-OPEN logging methods in the ICapeDiagnostic interface.

Discussion: the Simulation Context object is a means by which the PME exposes itself to the PMC. The

Simulation Context object provides the PMC with access to the PME’s diagnostic, Material Template system,

and other PME-provided services through support of the ICapeDiagnostic,

ICapeThermoMaterialTemplateSystem and ICapeCOSEUtilities interfaces. Of particular interest is access to

the diagnostic facilities through the ICapeDiagnostic interface, which provides two useful methods,

PopUpMessage and LogMessage that allow PMCs to communicate to users/developers through the PME,

providing an avenue to present useful information regarding the state of the PMC during the object creation,

restoration, and initialization process.

Developers have asked to be able to access the logging capabilities of the ICapeDiagnostic interface

immediately upon creation of the object from the underlying middleware (in COM, creation via

CoCreateInstance). However in COM the persistence machinery (InitNew or Load) must be invoked prior to

all other calls. Any issue to be logged resulting from object restoration problems should therefore be logged

during Initialize.

8

Requirement: PMCs that implement ICapeUtilities will allow PMEs to set the Simulation Context via the

SetSimulationContext method prior calling ICapeUtilities::Initialize.

4. Object Lifecycle

Context: descriptions of the object lifecycles exist in the Utilities Common Interface Specification, the Unit

Operation Interface Specification [0], the Thermodynamic and Physical Properties 1.0 [0] and 1.1 [0] Interface

Specifications and the Persistence Common Interface Specification [0]. In addition, the

ICapeUtilities::Terminate method is not called by some PMEs when the PME is destroying an object. This

can lead to circular references and therefore memory leaks, as PMCs are expected to release CAPE-OPEN

referenced secondary objects during the ICapeUtilities::Terminate method.

Issue: object lifecycle management is not clearly defined in a single location within the specifications.

Discussion: the overall object lifecycle includes both the middleware-specific lifecycle, and the CAPE-OPEN-

specific object lifecycle. The overall lifecycle can generally be summarized as creation within the middleware,

initialization into CAPE-OPEN operations, CAPE-OPEN usage, end of CAPE-OPEN life, and finally end of

middleware life. However, there may be a need to make certain CAPE-OPEN capabilities available

immediately, upon object creation in middleware, prior to the initiation of the CAPE-OPEN object lifecycle.

As most commercial CAPE-OPEN implementations are developed in the COM middleware, the following

section describes the overall lifecycle of a COM-based CAPE-OPEN object.

All COM-based PMCs have a CAPE-OPEN lifecycle within their COM life cycle. This means that COM

reference counting rules need to be adhered to. In COM, the reference count is incremented by a call to either

IUnknown::QueryInterface, or IUnknown::AddRef. The reference count is decreased by a call to

IUnknown::Release. When the reference count reaches zero (0), the object deletes itself. There are three rules

within COM related to reference counting [0]:

1. Call AddRef before returning. All functions that return an interface should call AddRef on

the pointer before returning. This includes QueryInterface and CreateInstance functions.

This way, the caller does not need to call AddRef on the interface received.

2. Call Release when you are done. When you are finished with an interface, you should call

Release.

3. Call AddRef after assignment. Whenever you assign an interface pointer to another

interface pointer, you should call AddRef. The assignment creates another reference to the

interface which eventually must be released.

COM objects are created without having an internal state, and must be initialized to be in a useful state. In

COM, object initialization is separated from object creation in order to avoid initializing objects to a default

state only to immediately load previously stored data. When a COM object is created in C++ using the

CoCreateInstance method, a reference is obtained to the requested interface of the created object.

The PME should select desired persistence mechanisms for the PMC based upon the support of the various

COM persistence interfaces by the PMC and the persistence needs of the PME. Appropriate calls to the COM

persistence interface’s InitNew method, if supported, should be made to configure the PMC to use the

persistence interface. In particular, the IPersistStorage interface requires an instance of an IStorage object

during its lifetime, which is provided by its InitNew method. Instead of using InitNew, the PMC may be

restored from persistence by calling the Load method for the persistence interface being used to restore the

PMC.

PMC objects are expected to expose the ICapeIdentification and, if required, ICapeUtilities interfaces. The

PME may set the SimulationContext property on the PMC and calls ICapeUtilities::Initialize. Prior to the call

to ICapeUtilities::Initialize, other methods on ICapeUtilities or any method on any other CAPE-OPEN

9

interface (including ICapeIdentification), cannot be expected to function, and may return an error HRESULT

if called.

The ICapeUtilities::Terminate method provides a mechanism for the PMC to release all CAPE-OPEN related

resources. All external references must be released at this point, including Simulation Context, Material

Objects connected to Ports and the active Material Object on the Property Package. In the case of a primary

PMC that contains secondary PMCs, the primary PMC needs to manage the life cycle of any contained PMCs.

For example, a Unit Operation PMC must delete its Port and Parameter Collections. After an object is

terminated using the ICapeUtilities::Terminate method, no CAPE-OPEN method call can be made on the

object.

All references to the object can then be released using middleware-defined low-level methods used to control

object life cycle. In COM, this means a call to the IUnknown::Release method for all acquired COM interfaces

on the PMC object. These include persistence interfaces, ICapeUtilities, ICapeIdentification and the interface

returned by CoCreateInstance.

The lifecycle for COM-based CAPE-OPEN PMCs is as follows:

1. PME creates PMC (e.g., call CoCreateInstance).

2. PME determines the persistence interface to be used, discussed above.

3. PME calls the InitNew method, if included, on the desired persistence interface or Restore

object from persistence using the Load() method on the desired persistence interface (see

note below about VB6).

4. PME sets the Simulation Context using ICapeUtilities::put_SimulationContext

5. PME calls ICapeUtilities::Initialize

a. Parameter Collection is now available to the PME via ICapeUtilities::Parameters.

b. For Unit Operation PMCs, the Port Collection is available, and Ports are available

for connection of stream objects.

c. The PMC can now be edited by calling ICapeUtilities::Edit.

6. PME places the PMC into a PMC Collection

a. PME ensures that the PMC has a unique ICapeIdentification::ComponentName

7. PME uses PMC in simulation, including, as appropriate:

a. Calls ICapeUtilities::Edit,

b. Obtains Parameter Collection via ICapeUtilities::GetParameters,

c. Exercises the PMC

i. For Unit Operations:

1. Obtains Port Collection via ICapeUnit.GetPorts.

2. Calls ICapeUnit::Validate and ICapeUnit::Calculate.

3. Accesses reports.

ii. For other PMCs, exercises the PMC as appropriate

d. Persists the object to the selected persistence interface.

8. PME terminates the PMC

a. PME releases all references to PMC secondary objects, including:

i. Release references to individual Parameters

ii. Release References to the Parameter Collection

iii. For Unit Operations:

1. Disconnect all Unit Ports.

2. Release references to individual Ports

3. Release references to the Port Collection

iv. Release any other references to PMC secondary objects

b. PME calls ICapeUtilities::Terminate

i. PMC releases all external references

10

ii. PMC releases the Simulation Context.

9. Release all interface references to the PMC primary object, including

a. ICapeUtilities interface

b. ICapeIdentification interface.

c. Any persistence interfaces.

d. PMC’s interface.

Note: During object creation, Visual Basic 6 (VB6) calls the IPersistStreamInit.InitNew() method, regardless

of whether the object is created using the New method or the CreateObject method. As such, there appears to

be no method to create the object without calling the IPersistStreamInit.InitNew() method, violating the

IPersistStreamInit interface’s requirement that InitNew() and Load() methods not be called on the same

instance of an object. PMCs should not raise an error condition if both these methods are called.

Table 1. List of Current PMC primary objects defined in Business Interface Specification documents.

Primary PMC Type Requires

Implementation of

ICapeUtilities

Registered as category

Unit Operation interface specification 1.0

Unit Operation Yes CapeUnitOperation_CATID

{678c09a5-7d66-11d2-a67d-00105a42887f}

Thermodynamic and Physical Properties interface specification 1.0

Property Package Yes CapeThermoPropertyPackage_CATID

{678c09a4-7d66-11d2-a67d-00105a42887f}

Or created by a Thermo System

Calculation Routine Yes CapeExternalThermoRoutine_CATID

{678c09a2-7d66-11d2-a67d-00105a42887f}

Equilibrium Server Yes CapeThermoEquilibriumServer_CATID

{678c09a6-7d66-11d2-a67d-00105a42887f}

Thermo System Yes CapeThermoSystem_CATID

{678c09a3-7d66-11d2-a67d-00105a42887f}

Thermodynamic and Physical Properties interface specification 1.1

Physical Property Calculator Yes CapePhysicalPropertyCalculator_CATID

{CF51E385-0110-4ED8-ACB7-B50CFDE6908E}

Equilibrium Calculator Yes CapeThermoEquilibriumCalculator_CATID

{CF51E386-0110-4ED8-ACB7-B50CFDE6908E}

Property Package Yes CapeThermoPropertyPackage_CATID

{CF51E384-0110-4ED8-ACB7-B50CFDE6908E}

Or created by a Property Package Manager

Property Package Manager Yes CapeThermoPropertyPackageManager_CATID

{CF51E383-0110-4ED8-ACB7-B50CFDE6908E}

Chemical Reaction Package interface specification 1.1 (under development)

Reactions Package Manager Yes CAPEOPENReactionsPackageManager_CATID

{678c09aa-0100-11d2-a67d-00105a42887f}

Reactions Package Yes CAPEOPENReactionsPackage_CATID

{678c09ab-0100-11d2-a67d-00105a42887f}

Or created by a Reactions Package Manager

2

Primary PMC Type Requires

Implementation of

ICapeUtilities

Registered as category

Numerics interface specification

Solver Package No CapeSolversPackage_CATID

{79DD785E-27E5-4939-B040-B1E45B1F2C64}

Optimization interface specification

MINLP Solver Package No CapeMINLPSolverPackage_CATID

{678c09ac-7d66-11d2-a67d-00105a42887f}

Planning and Scheduling interface specification

Planning and Scheduling Package No CapePSPPackage_CATID

{3EFFA2BD-D9E7-4e55-B515-AD3E3623AAD5}

Sequential Modular Specific Tools interface specification

Sequential Modular Specific Tools No CapeSMSTPackage_CATID

{678c09ab-7d66-11d2-a67d-00105a42887f}

Flowsheet Monitoring interface specification

Flowsheet Monitoring Object Yes CapeFlowsheetMonitoringComponent_CATID

{7BA1AF89-B2E4-493d-BD80-2970BF4CBE99}

Physical Property Data Base interface specification

Physical Property Data Base No CapePPDBService_CATID

{678c09aa-7d66-11d2-a67d-00105a42887f}

5. References

CAPE-OPEN Interface specifications: Utilities Common Interface

CAPE-OPEN Methods and Tools integrated guidelines

CAPE-OPEN Interface Specifications: Unit Operation Specification

CAPE-OPEN Interface Specifications: Thermodynamic and Physical Properties Version 1.0

CAPE-OPEN Interface Specifications: Thermodynamic and Physical Properties Version 1.1

CAPE-OPEN Interface Specifications: Persistence Common Interfaces

Rogerson, D. (1997). Inside COM. Redmond, Washington, Microsoft Press

