
1

2

As presented in Pullach in October 2016, phase I of COBIA was completed in 2016.

For those that are not aware, COBIA is to replace COM and CORBA as the

middleware for CAPE-OPEN. COBIA delivers a middleware specific to CAPE-

OPEN while so far CAPE-OPEN implementations relied on COM or CORBA

middleware, which are not CAPE-OPEN specific. We will briefly recapitulate what

was done for phase I. Then we will see what was to be done for phase II and what

has been done so far for phase II. I would be happy to show a demo if time allows.

Finally, some conclusions....

3

This is a slide from last year, stating why we are doing this. With the new

middleware we want to tackle some difficulties in CAPE-OPEN programming and

lower the threshold necessary to successfully develop a CAPE-OPEN Process

Modelling Component or Environment. For example, using COM, one has to decide

which threading model to use, and the wrong decision may lead to low

performance. One has to know which data is owned and which are references to

data owned by some external components. If you do this wrong, either you are

leaking memory, or you will probably crash the application, neither of which is

good. And then there are a number of issues resulting from weak typing, including

the possibility of passing the wrong data type or getting the wrong data type passed

to you, and poor performance because you must make repeatedly such checks. And

of course, not shown here, is that COM is married to Windows, and CAPE-OPEN as

an open standard should not rely on any commercial operating system. For COBIA

we target Windows, linux, OSX, and perhaps others.

4

COBIA stands for CAPE-OPEN Binary Interop Architecture. Its development is

planned in three phases.

Phase I include prototyping for a subset of the interfaces, on Windows only, Thermo

1.1 only, with a test PME and test PMC and full COM interop. It is the proof of

concept stage and was completed last year.

Phase II extends the CAPE-OPEN interface set beyond just thermodynamics. Still

Windows only, and still native only, with C++ as the only language binding. Which

covers a good deal of the current CAPE-OPEN application field. At this stage the

COBIA IDL will be created and stub generation and any marshaling process can use

information parsed directly from the IDL. Marshaling itself will not be implemented

though, but as we operate directly from IDL, custom interfaces are implemented.

Phase two is partly completed, and this is what we will be talking about today.

Phase III will introduce platform independence, and implementations on different

platforms talking to each other, via marshaling.

5

Here’s a recap of phase 1. In phase 1 all the ground work was done: we have a

CAPE-OPEN registry, we have defined how all CAPE-OPEN data types work and

provided basic implementations for C++. We have formulated the C++ language

binding. We have put the glue between COM and COBIA, COMBIA, in place. A

test PME and test PMC were written, which are running on Windows and linux, and

tested against a variety of compilers, thereby providing proof of concept of a binary

interface. And a PMC registration utility was provided. All of this was verified by

the M&T Special Interest Group.

6

So to refresh your memory on COMBIA: COM components will talk directly to

COM components, as before. Similarly, COBIA components will talk directly to

COBIA components. However, on Windows, we want to be able to use COBIA

PMCs directly from COM PMEs and vice versa. This is where COMBIA comes in.

From a COM PME, COMBIA is invoked as a wrapper around COBIA PMCs. This

implies that registering a COBIA PMC also makes the equivalent COM registry

entry. From a COBIA PME, additional registration requirements are not present, as

COBIA on Windows will directly look into the COM registry for PMCs and will

instantiate a COM PMC using COMBIA as a wrapper.

7

The C++ language binding resulting from phase 1 makes that a COBIA based

CAPE-OPEN object can look like this: a regular C++ class, derived from COBIA

base object. Each CAPE-OPEN interface is implemented by deriving from a CAPE-

OPEN adapter class. The adapter implements the raw CAPE-OPEN interface. The

adapter will subsequently depend on functions being implemented in your class....

8

... as shown here for ICapeIdentification. These functions are called by the adapter

base class. Phase II of COBIA revolved largely around generating all required code,

the raw interfaces, the C++ wrapper classes, the adapter classes, manipulating the

CAPE-OPEN classes to derive from the proper classes, and generating the stub

code, directly from the IDL.

9

With code generation in place, development of CAPE-OPEN components is then

reduced to: knowing which interfaces to implement, generating the code skeleton,

and implementing the methods that are generated for you.

10

COBIA Phase II focuses on the code generation.

11

So let’s look closer at the phase II deliveries. In the following slides I will go over

all of these separately. In short, we need the complete IDL, the IDL parser, the C++

stub code generator, the COM IDL code generator, an update to COMBIA to reflect

all the above changes, and an installer to put it all on the user’s system. For now.

Let’s have a closer look.

12

We decided to not name the IDL files IDL, as this is used for both CORBA and

COM idl and will open with system defined tools, such as Microsoft’s MIDL. The

file extension for CAPE-OPEN IDL will be CIDL. The COBIA CAPE-OPEN 1.1

type library is not the same as the COM one, as several differences between COM

and COBIA are addressed in the type library, including strong typing. But in the

future we hope to have one CAPE-OPEN IDL, and generate the COM idl from

there.

The COBIA CAPE-OPEN 1.1 IDL is therefore a partial port of the COM IDL.

Thermo 1.0 is not included. The Thermo SIG has advised that all new developments

should use CAPE-OPEN 1.1. This includes COBIA. The Thermo group has

expressed that implementing direct support for 1.0 is undesired, as all new

implementations will then still remain with the situation of having to implement

dual thermo support. The Thermo SIG also advises against an automatic conversion

between CAPE-OPEN 1.0 and 1.1 thermo in the translation between COM and

COBIA, COMBIA, as this translation is not 1:1 and open to interpretation, and there

is not much business drive anymore for such an implementation, and it will incur a

substantial amount of undesired future maintenance overhead because if we provide

this layer, people will actually get to depend on it. So no Thermo 1.0.

Included is Unit, Thermo 1.1 and all common interfaces. Interfaces that are

currently under development, such as reaction and monitoring, can be added once

published. Pending items are:

Parameters – which were deemed for a COBIA specific redesign as part of the

COBIA target is strong typing, and the current definition of parameters is not. An IDL has

been proposed and is pending M&T SIG review.

Persistence – current persistence interfaces are defined by COM, so COBIA persistence

interfaces must be defined. We can make a lot of improvements here. Again, an IDL has been

proposed and is pending M&T SIG review.

And then there are interfaces that are not widely used, for which we have no business cases of

porting them, until somebody points out that there are business cases. These include all

numeric interfaces.

12

13

The parser is built on Berkeley YACC, which is freeware. Alternatively one could

use GNU’s Bison to compile the grammar file, as Bison and YACC are compatible.

Both the YACC input and output will be part of the COBIA source code, so one

does not actually need to install YACC to compile COBIA. The parser is

implemented as a separate shared library, with a public plain C interface for binary

compatibility between compilers, much like the COBIA interfaces itself. C++

wrappers for these interfaces are also provided, so that you can immediately write a

C++ application yourself that takes COBIA IDL files and uses the data in it.

The data is returned as interfaces to a parser tree, containing Category IDs (which

are in COBIA IDL but not in COM IDL), Enumerations and Interfaces. Interfaces

contain a collection of Methods, Methods contain a collection of Arguments. All of

these contain a collection of IDL attributes.

Note that the data objects out of the parser will also be available from the COBIA

registry – but that will be part of COBIA phase III as this is required not for code

generation, but for marshaling.

14

The IDL parse tree is subsequently used for code generation, and in a later stage

marshaling. The C++ code generator is part of phase II. Seven distinct steps can be

identified in the code generation process. The IDL interfaces must be compiled to

the raw, plain C, interfaces. We need C++ wrapper classes around these interfaces

that do things like reference counting. Think of these as smart pointers, but they do

more, they also use C++ rather than plain C access to all CAPE-OPEN data types

and deal with exception handling. Then we need to generate interface adapters,

which are base classes of CAPE-OPEN objects. These will take care of

implementing the plain C interface for you and adapting all types to something

more convenient for C++. This includes the data types and exception handling as

well. Just like COM servers, COBIA PMC modules must have entry points for the

class factory and object registration. These entry points are generated by the code

generator upon request. Finally the code generator can create CAPE-OPEN classes

for you, and you can tell it to implement interfaces on these classes. The latter

means that the class must derived from the appropriate adapters and must

implement certain functions, the stub code for which is generated for you.

15

Roughly, the code generation functions divide into two categories: creating C++

language binding from the IDL, in orange, and implementing CAPE-OPEN objects,

in yellow. As such, the part in orange is used to create the COBIA client header files

from the COBIA IDL. So COBIA code is now used to generate part of the COBIA

code. But developers can also use this part to create a language binding for their

custom interfaces in their own IDL.

The part in yellow is really meant to construct code specific to a particular

implementation.

16

The code generators themselves are implemented along interfaces that are plain C

and look much like the COBIA version of CAPE-OPEN interfaces. Therefore, code

generators for other language bindings will have the same 7 tasks. One of those is

the code generator for COM IDL. It has only one of these 7 tasks implemented,

which is the Raw Interfaces. If you ask the COM code generator to do anything else,

it will tell you that it is not supported for the COM language binding.

17

The COM code generator generates COM IDL from COBIA IDL. Which is not

useful for the 1.1 CAPE-OPEN type library itself, as these have a COM definition

that differs from the COBIA definition. But in the future hopefully we’ll define the

interface set in COBIA IDL and generate compatible COM IDL from there. Also

this can be done for custom types in IDL written by developers for interop between

COM and COBIA.

18

The code generators are provided in separate modules, and can be used from a

generic interface, for which C++ wrappers and adapters are provided. So you can

write your own language binding just by implementing a code generator, but you

can also use the code generators to set up your own wizards, such as a CAPE-OPEN

object wizards in Visual Studio.

19

Such a wizard is at this point not provided, but there is a command line application

that you can use, that has a whole bunch of command line options to tell it what to

do. I am not going through all of these options now, I cannot even get them to all fit

on this slide. Just type COBIA_CODEGEN and the application itself will tell you.

20

One delivery is to make sure that COM interop is in place for all the new

functionality. This requires a COMBIA update, which is not yet done, mostly

because the IDL is not complete yet. COMBIA will, for phase II, not support

custom interfaces, as providing support for interfaces that are not known at compile

time requires functionality very close to marshaling, which is part of phase 3.

21

The last delivery will be an installer. This will not be the official CO-LaN installer,

but this installer is meant for people to get started developing, testing and

contributing to COBIA prior to its release. It will be a Nullsoft installer, and it will

be available on Windows only. Essentially this puts COBIA itself and the

development headers in place. Optionally also the source and the test binaries.

The installer is not made yet. But that is of course not a lot of work.

22

To conclude. COBIA phase II is well on its way – most of the coding is done. It is

just a matter of agreeing on the content of the IDL.

Phase I has already shown that COBIA meets all its targets of system independent,

less error prone, easier development of CAPE-OPEN components. For me it

remains unchanged that COBIA gets three thumbs up, on a scale of three.

Most of the code is checked in already into the CAPE-OPEN repository, and the rest

will follow as soon as the M&T SIG converges on the parameter and persistence

interfaces.

23

Please try the code that is there. COBIA is not a hobby of the M&T SIG, we want

COBIA to be the basis underlying all CAPE-OPEN interactions in the future. This

will only work if we all agree on how it works. So try. The code is available to all

CO-LaN members. If you have not yet access to the repository, please ask to set that

up for you. And please let us know what you think.

