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SUMMARY

This document aims at defining CAPE-OPEN standard interfaces for the definition and solution of Systems
of Partial Differential Algebraic Equations (PDAEs). It is an extension of the existing CAPE-OPEN
Numerics specification for Linear Algebraic, Non-Linear Algebraic and Differential Algebraic Equation
Solvers (LAEs, NLAEs and DAEs).

First, an object model covering all necessary elements to generally describe PDAEs has been developed.
Based on this the PDAESO interfaces have been developed, which provide all information required by a
PDAE solver for their solution. For the solver interface itself the approach of the existing GCO Numerics
specification has been used. This means, the solver can be provided with any parameters via the generic
parameter list.
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1. Introduction

The models under consideration in this document consist of Systems of Partial Differential Algebraic
Equations (PDAEs).

This interface specification aims at extending the existing CAPE-OPEN (CO) Numerics specification for
Differential- Algebraic Equation Systems (DAEs) towards PDAEs. In PDAEs the dependent model variables
depend on one or more independent variables. Independent variables are for instance spatial coordinates,
particulate coordinates (in case of population balance models) or time (in case of dynamic models). Thus,
models of computational fluid dynamics are also included in this class of problems. Examples include
packed bed tubular reactors, packed bed absorption and distillation columns, pipelines, etc. In other types of
units, some of the properties of the material are characterised by probability density functions instead of
single scalar values. Examples include crystallisation units and polymerisation reactors, in which the size of
the crystals and the length of the polymer chains respectively are determined by population balances and
described in terms of distribution functions. Of course, the latter may also vary with both time and spatial
position.

Notice that the new requirements which extend the ones of the existing Numerics specification for DAEs can
be stated quite straight forward. This is done in the following requirements chapter. Further, more general
requirements are given in the CO Numerics specification. However the conceptual extensions in the interface
design in order to cover PDAEs are quite complex. Therefore these are explained in detail in the Analysis
and Design chapter.
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2. Requirements

This chapter introduces the requirements developed by the project team. It contains a textual description
followed by use cases, other diagrams and scenarios.

2.1 Textual requirements

In CO we were concerned with the solution of three different types of mathematical problem:

(i) The solution of square systems of linear algebraic equations.

(ii) The solution of square systems of nonlinear algebraic equations.

(iii) The solution of mixed square systems of ordinary differential and algebraic equations
(DAEs) over time or another independent variable.

In this document the range of problems is extended to:

(iv) The solution of mixed square systems of partial differential algebraic equations (PDAEs)
over n independent variables including time.

2.2 Use cases

2.2.1 Actors

2.2.2 List of Use Cases

Put the full list of use cases of section 2.2.4 here.

 UC-001: Unit defines PDAEs to be solved

 UC-002: Advance PDAE solution

2.2.3 Use Cases Maps

2.2.4 Use Cases

SYSTEM INITIALISATION

UC-001 UNIT DEFINES PDAES TO BE SOLVED

Actors: Flowsheet Unit

Priority: medium

Classification: System Initialisation

Context:

Pre-conditions: A PDAE system has been selected and an instance of it created and configured
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Flow of events: The Flowsheet Unit identifies a subset of its equations and variables as a differential-algebraic problem,
and sets up a DAE system to handle this problem during execution. It also generates or otherwise obtains initial guesses
for all unknowns.

Post-conditions:

Errors:

Uses:

Extends:

SOLVER EXECUTION

 

Advance 
PDAE Solution  DAE Solver 

UC-002 ADVANCE PDAE SOLUTION

Actors: DAE Solver

Priority: medium

Classification: Solver Execution

Context:

Pre-conditions:

Flow of events: The PDAE Solver carries out steps in the independent variables. It interacts with the global differential-
algebraic equation and variable sets as follows :

(v) it changes the variable values

(vi) it requests residual values corresponding to the latest variable values it has supplied

(vii) it requests Jacobian information of the equation Solvers

The termination condition will be provided by the Simulator Executive. It will consist either of an explicit target value
of the independent variable, or a condition on a particular variable value.

The numerical method will involve an iterative procedure.

Note : this use case is written only for EO simulators

Post-conditions:

Errors:

Uses:

Extends:
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2.3 Sequence diagrams

At the requirements stage no Sequence diagrams are required.
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3. Analysis and Design

3.1 Overview

3.1.1 Description of Partial Differential Algebraic Equations (Analysis)

In the following the concepts used to represent distributed Solvers are presented.

3.1.1..1 Domain
Prior to establishing any equation, it needs to be clear which set of domains (for instance spatial directions or
particle size distributions) is to be involved. These domains define an independent variable by specifying its
name (e.g.’AXIAL’) and a lower and upper bound (e.g. 0..1). All domains are continuous, i.e. a closed
domain that consists of a subset of R. Discrete domains are not considered as such, because they can be dealt
with sufficiently by simply introducing further variables.

Once the domains are established, it is possible to devise variables that are distributed on these domains.

3.1.1..2 Variable
Somewhat different to the (independent) variables, which are described by domains, are the dependent
variables. They denote a state of the equation under consideration. A variable is identified by a name, a lower
and upper bound for its value and a preset value. Most important for the purpose of the document is the
distribution of the variable that is represented by a number of associated domains. The variable is interpreted
as being distributed over the Cartesian product of all associated domains. The assumption limits the scope of
the object model to simple geometries, but avoids for example the need to describe geometries of a Solver.

Due to its distribution, a variable will have a separate value for each grid point.

3.1.1..3 Equation validity domains
An equation constrains the values of occurring variables. As such, it is defined for the whole interior part of a
domain, and can be extended to the boundary as well. Thus, equation validity domains are a subset of
variable domains. The domain boundaries of an equation can either be of type CLOSED or OPEN.

In case domain boundaries are open, boundary conditions have to be specified at the corresponding
boundaries. These in turn are treated as equations placed on point domains, i.e. domains with the same lower
and upper bound and only one domain boundary open.

3.1.1..4 Projected Domains
Projected Domains are required if an equation involves dependent variables with one or more of the
independent variables (or time) fixed at a specific value, for instance ),0,,(),,,( 4214321 zzzxzzzzx PP = .
All dependent variables x other than xP are assumed to be always distributed over the full extent of associated
domains, i.e. no domain with LB≤ z ≤ UB with fixed at one single value.

3.1.1..5 Equations
Having defined domains, variables and equation validity domains, it is now possible to pose equations
involving defined variables on defined equation validity domains. Because the goal of this work is to develop
standards for engineering applications mainly involving balance equations, and thus, considering convective,
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diffusive and source terms, only, the Partial Differential Algebraic Equation (PDAE) under consideration has
been assumed to be of the following quite general, transparent and flexible superstructure.
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The symbols have the following meaning:

F is the vector of equations making up the overall PDAEs,

f is the convective term,

g is the diffusive term,

k is the source term,

x is the vector of state variables,

xP is the vector of state variables on projected domains1,

t is the independent variable time,

z is the vector of independent variables (other than time),

f, g, k are function of the state variables x and xz and the independent variables z and t.

The terms 
z
x

∂
∂

denote the partial derivatives of x with respect to independent variables,

The terms ),,( tzxf
t∂

∂
denote the partial derivatives of f with respect to time,
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z
,,, denote the partial derivatives of g with respect to independent variables,

L is the vector of lower bounds of the (open or closed) interval on which an equation is defined, and

U is the vector of upper bounds of the (open or closed) interval on which an equation is defined.

The formulation does not make any assumptions on the structure of the equation Solver, i.e. the linear as well
as the nonlinear case are supported. However, restriction is to explicitly include derivatives of order two or
less. Higher order derivatives, though, can always be included using dummy derivatives. Further, apart from
transparency reasons, the reason for explicitly introducing time as a distinct domain is that there is exactly
one time for the overall equation Solver which is the same for all equations. Spatial or particulate coordinates
on the other hand are usually accounted for separately in distinct process models.

The independent variables z occurring in the Solver formulation are subsequently called domains, each
defined by a name, a lower and an upper bound. Equation validity domains are established using domains
plus additional information on whether they are regarded to have closed or open boundaries on its two ends.

                                                     

1 Projected domains are necessary if equations involve dependent variables with one or more of the independent
variables (or time) fixed, e.g. )0()( xzx = .
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Each of the variables x occurring in the PDAEs can (but do not have to be) distributed on any number of
domains and are then interpreted as a function of the independent variables (cf. Hackenberg, et al., 2000).

3.1.1..6 The Partial Differential Algebraic Equation Set Object
The Partial Differential Algebraic Equation Set Object (PDAESO) concept defines a partial differential
algebraic equation system from a mathematical/numerical point of view. It defines a number of domains,
variables, equation validity domains and equations, which are denoted with PDAESODomain,
PDAESOVariable, PDAESOEqDomain, and PDAESOEquation, respectively. Note that besides the problem-
specific independent variables defined, a domain time is always present in the PDAESO.

Based on this information, it is assumed that the PDAE Solver under consideration is of the general form
presented above.

 The following object model explains the relationships of the concepts introduced:

 
PDAESO 

Equation

0..n 

1 

+contains 

Variable

+contains

EquationValidityDomain 

1..n

1 

Domain 

0..n 

1 

+contains 

0..n 

1 

0..n 1

+is distributed on 

1 

1
+is subset of 

+is defined on

10..n 
1 

1

1 

0..n 

1 

1..n

0..n 

Figure 1 (High-level) Object model for partial differential algebraic equation Solvers

3.1.2 Design

3.1.2..1 Relation to previously defined interfaces
In CAPE-Open, the interfaces for the solution of linear algebraic (LA), non-linear algebraic (NLA) and
differential algebraic (DA) systems have been specified. There the interface architecture is based on three
main concepts, called Equation Set Object (ESO), Solver and Solver Manager.

The ESOs represent models, which are defined as a set of algebraic equations in case of steady state models
and as a mixed set of differential and algebraic equations in case of dynamic models. The interface to this
object provides the information required by solver objects.

The Solver is concerned with the solution of the ESO equations and the Solver Manager with the creation of
instances of Solvers. Conceptually the Solver contains both the ESO and the numerical algorithms for the
solution. On the interface level this is reflected as follows. The interface to the solver gives access to the
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solver object, i.e. allows its configuration and the invocation of the “solve” command. Therefore the solver
contains the numerical algorithm.

Further, a solver is created by the solver manager for a specific ESO. On the interface level this is reflected
by a method of the solver manager interface “CreateSolver”, which creates an instance of a solver. A
parameter, which has to be specified as input to this method, is the address of the ESO for which the solver is
to be created. Therefore the solver contains as well the ESO (via its address). If the “solve” method is
invoked on the solver, the numerical algorithm will use the ESO address to obtain the necessary information.

In the present document the interfaces are specified which extend the framework outlined above to the
solution of partial differential algebraic equations.

3.1.2..2 Solvers
In the CAPE-OPEN project, the following classes of solver objects had been introduced and defined. They
contain both the data that characterise the mathematical problem and the numerical algorithm that solves this
problem.

•  The Linear Algebraic Solver(LASolver) object.

•  The Nonlinear Algebraic Solver (NLASolver) object.

•  The Differential-Algebraic Equation Solver (DAESolver) object.

Here one additional class of Solver object is introduced to consider the problem of PDAES.

•  The Partial-Differential-Algebraic Equation Solver (PDAESolver) object.

In the rest of this document, we will generically refer to these objects as “Solvers”.

3.1.2..3 Solver Manager
Solver Manager objects are used to create instances of the corresponding Solver using information that
defines the structure of each such instance (i.e. ESO address and algorithmic parameters of solver object).

Recall, that in the CAPE-OPEN project, the following Manager classes were introduced:

(i) The Linear Algebraic Solver Manager (LASolverManager).

(ii) The Nonlinear Algebraic Solver Manager (NLASolverManager).

(iii) The Differential-Algebraic Equation Solver Manager (DAESolverManager).

Here we introduce the SolverManager for PDAESolvers:

(iv) The Partial-Differential-Algebraic Equation Solver Manager (PDAESolverManager).

3.1.2..4 The Equation Set Object
In Keeping and Pantelides (1999), the concept of an Equation Set Object (ESO) has been introduced as
means of defining information concerning large sets of nonlinear equations of any kind in a way that can be
accessed and used by instances of NLASolvers and DAESolvers.
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The Equation Set Object is an abstraction representing a square or rectangular set of equations. These are the
equations that define the physical behaviour of the process2 under consideration, and which must be solved
within a flowsheeting problem. The interface to this object is intended to serve the needs of the various
solver objects by allowing them to obtain information about the size and structure of the Solver, to adjust the
values of variables occurring in it, and to compute the resulting equation residuals and, potentially, other
related information (e.g. partial derivatives). Hence, this interface requires standardisation as part of CAPE-
OPEN. However, the construction of such an object is a proprietary matter for individual vendors of
flowsheeting packages and is not standardised as part of CAPE-OPEN.

More specifically, an ESO supports a number of operations including the following:

•  Obtain the current values of a specified subset of the variables.

•  Alter the values of any specified subset of the variables.

•  Get the structure3 of the sparse matrix representing the partial derivatives of a specified subset of the
equations with respect to a specified subset of the variables.

•  Compute the residuals of any specified subset of the equations at the current variable values.

•  Get a sparse matrix containing the values of the partial derivatives of a specified subset of the
equations with respect to a specified subset of the variables (at the object’s current variable values).

A more complete definition is given in Keeping and Pantelides (1999).

The information associated with an ESO differs depending on whether the set of equations being described is
purely algebraic (as is the case with the NLASolver class mentioned above), mixed differential and algebraic
(as in the case of DAESolver) or mixed, partial differential and algebraic (as in the case of PDAESolver).
For this reason, Keeping and Pantelides (1999) introduce a hierarchy of ESOs, which comprises two classes:

(i) Class AlgebraicESO defines a purely algebraic set of equations.

(ii) Class DifferentialAlgebraicESO inherits from class AlgebraicESO and refines it to define a
mixed set of differential and algebraic equations.

In the present specification we introduce the ESO which defines a mixed set of differential algebraic
equations:

(iii) Class PartialDifferentialAlgebraicESO.

3.1.2..5 The Partial Differential Algebraic Equation Set Object
As introduced above, a PDAESO contains a number of domains, variables, equation validity domains and
equations. The equations are of the following form,
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2 Here, the term “process” may mean the entire plant being modelled, a plant section or, indeed, a single unit operation
or part thereof.

3  i.e. a list of the partial derivatives which will not be identically zero for all values of the variables.
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where wf, wg and wk denote the terms of the system as given in the formula.

In order to treat this Solver effectively in the concept of an Equation Set Object (ESO), we distinguish
between an inner ESO and an outer ESO.

The inner ESO is concerned with the evaluation of equations f, g, k as a function of the state variables x and
xz (the latter being the derivative of x with respect to z, which is derived by the PDAE solver by means of
discretisation) and the independent variables z and t. In fact, due to the distributed nature of the problem, the
inner ESO is evaluated at a certain point (given by the independent variables) on the grid. As such, it will
have to be evaluated a number of times to cover all possible grid points.

In order to treat the Solver using an Equation Set Object, the equations and variables need to be placed into
one contiguous vector each. This leads to the introduction of E, the set of functions f,g,k and v, the set of

variables x, xP, xz, z, t,, where xz = 
z
x

∂
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E is called the vector of inner equations and is of dimension NIE:

NIE=dim(f)+dim(g)+ dim(k).

The variables x, xP, xz, z, t are mapped into the vector v:
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These variables are called inner variables v1,..,vNIV, where

NIV= dim(x)+ dim(xP)+dim(xz)+dim(z)+1.

Altogether, they constitute the inner ESO called innerESO, which is of type ICapeNumericESO.
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In order to do a proper mapping, interfaces are defined which allow the unambiguous distinction of inner
variables by their kind. The inner variable can be one of five kinds:

•  Kind: IDVariable (x)

The inner variable is a dependent variable, and the InnerDependentVariable interface provides means to
access the corresponding PDAESOVariable.

•  Kind: IDPVariable (xP)
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The inner variable is a dependent variable on a projected domain, and the InnerDependentProjectedVariable
interface provides means to access the corresponding PDAESOVariable as well as the information required
due to the projection of domains.

•  Kind: IDDVariable (xz)

The inner variable is a partial differentiated dependent variable, and the InnerDependentVariableDerivative
interface provides means to access the corresponding PDAESOVariable as well as the corresponding
PDAESODomain.

•  Kind: IIVariable (z)

The inner variable is an independent variable (other than time), and the InnerIndependentVariable interface
provides means to access the corresponding PDAESODomain.

•  Kind: ITVariable ( t)

The inner variable is the somewhat special independent variable time.

Apart from the information about the kind, the InnerVariable interface also has to provide means to access
the index of the corresponding PDAESOVariable or PDAESODomain in their corresponding lists. This
assigns an inner variable used in the innerESO to exactly one PDAESOVariable or PDAESODomain as used
by the PDAE solver and establishes the required link.

The outer Solver is concerned with the evaluation of the overall equations F as a function of the expressions
w, which previously have been introduced and distinguished by wf, wg and wk for transparency reasons.
Subsequently, we call this the outer ESO.

The outer ESO is an Equation Set Object (ICapeNumericESO) on the set of outer functions F.

0)(),,( ≡= wFwwwF kgf

where w is called the vector of outer variables, w1,..,wNOV,

NOV= dim(wf)+ dim(wg)+dim(wk).
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From the outer variables, wf and wg denote the partial derivatives of f with respect to t and g with respect to z,
respectively. The term wk is equal to k and summarises all (nonlinear) terms, which cannot be classed into
one of the other groups.

For instance, ),,,( tzxxf
t

w Pf

∂
∂= .

The outer variables can be obtained from the inner equations for instance by discretisation and/or quadrature
formulae. This is the task of each PDAE Solver internally. Some ways of solving it will be discussed in
Section 6.2.

The following figure presents the concepts introduced above.
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3.2 Sequence diagrams

This section lists the sequence diagrams. To facilitate a better understanding, in the present case they are
given in algorithmic form. The solution process is described using the interfaces presented in Section 3.3 and
defined in Chapter 3.6.

3.2.1 Solution Process

In the following, it is explained how a solver could use the PDAESO to solve the problem contained in it.
After a very brief introduction to the set-up, the step AdvanceSolution is considered in great detail, in order
to build up the understanding step-by-step. For this purpose, it turned out to be advantageous to consider a
simple DAE case initially, before introducing further concepts and steps to deal with the more complex case
of PDAE systems appropriately.

3.2.1..1 Set-Up
Assume a particular model with domains, variables, equation validity domains and equations (incl. boundary
conditions) to be given. Now, the solver can be set up using the following calls to the PDAESO:

•  PDAESO -> GetDomains

•  PDAESO -> GetVariables

•  PDAESO -> GetEquations

These three calls return lists of interfaces, one each for PDAESODomain, PDAESOVariable and
PDAESOEquation. Interfaces are established independently of the actual distribution of a variable over a
(number of) domain(s), i.e. any kind of discretisation is done internally in the solver and as such,
unimportant for the interface specification.
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3.2.1..2 Advance Solution – DAE case

Let us assume at this stage that we are dealing with a DAE Solver, i.e. outer variables gw as appearing in

Figure 3.2 are assumed to be zero, and differentials 
z
x

∂
∂

 to be non-existing.

Overall, we are faced with two nested loops or iterations. One to proceed in time and one to decrease the
residuals of the equations within that particular time step (close enough) to zero.
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Newton: xn
k+1=N(xn

k, F, (dF/dx)n
k) )

For the moment we assume we want to integrate the DAE Solver from an already established time step tn-1 to
time step tn. This means we want to receive the values of all inner variables v at time tn, i.e. vn. Further we
assume that we use a Newton Algorithm in order to receive a good approximation for vn. Let’s denote the
value of v in the Newton iteration step k within time step tn as vn

k. Lets assume that the value of vn
k has been

established and now we want to get the next, better approximation vn
k+1.

To summarise, the solver knows:

•  vn
k, the value of the last iteration step within the present time step

•  s, where s is an array containing the values of vector v at the previous time steps, i.e. s(tn-1, tn-2,....) =
(vn-1, vn-2, ...).

Our goal is to calculate the values of the next iteration step k+1 of v by using a Newton type algorithm:
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vn
k+1 = vn

k – (F¦ t=tn, iteration step k * (dF/dv)-1 ¦t=tn, iteration step k).

Remember that vn
k is known from the previous iteration step. The values for F¦ t=tn, iteration step k and (dF/dv)-1

¦t=tn, iteration step k will have to be calculated by using the inner and outer ESO.

Calculating F¦ t=tn, iteration step k means to evaluate F(wn
k). For this purpose wn

k has to be constructed. This can be
done as follows. First, the addresses of the outer variable interfaces have to be received by the solver. In the
following the calls of the solver to the PDAESO interfaces will be written in a pseudo algorithmic way and
in courier new font.

// get references to outer variable interfaces
OuterVariableRef := PDAESO -> GetOuterVariables

Then the solver has to ask the PDAESO for the outerESO in order to ask it for the number of outerVariables.

// receive reference of outer ESO
OuterESO := PDAESO -> GetOuterESO

// receive number of variables w in outer ESO
NOV := OuterESO -> GetNumVars

Now the outerVariable array wn
k has to be constructed in a way which depends on the type of the outer

variable. In the time dependent DAE case this means simply constructing the time derivatives df/t and
receiving the source terms k (see figure). This is written down in a pseudo algorithmic way below in
Procedure 1.

// Procedure 1: “Construct wn
k and receive corresp. Residuals F(wn

k)”
// from outer ESO,
// vn

k is the result of the last Newton iteration within the
// calculation of time step tn

// go through all outer variables
FOR i:=1 TO NOV DO

OuterVariableKind:=OuterVariableRef(i)->GetKind

IF OuterVariableKind=”fFunction” THEN
// case partial derivative wrt time
// w(i)= δfj/δt = δE(i)/δt

// This is an example of how the derivative could be constructed,
// see how vn

k is constructed below in Procedure 2, vn is the known
// result from the previous time step tn.

w(i)n+1
k= (E(i, vn

k) – E(i, vn-1)) / (tn-tn-1)

ELSEIF OuterVariableKind=”kFunction” THEN
// case source term, no changes required to Residuals E

w(i)n
k= E(i, vn

k)

END

Notice that the approach shown above to approximate the derivative df/dt in the solver can be improved by
using the Jacobian of the InnerESO as follows:

dt
tdx

x
txf

t
txf )(*))(())((

∂
∂=

∂
δ  ,

where the first factor of the right hand side df/dx is an element of the Jacibian provided by the InnerESO and
the second factor dx/dt would have to be approximated by the solver.
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Finally the outerVariable values can be set and the residuals received.

OuterESO -> SetVariableValues(wn
k)

// the 0 as argument of GetResiduals denotes that all residuals are requested.
F(wn

k):=OuterESO -> GetResiduals(0)

However, in the above procedure the residuals of the innerESO E are required for v=vn
k and v=vn-1

k, i.e. the
calls

InnerESO -> SetVariableValues(vn-1)

E(i, vn-1):=InnerESO -> GetResiduals(i)

and

InnerESO -> SetVariableValues(vn
k)

E(i, vn
k):=InnerESO -> GetResiduals(i)

have to be issued to the InnerESO. Notice, that vn-1 is known from the previous time step, and vn
k is the value

of the last iteration step within time step tn.

Now the Jacobian (dF/dv) ¦t=tn, iteration step k has to be constructed. This could be done for example as follows:

(dF/dv) ¦t=tn, iteration step k= (F(wn
k)- F(wn

k-1) / (vn
k- vn

k-1)

where wn
k is constructed as shown in Procedure 1, wn

k-1 will be known from the last iteration step and vn
k,

vn
k-1 are the values of the last two iteration steps within time step tn . However in terms of computation cost

and numerical stability this may not be a satisfactory approach.

Alternatively, if the OuterESO provides all Jacobian entries, (dF/dw) ¦t=tn, iteration step k can be obtained from the
OuterESO as follows:

(dF/dw) ¦t=tn, iteration stepk = OuterESO->GetJacobianValues

The Jacobian (dF/dv) ¦t=tn, iteration step k could be obtained by evaluating (dw/dv) ¦t=tn, iteration step k (as described for
an example in the Appendix xxx) and

(dF/dv) ¦t=tn, iteration step k = (dF/dw) ¦t=tn, iteration step k * (dw/dv) ¦t=tn, iteration step k.

Now all information is available to perform the next Newton step as described above.

So far we assumed that we know the value of v of the previous iteration step k-1, vn
k-1. However for the first

iteration (k=0) of a new time step n we have to provide the first guess for v, vn
0 which includes to set the time

t =tn. This is described for the DAE case below in Procedure 2.

Before that we have to ask the PDAESO for the InnerVariables, the InnerESO itself and the number of its
variables NIV.
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InnerVariableRef := PDAESO->GetInnerVariables
InnerESO:= PDAESO->GetInnerESO
NIV := InnerESO->GetNumVars

// Procedure 2: Construct inner ESO variable vector vn
0.

FOR i:=1 TO NIV DO

InnerVariableKind:=InnerVariableRef(i)->GetKind

IF InnerVariableKind=”IDVARIABLE” THEN
// case InnerDependentVariable
v(i)n

0 := guess from(s,(ds/dt))

ELSEIF InnerVariableKind=”IIVariable” THEN
// case InnerIndependentVariable: do nothing

ELSEIF InnerVariableKind=”ITVariable” THEN
// case InnerTimeVariable
v(i)n

0 := tn

END

The corresponding Residuals En
0 and the Jacobian can be obtained by setting the variable values

InnerESO -> SetVariableValues(vn
0)

And make the following calls

E(vn
0) :=InnerESO -> GetResiduals

(dE/dv) ¦t=tn, iteration step 0 = InnerESO->GetJacobianValues.

3.2.1..3 Advance Solution – PDAE case
Having understood the DAE case, we are now ready to proceed with the PDAE case. Once more, we are
faced with two nested loops or iterations. One to proceed in time (called time stepping) and one to decrease
the residuals of the equations within that particular time step (close enough) to zero (called residual
iteration). The overall process is once more demonstrated in Figure 3.2.

Assume that we have just finished to determine the dependent variables at time step tn-1 and are now looking
to proceed to time step tn. Without going into too much detail here, it can be assumed that the solver has been
able to provide guesses (for instance, using a Newton-type algorithm) for the dependent variables x at time tn.

However, this estimate most likely is not going to be good enough to satisfy all equations F straight away
without need for further modification. Thus, we need to iterate the values of x within time step tn using
another Newton-type iteration. In order to distinguish time stepping from residual iteration, we denote a
residual iteration by superscript k and time stepping by subscript n. Thus, xn

k indicates the dependent variable
vector x at residual iteration step k within time step n.

The distinction of variables into dependent, independent, projected and so on arises from their physical
meaning. The solver, however, simply works on one long array comprising all variables regardless of their
physical meaning, called the inner variable vector v. Thus, if we say that the solver provides guesses for xn

k,
it is rather particular entries of the vector v that are known.

Note, that there is one vector of inner variables for each point on the grids for z and t, i.e. more
appropriately, it should be v(z,t), even though the values of z and t are also stored inside the vector itself. Due
to the design of the innerESO, which can handle only one vector v at a time and not an array of vectors v (i.e.
a tensor) for all z at a given tn, it is once more the task of the PDAE solver to keep track of all vectors v
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corresponding to a particular z and t. This is achieved by introducing the tensor IVV(i,z,t), which stores all
inner variable vector entries i for each value of independent variables z and time t..

At this stage, the assembly of the inner variable vector needs to be considered in more detail. Apart from the
dependent variables x and independent variables z and t, the inner variable vector consists further of the

projected dependent variables xP and the dependent variable derivative(s) 
z
x

∂
∂

. Using the mapping methods

made available through the PDAESO concept, the projected dependent variables xP can very easily be
obtained by copying the values from dependent variables x at the fixed independent variable location and for
all unspecified independent variables. The way the value for the fixed independent variable location (i.e. the
projected domain) is obtained will become apparent in the pseudo code presented at the end of this general
overview.

The dependent variable derivative
z
x

∂
∂

is the partial derivative of a particular dependent variable x with

respect to a particular independent variable z and has to be obtained via discretisation. Using the mapping
information once more, the position of the corresponding dependent variable x in the inner variable vector v,
e.g. j, can be obtained. Further, out of the independent variables z, the direction of differentiation, zDoD, can
be obtained. This information is sufficient to establish the partial derivative by using for instance central
finite differences of spacing ∆zDoD:

DoD

DoDDoDDoDDoD

z
tzzzzjIVVtzzzzjIVVtz

z
x

∆
∆−−∆+=

∂
∂

2
),..,,..,,,(),..,,..,,,(),( 2121

Overall, this gives the vector of inner variables at time step tn and residual iteration step k, vn
k (internally

stored as IVV(i,z,t)n
k by the solver). Providing the innerESO with vn

k enables us to invoke the solve command
and returns the values of the inner equation vector En

k, which contains the list of f, g and k, for all z and t.

The dependence of E on z and t once more needs to be handled appropriately by the PDAE solver, e.g. by
introducing a tensor IEV(i,z,t), which stores E(i) for each value of z and t.

So far, we have dealt with exclusively the inner Solver. However, it is only the outer Solver that provides a
direct indication of how well the overall equations F are satisfied.

The outer Solver is given by the outerESO and requires the outer variable vector w to be set, before the solve
command can be invoked on the outerESO in order to obtain F. Each entry in the outer variable vector w is
either wf, wg or wk, i.e. the partial derivatives of f with respect to t, the partial derivatives of g with respect to
z or plain k, respectively. Note, that because the outerESO (like the innerESO) can evaluate its equations
only for one particular variable vector at a time, there is one w and one F for each value of independent
variables z and t. The outer variable vector w and outer equation vector F is different for each value of
independent variables z and t. Therefore the tensor OVV(i,z,t), which stores all outer variable vector entries i
for each value of independent variables z and time t, is introduced. Accordingly, OEV(i,z,t) stores all outer
equation vector entries i for each value of independent variables z and time t.

The outer variable interface provides means to access mapping information required to obtain the position j
of the equation under consideration in the inner equation vector E, and, if required, the direction of
discretisation, i.e. either t or independent variable zDoD.

Contrary to the outer variable wk, which is simply equal to k, the creation of wf and wg requires a
discretisation step. In the latter case, it is possible to proceed as in the discretisation described above for the
inner dependent variable derivative.

If the outer variable is discretised with respect to zDoD, a PDAE solver might want to use forward
differentiation on step size ∆zDoD, for instance. This requires the value of g at multiple values of independent
variable zDoD, which can be accessed readily via tensor IEV(j,z,t).
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If the outer variable is discretised with respect to time t, the values of inner equations at previous time steps
is required. This brings us back to remember the two loops mentioned initially. It is the time stepping loop
that has computed the required values of IEV(z,t) at previous time steps tn-1, tn-2, …, and information is
readily available. Assume a PDAE solver might want to use backward differentiation. The time step is given
by ∆tn=tn-tn-1.

n

nnf

t
tzjIEVtzjIEV

t
fw

∆
−=

∂
∂= − ),,(),,( 1

As already mentioned, the outer variable k is equal to the value of the corresponding equation j in the inner
equation vector.

),,( tzjIEVwk =

Overall, the vector w of outer variables can be established by proper insertion of wf, wg and wk. Once w is
established, it can be set in the outerESO and the solve command invoked. This returns the values of outer
equations F.

For reasons mentioned earlier, this whole procedure on the outer ESO needs to be repeated for each value of
independent variable z and t, in order to create OVV and OEV, which exist for all values of z and t.

Taking a step back, what have we achieved so far? Basically, we are now able to calculate the vector of outer
variables for all z and t given values of dependent variables x for all z and t.

This is essential for the residual iteration. Here, we started off by a given guess for xn
k. Following the steps

above, we can obtain the values of Fn
k. If they are not close enough to zero, we have to create better guesses

in order to get a better guess than the previous for our dependent variables x. This new guess we denote by
xn

k+1. Executing the whole procedure described above once more, we get a new set of residuals of F, i.e.
Fn

k+1. If they are still not close enough to zero, we need once more better guesses xn
k+2 to evaluate new

residuals Fn
k+2 and so on, until the residuals are close enough to zero and we call the overall equations to be

satisfied at time step tn.

Now, how do we get better guesses? A PDAE solver might use a simple Newton-like algorithm, for instance:
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Even though this gives a new guess for the whole inner variable vector vn
k+1, only the values of v

corresponding to dependent variables x are of interest and have to be extracted using mapping information
provided via the inner variable interface.

Information concerning the partial derivative of F with respect to v can be obtained using the Jacobian

information provided by the innerESO and outerESO, which provide 
w
F

∂
∂

and
v
E

∂
∂

, respectively. Obviously,

the solver would have to consider the influence of the discretisation step, which was used to obtain w from E,

on the attempt to combine both Jacobian matrices in order to calculate 
v
F

∂
∂

.

Once we arrived at satisfying the outer equations F at time step tn, the solver has to come up with an estimate
or guess for the next time step tn+1. For instance, one very easy way would be to use the Jacobian information
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provided by the innerESO, which provides
v
E

∂
∂

. Using the mapping information, it is possible to extract

information concerning
t
f

∂
∂

out of the Jacobian matrix for the innerESO.

Algebraic manipulations transform this to give: 
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. Doing a simple Newton step, the desired

new guesses for the dependent variable vector xn+1 can be obtained.
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At this stage, all the information required to advance the solution in time is present. Note, however, that all
kinds of discretisations or exploitation of derivative information presented above have purely demonstrative
character and do not claim to be appropriate or accurate for a given problem at all. There exists a wide
variety of possibilities how to address the issues of discretisation and derivative processing, but they are not
part of the interface specification at all and part of the PDAE solver itself ( see also Section 6.2 ).

In the following, the whole algorithm as described above is presented in pseudo code. Whenever variables
are to be discretised, the notation δα/δβ is used in order to indicate that this step is done internally by the
solver. Further, it is assumed that all required guesses for the time stepping or residual iteration are provided
by the solver.

// Procedure: OVERALL SOLVER

// construct the inner variable vector at time step tn and residual iteration k

// Procedure: INNER SOLVER

// initially, need to get mapping information
// get reference to innerESO

InnerESO := PDAESO -> GetInnerESO

// get reference to inner variable interfaces

InnerVariableRef := PDAESO -> GetInnerVariables

// InnerVariableRef is a list of innerVariable Interfaces

// receive number of variables in the innerESO

NIV := InnerESO -> GetNumVars

// there is an innerVariable Interface for each i=1..NIV
// each innerVariable v(i) is characterised by its kind
// depending on the kind of v(i), construct the innerVariable vector at tn and k

// Note: there is one innerVariable vector v for one specific value of z and t
// Solver creates and stores the innerVariable vector v for all values of z and // t in
IVV(i,z,t). Thus, the solver needs to loop for all z accordingly.

FOR i:=1 TO NIV DO

InnerVariableKind := InnerVariableRef(i) -> GetKind

IF InnerVariableKind=”IDVARIABLE” THEN
// in case InnerDependentVariable, we get the proper mapping of v(i)
// to its corresponding PDAESOVariable

PDAESOVariable := InnerVariableRef(i) -> GetDependentVariable
// can now set the guess for xn

k

v(i) := xn
k
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// Further, can access all desired information. For instance:
v(i).LB := PDAESOVariable -> GetLB
// and also the index iIVDV of the PDAESOVariable in the InnerVariable vector
iIVDV := PDAESOVariable -> GetIndex
// this information is essential for the following kind of innerVariable

ELSEIF InnerVariableKind=”IDDVariable” THEN
// case InnerDependentDerivativeVariable
PDAESOVariable := InnerVariableRef(i) -> GetDependentVariable
PDAESODomain := InnerVariableRef(i) -> GetIndependentVariable
// the solver has to evaluate the partial differential
// δPDAESOVariable/δPDAESODomain. Thus, it needs to know which iIVDV
// corresponds to the position of the dependent variable in the innerVariable
// vector v(i).
// Further, the solver has to know in which independent variable to discretise,
// i.e. the position of the corresponding independent variable in the
// innerVariable vector, say iIVIV.

iIVDV := PDAESOVariable -> GetIndex
iIVIV := PDAESODomain -> GetIndex

// This will enable the solver to create the desired partial derivative by
// discretising information inherent in IVV(iIVDV,z,t)
// specify value:

v(i) := δIVV(iIVDV,z,t)/δz(iIVIV)

ELSEIF InnerVariableKind=”IDPVariable” THEN
// case InnerDependentProjectedVariable

PDAESOProjection:= InnerVariableRef(i) -> GetProjection
// the projected variable is characterised by the corresponding
// dependent variable and the value of the projected domain, i.e.
// the particular value of the independent variable vector z.

PDAESOVariable := PDAESOProjection -> GetDependentVariable
iIVDV := PDAESOVariable -> GetIndex

PDAESODomainRef := PDAESOProjection -> GetPDAESOPDDomainList
FOR each entry j in list DO

PDAESODomain := PDAESODomainRef(j) -> GetDomain
iIVIV := PDAESODomain -> GetIndex

zP := PDAESODomainRef(j) -> GetValue
// can access desired dependent variable information from IVV(iIVDV,z(zP),t)
// and specify value

v(i) := IVV(iIVDV,z(zP),t)

ELSEIF InnerVariableKind=”IIVariable” THEN
// case InnerIndependentVariable
PDAESODomain := InnerVariableRef(i) -> GetIndependentVariable
// can access all desired information now. For instance:
iIVIV := PDAESODomain -> GetIndex
// returns the index of the independent variable in innerVariable vector v
// Set value which corresponds to the specified z and t for that innerVariable.

v(i) := v(iIVIV)

ELSEIF InnerVariableKind=”ITVariable” THEN
// case InnerTimeVariable

v(i) := tn

ENDIF

// inner variable vector v established
END

// can now evaluate inner equation for v
// set variable values
InnerESO -> SetVariableValues(v)

// and return residuals, i.e. function values in case of the innerESO
E := InnerESO -> GetResiduals
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// Internally, the solver needs to execute the steps described above for all
// values of z, in order to create vector of all innerVariable vectors
// IVV(i,z,t) as well as the vector of all innerEquation vectors IEV(j,z,t).
// Remember, this is the desired information for time step t=tn and residual
// iteration step k. Now it is possible to prepare information required by the
// outerESO.

// Procedure: OUTER SOLVER

// Values for the outer variable vector wn
k are constructed using the values

// stored in IVV(i,z,t). Once more w is the actual vector used by the solver in
// in order to compute values of the outer variables F at tn and k.

// initially, need to get mapping information
// get reference to outerESO

OuterESO := PDAESO -> GetOuterESO

// get reference to outer variable interfaces

OuterVariableRef := PDAESO -> GetOuterVariables

// OuterVariableRef is a list of outerVariable Interfaces

// receive number of variables in the outerESO

NOV := outerESO -> GetNumVars

// there is an outerVariable Interface for each i=1..NOV
// each outerVariable w(i) is characterised by its kind
// depending on the kind of w(i), construct the outerVariable vector at tn and k

// Note: there is one outerVariable vector w for one specific value of z and t
// The solver stores the outerVariable vector w for all values of z and t in // //
OVV(i,z,t). Thus, the solver needs to loop for all z accordingly.

// loop for all outer variables
FOR i := 1 TO NOV DO

// obtain index of corresponding equation in innerEquation vector IEV(j,z,t).
EqIndex := OuterVariableRef(i) -> GetInnerEqIndex

// obtain kind of outer variable
OuterVariableKind := OuterVariableRef(i) -> GetKind

// now have to distinguish all possible cases

IF OuterVariableKind=”fFunction” THEN
// case partial derivative wrt time

w(i)= δIEV(EqIndex,z,t)/δt

ELSEIF OuterVariableKind=”gFunction” THEN
// case partial derivative wrt IndependentVariable z
// need to identify the particular independent variable z

PDAESODomain := OuterVariableRef(i) -> GetIndependentVariable
// identify index of that domain in InnerVariableVector

iIVIV := PDAESODomain -> GetIndex
// can now calculate partial derivative
w(i)= δIEV(EqIndex,z,t)/δz(iIVIV)

ELSEIF OuterVariableKind=”kFunction” THEN
// case non differentiated terms

w(i)= IEV(EqIndex,z,t)
ENDIF

// finish outer variable loop, outer variable vector now established.

END

// can now evaluate outer equation for w
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// set variable values
OuterESO -> SetVariableValues(w)

// and return residuals of F
F := OuterESO -> GetResiduals

// Internally, the solver needs to execute the steps described above for all
// values of z, in order to create the vector of all outerVariable vectors
// OVV(i,z,t) as well as the vector of all outerEquation vectors OEV(j,z,t).

// Remember, the vector OEV(j,z,t) is the vector of F for all z and t, and thus,
// the desired information for time step t=tn and residual iteration step k.

// Now it is possible to check whether the residuals of F are small enough,
// i.e. F=0 satisfied, or if another residual iteration k+1 is necessary.

// In the later case, the solver needs to provide new guesses for xn
k+1

// and execute the overall Solver procedure again.

// Otherwise, time step t=tn is finished and one step forward in time is to be
// taken, i.e. t=tn+1. This requires that the solver once more provides guesses
// for the dependent variables, xn+1

k=1 this time. Now, the overall Solver
// procedure needs to be executed again.
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3.3 Interface diagrams

This section presents all interface diagrams. Notice that in section 3.5 a possible implementation of the
interfaces is given in a class diagram. This contains as well the associations between he different classes,
which help to understand the concept. In the interface diagrams the associations were omitted because
between interfaces they do not exist.

IN- NUMBER 1 THE PDAESO INTERFACES

ICapeNumericPDAESODomain

GetName()
GetIndex()
GetUpperBound()
GetLowerBound()

ICapeNumericPDAESOVariable

GetName()
GetIndex()
GetLowerBound()
GetUpperBound()
GetDefaultValue()
GetDistribution()

ICapeNumericPDAESOEquation

GetEqDomains()

ICapeNumericPDAESOEqDomain

GetDomains()

ICapeNumericInnerVariable

GetKind()

ICapeNumericInnerDependentVariable

GetDependentVariable()

ICapeNumericInnerIndependentVariable

Get IndependentVariable()

ICapeNumericInnerDepende
ntVariableDerivative

GetDependentVariable()
GetIndependentVariable()

ICapeNumericPDAEOuterVariable

GetKind()
Get innerEqIndex()

ICapeNumericPDAEOutergFunction

GetIndependentVariable()

ICapeNumericPDAESO

GetDomains()
GetVariables()
GetEqDomains()
GetEquations()
GetInnerESOs()
GetOuterESOs()
GetInnerVariables()
GetOuterVariables()
GetNumInnerOuterESOs()

ICapeNumericPDAESOProjection

GetDependentVariable()
GetProjectedDist ributionDomain()

ICapeNumericPDAESOPDDomain

GetDomain()
GetValue()

Figure 3 Interface diagram
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IN- NUMBER 2 THE PDAESOLVER INTERFACES

ICapeIdentification

GetComponentName()
GetComponentDescription()
SetComponentName()
SetComponentDescription()

ICapeNumericPDAESolver

GetESO()
AdvanceSolution()

ICapeNumericPDAESO

GetDomains()
GetVariables()
GetEqDomains()
GetEquations()
GetInnerESOs()
GetOuterESOs()
GetInnerVariables()
GetOuterVariables()
GetNumInnerOuterESOs()

ICapeNumericAlgebraicESO

SetVariableIndex()
SetParameter()
GetParameterList()
GetNumVars()
GetLowerBounds()
GetUpperBounds()
SetFixedVariables()
GetNumEqns()
SetVariables()
SetAllVariables()
GetAllVariables()
GetVariables()
GetResiduals()
GetAllResiduals()
GetJacobianStruct()
GetJacobianValues()
GetAllJacobianValues()ICapeNumericSolver

GetParameterList ()
SetParameter()
GetSolution()
Solve()
Destroy()
SetReportingInterface()

ICapeNumericSolverManager

CreateSolver()

Figure 4 Interface diagram

3.4 State diagrams

There are no state diagrams.



34

3.5 Other diagrams

If there are other diagrams (collaboration, component, class etc.) they should go here and follow the
numbering scheme starting with two letters (CO, CP, CL etc…).

CL- NUMBER 1 POSSIBLE IMPLEMENTATION OF THE PDAESO INTERFACES

ICapeNumericPDAEOutergFunction

Ge tIn de pen de ntVa ria bl e()

ICapeNumericInnerVariable

GetKind()
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GetDependentVariable()

ICapeInnerDependentVariable
Derivative

GetDependentVariable()
GetIndependentVariable()

ICapeNumericPDAEOuterVariable

GetKind()
GetinnerEqIndex()

ICapeNumericPDAESOEqDomain

GetDomains()

ICa peNume ricPDAESOEq ua tio n

GetEqDomain()

0..n

1

0..n

+contains
1

ICa peNume ricInn erInde pe nd en tV ariab le

GetIndependentVariable()

ICapeNumericPDAESOVariable

Ge tName()
Ge tIn de x()
Ge tLowerBo un d()
Ge tUpp erBo un d()
Ge tDefaul tValue()
Ge tDi stributi on ()

ICapeNumericPDAESO

GetDomains()
GetVariables()
GetEquations()
GetEqDomains()
GetInnerESOs()
GetOuterESOs()
GetInnerVariables()
GetOuterVariables()
SetNumInnerOuterESOs()

ICapeNumericPDAESOProjection

GetDependentVariable()
GetProjectedDistributionDomain()

ICapeNumericPDAESODomain

GetName ()
GetIndex()
GetUpperBound()
GetL owerBound()

0..n

1

+contains

0..n

1

ICa peNume ricPDA
ESOPDDomain

Ge tDoma in()
Ge tVal ue ()
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CL- NUMBER 2 POSSIBLE IMPLEMENTATION OF THE PDAESOLVER INTERFACES

ICapeIdentification

Ge tCom ponentNam e()
Ge tCom ponentDescri ption()
SetCompon entName()
SetCompon entDescription()

ICapeNumericPDAESolver

GetESO()
AdvanceSolution()

ICapeNum ericPDAESO

GetDomains()
GetVariables()
GetEqDomains()
GetEquations()
GetInnerESOs()
GetOuterESOs()
GetInnerVariables()
GetOuterVariables()
GetNumInnerOuterESOs()

ICapeNumericAl gebraicE SO

SetVari able Index()
SetParameter()
Ge tParame terLi st()
Ge tNum Vars()
Ge tLowerBounds()
Ge tUpperBounds()
SetFixedVariab les()
Ge tNum Eqns()
SetVari ables()
SetAllVaria bles()
Ge tAllVariables()
Ge tVariables()
Ge tResi dual s()
Ge tAllResiduals()
Ge tJacobia nStruct()
Ge tJacobia nVa lues()
Ge tAllJacobianValues()

ICapeNumericSolver

GetParameterList()
SetParameter()
GetSolution()
Solve()
Destroy()
SetReportingInterface()

ICapeNum ericSo lverManager

CreateSolver()

creates

contains

1

1

1..n

1
con tai ns

3.6 Interface descriptions

This section details the specification of the methods appearing in the interface diagram. It should be noted
that:

•  Inherited methods are documented only under the parent interface, which defines them.

•  To conform to the Guidelines document [3], all methods should return a CapeError value. One rôle
of this value is to report a successful execution: the error conditions applicable to each method will
have to be defined as part of the refinement of this interface definition.

The PDAESO Interfaces

This section describes the collection of interfaces used for the partial and differential algebraic equation set
object.

In the following, interface specifications for domains are presented. A domain is used to identify on which
list of independent variables a dependent variable is distributed.
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3.6.1 ICapeNumericPDAESODomain

This is the interface PDAESODomain, which defines domains by their name and index, i.e. the position of
the corresponding independent variable z in the inner variable vector v for the inner ESO.

Interface Name ICapeNumericPDAESODomain

Method Name GetName

Returns CapeString

Description

Gets the name of the domain.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESODomain

Method Name GetIndex

Returns CapeLong

Description

Gets the index of the corresponding independent variable within the variable vector v of the inner ESO (cf.
Section 3.1.2..5).

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESODomain

Method Name GetLowerBound

Returns CapeDouble

Description

Gets the lower bound of the equation domain as well as the kind of the corresponding boundary, i.e. open or
closed.

CapeBoundKind: CAPE_OPEN, CAPE_CLOSED

Arguments

Name Type Description

[out] bound_kind CapeBoundKind OPEN or CLOSED

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESODomain

Method Name GetUpperBound

Returns CapeDouble

Description

Gets the upper bound of the equation domain as well as the kind of the corresponding boundary, i.e. open or
closed.

CapeBoundKind: CAPE_OPEN, CAPE_CLOSED

Arguments

Name Type Description

[out] bound_kind CapeBoundKind OPEN or CLOSED

Errors

 ECapeUnknown
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3.6.2 ICapeNumericPDAESOVariable

This interface is used to characterise the dependent variables occurring in the PDAESO. They are identified
by a name, a lower bound and an upper bound for their value, a default value as well as the index for the
corresponding entry in the inner variable vector v. Additionally, information needs to be provided concerning
the domains (independent variables) over which the variable is distributed.

Interface Name ICapeNumericPDAESOVariable

Method Name GetName

Returns CapeString

Description

Gets the dependent variable name.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOVariable

Method Name GetIndex

Returns CapeLong

Description

Gets the index of the dependent variable within the variable vector v of the inner ESO (cf. Section 3.1.2..5).

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESOVariable

Method Name GetLowerBound

Returns CapeDouble

Description

Gets the lower bound of the dependent variable.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOVariable

Method Name GetUpperBound

Returns CapeDouble

Description

Gets the upper bound of the dependent variable.

Arguments

None

Errors

ECapeUnknown



40

Interface Name ICapeNumericPDAESOVariable

Method Name GetDefaultValue

Returns CapeDouble

Description

Gets the default value of the dependent variable.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOVariable

Method Name GetDistribution

Returns CapeInterface (CapeArrayNumericPDAESODomain)

Description

Gets the list of distribution domains over which the dependent variable is distributed.

Arguments

None

Errors

ECapeUnknown

3.6.3 ICapeNumericPDAESOEqDomain

Inherits from: ICapeNumericPDAESODomain

Just like the dependent variables that are distributed on a particular set of PDAESO-domains, are also
distributed on domains, so called equation domains or PDAESO-EqDomain. They differ from variable
domains by the fact that both lower and upper bound are not only characterised by a bounding value, but also
a kind which indicated whether the boundary is an open or a closed boundary. Note further that
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PDAESOEqDomains are subsets of PDAESODomains, i.e. the bounds of the equation domains have to
remain within the bounds of the variables.

Interface Name ICapeNumericPDAESOEqDomain

Method Name GetDomain

Returns CapeInterface (ICapeNumericPDAESODomain)

Description

Gets the independent variable domain, of which the equation validity domain is a subset. This can be used to
check whether the bounds of the PDAESOEqDomain lie within the bounds of the domains of the
PDAESOVariables.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOEqDomain

Method Name GetUBKind

Returns CapeBoundKind

Description

None.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESOEqDomain

Method Name GetLBKind

Returns CapeBoundKind

Description

None.

Arguments

None

Errors

ECapeUnknown

3.6.4 ICapeNumericPDAESOEquation

This interface is used to characterise an equation by the list of equation validity domains over which it is
distributed.

Interface Name ICapeNumericPDAESOEquation

Method Name GetEqDomains

Returns CapeArrayNumericPDAESOEqDomain

Description

Gets the list of equation validity domains over which an equation is distributed.

Arguments

None

Errors

ECapeUnknown

3.6.5 ICapeNumericPDAESOProjection

This interface is used to characterise dependent variables that are present in the equations on a restricted set
of distribution domains, i.e. one or more distributions have a fixed value.
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Interface Name ICapeNumericPDAESOProjection

Method Name GetDependentVariable

Returns ICapeNumericPDAESOVariable

Description

Gets the dependent variable which is used on a restricted distribution by fixing one or more domains.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOProjection

Method Name GetProjectedDistributionDomain

Returns ICapeNumericPDAESOPDDomain

Description

Gets the PDAESODomain, which is restricted by fixing the value of the corresponding independent variable.

Arguments

None

Errors

ECapeUnknown

3.6.6 ICapeNumericPDAESOPDDomain

This interface is used to characterise domains, which obtain a fixed value and thus, restrict the distribution of
the dependent variable under consideration.
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Interface Name ICapeNumericPDAESOPDDomain

Method Name GetDomain

Returns ICapeNumericPDAESODomain

Description

Gets the domain which is given a fixed value.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESOPDDomain

Method Name GetValue

Returns CapeDouble

Description

Gets the value of the independent variable corresponding to the domain which is fixed.

Arguments

None

Errors

ECapeUnknown

3.6.7 ICapeNumericInnerVariable

This interface is used to characterise the variables occurring in the inner ESO, the so-called ``inner
variables’’. It provides the mapping between the variable array of the inner ESO and the dependent and
independent variables of the mathematical problem formulation.



45

Interface Name ICapeNumericInnerVariable

Method Name GetKind

Returns CapeInnerVariableKind

Description

Gets the kind of inner variable. This can be:

CapeInnerVariableKind: CAPE_ID, CAPE_IDP, CAPE_IDD, CAPE_II, CAPE_IT

 IDVariable: Inner Dependent Variable

 IDPVariable: Inner Dependent Projected Variable

 IDDVariable: First-order partial derivative of Inner Dependent Variable with respect to a
(non-temporal) distribution domain.

 IIVariable: Inner Independent Variable

 ITVariable: Inner Time Variable

Arguments

None

Errors

ECapeUnknown

3.6.8 ICapeNumericInnerDependentVariable

Inherits from: ICapeNumericInnerVariable

This interface is used to characterise information about the dependent variables occurring in the inner ESO.
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Interface Name ICapeNumericInnerDependentVariable

Method Name GetDependentVariable

Returns CapeInterface (ICapeNumericPDAESOVariable)

Description

Provides the reference to the PDAESOVariable which represents this inner dependent variable.

Arguments

None

Errors

ECapeUnknown

3.6.9 ICapeNumericInnerDependentVariableDerivative

Inherits from: ICapeNumericInnerVariable

This interface is used to characterise information about the partial derivatives of dependent variables
occurring in the inner ESO.

Interface Name ICapeNumericInnerDependentVariableDerivative

Method Name GetDependentVariable

Returns ICapeNumericPDAESOVariable

Description

Gets the inner dependent variable which is differentiated.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericInnerDependentVariableDerivative

Method Name GetIndependentVariable

Returns ICapeNumericPDAESODomain

Description

Gets the independent variable with respect to which the inner dependent variable is differentiated.

Arguments

None

Errors

ECapeUnknown

3.6.10 ICapeNumericInnerIndependentVariable

Inherits from: ICapeNumericInnerVariable

This interface is used to characterise information about independent variables occurring in the inner ESO.

Interface Name ICapeNumericInnerIndependentVariable

Method Name GetIndependentVariable

Returns ICapeNumericPDAESODomain

Description

Gets the distribution domain corresponding to this inner independent variable.

Arguments

None

Errors

ECapeUnknown
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3.6.11  ICapeNumericOuterVariable

This interface is used to characterise information about variables occurring in the outer ESO, so called outer
variables.

Interface Name ICapeNumericOuterVariable

Method Name GetKind

Returns CapeOuterVariableKind

Description

Gets the kind of outer variable. This can be:

CapeOuterVariableKind: CAPE_FFUNCTION, CAPE_GFUNCTION, CAPE_HFUNCTION,
CAPE_KFUNCTION

 fFunction: Variable wt which represents the time derivative term

 gFunction: Variable wg which represents the term for differentiation with respect to
independent variables z.

 kFunction: Variable wk which represents the (non-)linear terms.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericOuterVariable

Method Name GetInnerEqIndex

Returns CapeLong

Description

Gets the index of the expression (``equation’’) within the inner ESO that corresponds to this outer variable.

Arguments

None

Errors

ECapeUnknown

3.6.12 ICapeNumericOutergFunction

Inherits from: ICapeNumericOuterVariable

This interface is used to characterise information about the independent variables occurring in the gFunction
in the outer ESO, i.e. the domain z with respect to which g is differentiated.

Interface Name ICapeNumericOutergFunction

Method Name GetIndependentVariable

Returns ICapeNumericPDAESODomain

Description

Gets the domain of distribution for the inner function g.

Arguments

None

Errors

ECapeUnknown, ECapeNoImpl
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3.6.13 ICapeNumericPDAESO

Due to the separation of the PDAESO in an inner and outer ESO, main issue of this interface is to identify all
issues related to assembling necessary information for the iESO and oESO. This includes domains on which
dependent (inner) variables are defined, the (inner) variables themselves as well as the domains on which the
equations are defined and the equations themselves.

This interface is further used to identify the proper addressing of inner and outer variables as well as inner
and outer ESOs.

Interface Name ICapeNumericPDAESO

Method Name GetDomains

Returns CapeArrayNumericPDAESODomain

Description

Gets the domains on which the (inner) variables are defined.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESO

Method Name GetVariables

Returns CapeArrayNumericPDAESOVariable

Description

Gets the (inner) variables.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESO

Method Name GetEquations

Returns CapeArrayNumericPDAESOEquation

Description

Gets the equations.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESO

Method Name GetInnerESOs

Returns CapeArrayNumericESO

Description

Gets the inner ESOs.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESO

Method Name GetOuterESOs

Returns CapeArrayNumericESO

Description

Gets the outer ESOs.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESO

Method Name GetInnerVariables

Returns CapeArrayNumericInnerVariable

Description

Gets the inner Variables.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESO

Method Name GetOuterVariables

Returns CapeArrayNumericOuterVariable

Description

Gets the outer Variables.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESO

Method Name GetNumInnerOuterESOs

Returns CapeLong

Description

Gets the number of inner and outer ESOs contained in the PDAESO for each domain.

Arguments

None

Errors

ECapeUnknown

Interface Name ICapeNumericPDAESO

Method Name SetNumInnerOuterESOs

Returns --

Description

Set the number of Inner and Outer ESOs for each domain.

Arguments

Name Type Description

[in] num CapeLong Set the number of Inner and Outer ESOs for each domain

Errors

ECapeUnknown

PDAE Solution Interfaces

These interfaces define methods for the identification and setting of parameters that will occur in all CAPE-
OPEN compliant partial-differential-algebraic components. So far, it has not been possible to identify any
number of such generic parameters, because each solver relies on a very specific set. Therefore the interface
specification is preliminary.



55

3.6.14 ICapeIdentification

See specification of Common CO Interfaces.

3.6.15 ICapeNumericSolver

See CO Solvers Specification.

3.6.16 ICapeNumericSolverManager

See CO Solvers Specification.

3.6.17 ICapeNumericPDAESolver

Inherits from: ICapeNumericSolver

This is the interface of the Partial-Differential-Algebraic Equation Solver, which solves systems of equations
of the form:
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t
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over some range of values of the independent variables tz, .

Interface Name ICapeNumericPDAESolver

Method Name GetESO

Returns ICapeNumericPDAESO

Description

Gets the ESO with which an PDAESolver was constructed.

Arguments

None

Errors

ECapeUnknown
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Interface Name ICapeNumericPDAESolver

Method Name AdvanceSolution

Returns --

Description

Advances the solution of the PDAESO with respect to its independent variables.

Arguments

None

Errors

ECapeUnkown, ECapeInvalidArgument, ECapeBadArgument, ECapeOutOfBounds, ECapeTimeOut,
ECapeOutOfResources, ECapeNoMemory

3.7 Scenarios

3.7.1 Example of PDAESO

This example is meant to describe how the mathematical model of a physical problem is placed into a form
that is accessible by all the interfaces defined in chapter 0. Provided an appropriate PDAE solver and placing
it into the framework of Solver and Solver factories, the problem could then be solved like outlined in
chapter 3.2.1.

Problem formulation

The physical problem under consideration is as follows. Consider the flow of a binary, non-reacting mixture
through a tube of lengthand radius. The component balance for this system reads:

( ) ( ) 2,..,1=∇⋅∇=⋅∇+
∂
∂ iDu

t iii
i ρρρ

Consider the flow to be adequately described by plug flow, i.e. no variation of entities with respect to radius
r and azimutal direction Thus, in total, the problem extends over 2 domains, described by the independent
variables time t and space z.

Let us choose the components Water (=998 kg/m3) and Ethanol (=789 kg/m3) for our example. The densities
are quite similar and thus, the assumption of constant overall bulk density ρ can be justified. The overall
density is denoted by, and thus,.

Thus, the system of partial differential and algebraic equations is as follows.

Model equations
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At 25oC, the parameters are:
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So far, no information has been provided as to which initial and boundary conditions are specified.

Initial conditions

Since the above problem is posed as a time evolution problem, we need one initial condition. This is the
following:

5.0:0 1 == yt ),0( zLz ∈∀

Boundary conditions

Equation (7.1) requires four boundary conditions, one for each domain boundary.

At the inlet, assume a given mass fraction for y1. At the outlet, Neumann boundary conditions are applied.
Symmetry conditions hold for the tube axis, and at the tube wall, it is assumed that the mass fraction cannot
change because there is neither convection nor diffusion in radial direction.

0
11:0 yyz == (7.6)

0: 1 =
∂
∂=

z
yLz z (7.7)

Now, before the PDAESO can be constructed, this mathematical model needs to be placed into a form that
can be accessed via the PDAESODomain, PDAESOVariable, PDAESOEqDomain and PDAESOEquation
interfaces.

Because the independent variables are positioned after the dependent variables in the inner variable vector,
the index of the corresponding domains has to be left blank until all dependent variables and their derivatives
have been placed into the inner variable vector.

Domains

The problem is posed on the spatial domain z, denoted by “AXIAL” in the PDAESODomain context and
defined as follows. The domain time dealt with separately and the discrete entity mass fraction is considered
simply by introducing as many variables as there are discrete entries.
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The domains are summarised in a sequence of type CapeArrayPDAESODomain with the name
PDAESODomain.

•  PDAESODomain(1).Name=”AXIAL”

•  PDAESODomain(1).Index=7

•  PDAESODomain(1).LB=0

•  PDAESODomain(1).UB=Lz

Variables

Dependent variables in use are ρ,,,, 1221 Duyy z , which corresponds to mass fraction, velocity, diffusion
coefficient and overall bulk density, respectively.

z
y

∂
∂ 1 is the only dependent partial derivative in use.

12,,, Duuy zr and 
z
y

∂
∂ 1 are distributed on the spatial domain AXIAL and time. Providing information

accessible via the PDAESOVariable interface is as follows.

•  PDAESOVariable(1).Name=”y1”

•  PDAESOVariable(1).Index=1

•  PDAESOVariable(1).LB=0

•  PDAESOVariable(1).UB=1

•  PDAESOVariable(1).DefaultValue=0.5

•  PDAESOVariable(1).Distribution=PDAESODomain(1)

•  PDAESOVariable(2).Name=”y2”

•  PDAESOVariable(2).Index=2

•  PDAESOVariable(2).LB=0

•  PDAESOVariable(2).UB=1

•  PDAESOVariable(2).DefaultValue=0.5

•  PDAESOVariable(2).Distribution=PDAESODomain(1)

•  PDAESOVariable(3).Name=”uz”

•  PDAESOVariable(3).Index=3

•  PDAESOVariable(3).LB=-1E+10
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•  PDAESOVariable(3).UB=1E+10

•  PDAESOVariable(3).DefaultValue=1E0

•  PDAESOVariable(3).Distribution=PDAESODomain(1)

•  PDAESOVariable(4).Name=”D12”

•  PDAESOVariable(4).Index=4

•  PDAESOVariable(4).LB=0

•  PDAESOVariable(4).UB=100

•  PDAESOVariable(4).DefaultValue=0.9

•  PDAESOVariable(4).Distribution=PDAESODomain(1)

•  PDAESOVariable(5).Name=” ρ ”

•  PDAESOVariable(5).Index=5

•  PDAESOVariable(5).LB=0

•  PDAESOVariable(5).UB=1E+4

•  PDAESOVariable(5).DefaultValue=893,5

•  PDAESOVariable(5).Distribution= <empty>

Equation Validity Domains

Before specifying the equations, all possible domains on which they are valid need to be declared. The
equation validity domains are subsets of the variable domains, i.e. they can be excluded on the boundary.
Note that boundary conditions are treated as ordinary equations on a specific domain, i.e. PDAEs as
boundary conditions are perfectly permitted. Each case requires its own interface. With respect to the
example, this corresponds to two different domains. We use a sequence of type
CapeArrayPDAESOEqDomain with the name PDAESOEqDomain.

( )zLz ,0∈  is described by:

•  PDAESOEqDomain(1).Domain=PDAESODomain(1)

•  PDAESOEqDomain(1).LB=PDAESODomain(1).LB

•  PDAESOEqDomain(1).UB=PDAESODomain(1).UB

•  PDAESOEqDomain(1).LBKind=OPEN

•  PDAESOEqDomain(1).UBKind=OPEN
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[ ]zLz ,0∈  is described by:

•  PDAESOEqDomain(2).Domain=PDAESODomain(1)

•  PDAESOEqDomain(2).LB=PDAESODomain(1).LB

•  PDAESOEqDomain(2).UB= PDAESODomain(1).UB

•  PDAESOEqDomain(2).LBKind=CLOSED

•  PDAESOEqDomain(2).UBKind=CLOSED

Equations

Now, the information accessed via the PDAESOEquation interface needs to be established. In fact, these
interfaces provide references to the corresponding PDAESOEqDomain interfaces. The index in the
PDAESEOEquation list corresponds to the actual equation number in this chapter, i.e. information about
equation (7.1) will be accessible via PDAESOEquation(1).

•  PDAESOEquation(1).EqDomain=PDAESOEqDomain(1)

•  PDAESOEquation(2).EqDomain=PDAESOEqDomain(2)

•  PDAESOEquation(3).EqDomain=PDAESOEqDomain(2)

•  PDAESOEquation(4).EqDomain=PDAESOEqDomain(2)

•  PDAESOEquation(5).EqDomain={ }

•  PDAESOEquation(6).EqDomain={ }

•  PDAESOEquation(7).EqDomain={ }

PDAESO

Now, it is possible to construct the information inherent to the PDAESO, i.e. the innerESO, outerESO,
InnerVariables and OuterVariables.

3.7.1..1 InnerESO
In order to assemble the innerESO, it is necessary to extract the information about the inner equations out of
the system of overall model equations. Thus, initially the functions f,g,k are extracted and then placed into
the vector E of inner equations. In the same time, this provides information as to how to embed mapping
information which is to be accessed using the InnerVariable interface.

Equation (7.1):

11 yf ρ=  differentiated with respect to t

11 yug zρ=  differentiated with respect to z

z
yDg

∂
∂−= 1

122 ρ differentiated with respect to z

Equation (7.2):
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1211 −+= yyk

Equation (7.3):

( )514
2
13

3
12

4
11122 ayayayayaDk ++++−=

Equation (7.4):

1
3 10−−= zuk

Equation (7.5):

5,8934 −= ρk

Equation (7.6):

0
115 yyk −=

Equation (7.7):

13 yg = differentiated with respect z

Thus, the vector of inner equations can now be assembled:
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















∂
∂

=

t
z
z
y

D
u
y
y

v

z

1

12

2

1

ρ .

This reduces the innerESO to be an equation set object on 0)( =vE

3.7.1..2 Inner Variables
It is now possible to devise the information accessible via the InnerVariable Interface.

It follows from dim(v)=8, that there are 8 inner variables and thus, 8 corresponding InnerVariable interfaces.

Information regarding y1:

•  InnerVariable(1).Kind=IDVARIABLE

•  InnerVariable(1).DependentVariable=PDAESOVariable(1)
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Information regarding y2:

•  InnerVariable(2).Kind=IDVARIABLE

•  InnerVariable(2).DependentVariable=PDAESOVariable(2)

Information regarding uz:

•  InnerVariable(3).Kind=IDVariable

•  InnerVariable(3).DependentVariable=PDAESOVariable(3)

Information regarding D12:

•  InnerVariable(4).Kind=IDVARIABLE

•  InnerVariable(4).DependentVariable=PDAESOVariable(4)

Information regarding ρ :

•  InnerVariable(5).Kind=IDVARIABLE

•  InnerVariable(5).DependentVariable=PDAESOVariable(5)

Information regarding 
z
y

∂
∂ 1 :

•  InnerVariable(6).Kind=IDDVARIABLE

•  InnerVariable(6).DependentVariable=PDAESOVariable(1)

•  InnerVariable(6).IndependentVariable=PDAESODomain(1)

Information regarding z:

•  InnerVariable(7).Kind=IIVARIABLE

•  InnerVariable(7).IndependentVariable=PDAESODomain(1)

Information regarding t:

•  InnerVariable(8).Kind=ITVariable
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Provided this information, the InnerESO can be evaluated by the solver and used to produce the vector of
outer variables w. These are required for the outerESO.

3.7.1..3 Outer ESO
Using the functions constituting the inner ESO, the outer variables can be assembled.

t
fw

∂
∂= 1

1

z
gw
∂
∂= 1

2

z
gw
∂
∂= 2

3

z
gw
∂
∂= 3

4

49,..,5 −= = ii kw

This in turn allows constructing the outer equations 0)( =wF .

Equation (7.1):

03211 =++= wwwF

Equation (7.2):

052 == wF

Equation (7.3):

063 == wF

Equation (7.4):

074 == wF

Equation (7.5):

085 == wF

Equation (7.6):

096 == wF

Equation (7.7):

047 == wF
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This is the vector of outer equations and together with the outer variables, the outer ESO can be stated as the
following problem:

0)( =wF

3.7.1..4 Outer Variables
For each of the outer variables presented above, specific information has to be made accessible via the
OuterVariable interface. Thus, there are NOV=9 interfaces.

Outer variable
t
fw

∂
∂= 1

1 :

•  OuterVariable(1).Kind=FFUNCTION

•  OuterVariable(1).InnerEqIndex=1

Outer variable 
z
gw
∂
∂= 1

2 :

•  OuterVariable(2).Kind=GFUNCTION

•  OuterVariable(2).InnerEqIndex=2

•  OuterVariable(2).IndependentVariable=PDAESODomain(1)

Outer variable 
z

gw
∂
∂= 2

3 :

•  OuterVariable(3).Kind=GFUNCTION

•  OuterVariable(3).InnerEqIndex=3

•  OuterVariable(3).IndependentVariable=PDAESODomain(1)

Outer variable 
z
gw
∂
∂= 3

4 :

•  OuterVariable(4).Kind=GFUNCTION

•  OuterVariable(4).InnerEqIndex=4

•  OuterVariable(4).IndependentVariable=PDAESODomain(1)

Outer variables 49,..,5 −= = ii kw  for i=5,..,9:

•  OuterVariable(i).Kind=KFUNCTION

•  OuterVariable(i).InnerEqIndex=i
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Provided this information, a proper mapping of the outer variables is possible.

Concluding, all the information required for a solution of the model equations (7.1)-(7.7) following the
solution approach described in section 3.2.1 is given. This includes the information accessible using the
following interfaces:

•  PDAESODomain

•  PDAESOVariable

•  PDAESOEqDomain

•  PDAESOEquation

•  InnerVariable

•  OuterVariable

Further, the innerESO and outerESO as part of the PDAESO have been derived from the model equations.
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4. Interface Specifications

This section contains the CORBA IDL instructions; they are compilable files that you can directly use for
producing CAPE-OPEN compliant components.

4.1 COM IDL

// This specification is not currently available for COM platform.

4.2 CORBA IDL

// You can get these intructions in CAPE-OPENv1-0-0.idl within the
CAPEOPEN100::Business::Numeric::PdaEso module and CAPEOPEN100::Business::Numeric::Solver
module
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5. Notes on the interface specifications
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6. Prototypes implementation

See prototypes document.
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7. Specific Glossary Terms

Introduce glossary definitions as needed, in addition to the existing glossary material.
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9. Appendices


