My Experiences with the
AmsterCHEM COBIA Class Wizard

Peter Nellen

Introduction

Name: Peter Nellen

Country: The Netherlands

Current position: In between jobs

Worked for Shell: 1980 -2016, the last 14 yrs in Gas Processing

Interest in CAPE-OPEN:
Within Shell we developed, together with Jasper van Baten, CAPE-OPEN wrappers
for our legacy Fortran programs for Gas Treating with Amines. A column model
and a property package were made CAPE-OPEN compliant.

Why COBIA:
Jasper made me aware of the COBIA developments, | told him that | am an expert
in finding bugs in new software. To get access to COBIA | was supposed to be a
member of CO-LaN, so | became an individual associate.

AmsterCHEM COBIA Class Wizard

What is the AmsterCHEM COBIA Class Wizard for Visual Studio
COBIA code generation by the wizard
Experiences

Remarks

Demo COBIA Class wizard for Visual Studio (if time permits)

AmsterChem COBIA Class Wizard

The AmsterCHEM COBIA Class Wizard (COBIA Class Wizard) is an
add-in for Visual Studio, to help develop a COBIA PMC object,
e.g. unit operation.

The COBIA Class Wizard is based on the COBIA Code Generation
Interface.

The COBIA Class Wizards generates classes and the definitions
for all the functions in the classes. The content of the functions is
not generated.

The COBIA Wizard does NOT generate ready to run units!

Code generation by the COBIA wizard

To start a project from scratch
Requirements:
 The COBIA SDK
e Visual Studio
* COBIA Class Wizard
e Set configuration type to DLL
e add the SDK Include folder to the C/C++ Directories: S(COBIA Include)

The COBIA Class Wizard is accompanied with documentation for a step by
step walk through for a unit operation. This one was used for my
experience.

In Visual Studio start an empty C++ project

New Project

P Recent

- Default

4 |nstalled

P Visual C#
P Visual Basic
P Visual C+ +

Empty Project

Windows Desktop Application Visual

P Visual Fit
SQL Server S8 m—)
@] MFCApplication Visual C++
R
P Azure Data Lake
B 1awaSerint P
Not finding what you are looking for?
Open Visual Studio Installer
Name: Heater \
Location: |C:\Apps\Projects\COBIA\Training\ -

Solution name: Heater

Search (Ctrl+E)

Type: Visual C++

A project for an application that runs on
Windows that has no starting files or
structure. Ideal if you have existing code
to bring in.

Browse...

__7J Create directory for solution
T:J Create new Git repository

[OK Cancel

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

P~

In the project properties set configuration type to DLL

Heater Property Pages

Configuration: (CAll Configurations)'“ Platfor All Platforms) e Configuration Manager...

4 Configuration Properties
General
Debugging
VC+ + Directories
PC/CH++
b Linker
[*Manifest Tool
P XML Document Generator
I* Browse Information
I Build Events
I Custom Build Step
I' Code Analysis

Vv General
Target Platform Windows 10
Windows SDK Version 10.0.17134.0
Output Directory <different options>
Intermediate Directory <different options>
Target Name $(ProjectName)
Target Extension dll
Extensions to Delete on Clean *.cdf;*.cache;*.obj;*.obj.enc;*.ilk;*.ipdb;*.iobj;*.resources;*.tib;*tli;* tlh;*.tmp;*.1
Build Log File $(IntDir)$(MSBuildProjectName).log
Platform Toolset Visual Studio 2017 (v141)

Enable Managed Incremental Bu No
Vv Project Defaults
Configuration Type

Dynamic Library (.dll)
Use of MFC SE STaTTEemetWS Libraries
Character Set Use Multi-Byte Character Set

Configuration DLL is required to give the PME access to the library

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

&

k8%

Build

Rebuild

Clean

View

Analyze

Project Only
Retarget Projects

Publish Storad Procedures
Scope to This

New Solution Explorer View
Build Dependencies

Add COBIA Class..

Class Wizard..,

Ctri+Shift+ X

S
s

Solution Explorer > q

CRE- o 8B K=
h Solution Explorer (Cul+)

Solution 'UnitOp' (1 project)

p *® References
I\ External Dependencies
+° Header Files

+ Resource Files

+ Source Files

Caktinn Funlarar

{8 Add COBIA Class P

Project 5
Class name UnitOperation)

Template arguments
Namespace
Header file UnitOperation.h
Implementation file UnitOperation.cpp
(] Creatable (Primary) PMC Obja
Name
Description Code Generation Test
CAPE-OPEN version Jf 11
Version
About
Vendor web site
COM Prog ID COLaN. TestUnitOperation
Categories (NPEOPEN110::Compongnt

CA COPEN110::UnitD” aration

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

CREATE A PMC Object

This will generate the following files:
COBIAENntryPoints.cpp

Holds the interface to the entry points and registration setting
UnitOperation.h

Header file for the UnitOperation
UnitOperation.cpp

Source file for the UnitOperation

#include <COBIA.h>

//this definition prior to COBIA PMC.h ensures the entry points are
//created. Do this only in one compilation unit

#define COBIA PMC_ENTRY_POINTS

//this definition prior to COBIA PMC.h ensures the a default
//D11Main entry point is created (if COBIA PMC_ENTRY_POINTS

//and _WIN32 are defined)

#define COBIA PMC_DEFAULT DLLMAIN

//PMC entry points are defined here:

#include <COBIA_PMC.h>

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

//! Define registration scope
/*!
PMC module must implement this function to indicate whether object

registration must be for all users or for the current user.

Alternatively, define either PMC_REGISTERFORALLUSERS or
PMC_REGISTERFORCURRENTUSER prior to including COBIA PMC.h,
if COBIA PMC_ENTRY_POINTS is defined

return true if registration is for all users,
false if registration is for current user only
*/
bool isPMCRegistrationForAllUsers() {

return false; //TODO: modify

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The wizard will insert the following code in UnitOperation.h
#pragma once

#include <COBIA.h>

using namespace COBIA;

class UnitOperation

public CapeOpenObject<UnitOperation> {

CapeStringImpl name;
public:

const CapeStringImpl getDescriptionForErrorSource() {
return COBIATEXT("UnitOperation ") + name;

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

UnitOperation.h

//Registration info
static const CapeUUID getObjectUUID() {
//Class UUID DF2ADOC7-09EE-45C5-8AC3-CC1246D664D7
return CapeUUID{{o0xdf,0x2a,0xdo,0xc7,0x09,0xee,0x45,
Oxc5,0x8a,0xc3,0xcc,0x12,0x46,0xd6,0x64,0xd7}};

}
static void Register(CapePMCRegistrar) {

.putName (COBIATEXT("Unit Operation"));
.putDescription(COBIATEXT("Code generation test"));
.putCapeVersion(COBIATEXT("1.1"));
.putComponentVersion(COBIATEXT("1.0.0.0"));
.putProgId(COBIATEXT("COLAN.TestUnitOperation"));
.addCatID(CAPEOPEN110: :categoryld Component);
.addCatID(CAPEOPEN110: :categoryIld UnitOperation);

#include "UnitOperation.h"
#include <COBIA PMC.h>

COBIA PMC_REGISTER(UnitOperation);

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

UnitOperation Interfaces

The wizard can be used to add interfaces to the UnitOperation:

e.g.
|Capeldentification
ICapeUnit
|CapeUtilities
|CapePersist

4 /1% unitop

4 . Head

il Solution "‘UnitOp' (1 project)

b =8 References
b 15 External Dependencies

er Files

c Open irce Files mAdd Interfaces to COBIA Class:
Open With... e Files ;
O View Cod o DBIAENtryPoints.cpp Project YnitOp
e hitOperation.cpp File UnitOperation.h
Class UnitOperation

4 View ;
Implement CAPE-OPEN Interface on COBIA Class... >

Compile

Cirl+F7

W
CAPEOPEN110::ICapeldentification

CAPEOPEN110::1CapeUnit

Analyze ’

Right click on the UnitOperation.h

Select Implement CAPE-OPEN Interface on COBIA
Class

Click on Add to add the following interfaces:
CAPEOPEN110::ICapeldentification
CAPEOPEN110:: ICapeUnit

CAPEOPEN110:: ICapeUtilities

CAPEOPEN110:: ICapePersist

CAPEOPEN110::1CapeUtilits

Remove

OK Cancel

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

UnitOperation Interfaces

The wizard will insert the following code in UnitOperation.h
//CAPEOPEN110: : ICapeldentification

void getComponentName(/*out*/) {
getComponentName must be implemented

}

void putComponentName(/*in*/) |
putComponentName must be implemented

}

void getComponentDescription(/*out*/) {
getComponentDescription must be implemented

}

void putComponentDescription(/*in*/) {

putComponentDescription must be implemented

The code in UnitOperation.h needs to be updated to:

void getComponentName(/*out*/ CapeString name) {
name = this->name;

}

void putComponentName(/*in*/ CapeString name) {
this->name = name;

dirty = true;

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

To complete the Unit Operation classes for port collection and
unit port needs to be added.

These classes have their own Interfaces and Methods.

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

My Experiences

Following the guideline of the COBIA Class wizard it was relative easy to
create a unit operation with a port collection.
Running it was a bit more difficult:
An issue with the base of the collection
An issue with persistence
Both were quickly resolved by Jasper
So the Unit Operation did run.

Extending the Unit Operation was more difficult, e.g. adding parameters
Documentation is still a bit scarce, so what interfaces were required for the
parameters?? Jasper gave some guidelines, but the parameters did not work
as expected. The parameter mode was wrong and an issue with validate.
These were also solved by Jasper, so parameters are now supported as well.

My Experiences cont’d

Next on my wish list was an energy port.
This one failed as well; an issue with ParameterSpec not implemented.
This is also fixed by Jasper, but on only very recent, so not yet tested.

Remarks

The COBIA framework makes developing a PMC more efficient; the
available adapter classes are easy to use.

The AmsterCHEM COBIA Class wizard is a powerful tool, but it only
generates a skeleton and only for the Interfaces selected. It would be
nice if there was some more documentation for COBIA.

A number of (small) errors were encountered during this exercise, so
maybe it would be an idea if there was a test set within CO-LaN that
should be run before releasing a new version of the software.

