
CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in Computer-Aided Process Engineering

Methods & Tools Integrated Guidelines

www.colan.org

2

ARCHIVAL INFORMATION

Filename Methods & Tools Integrated Guidelines.doc

Authors CO-LaN consortium

Status Internal Draft

Date August 2003

Version version 1

Number of pages 84

Versioning version 1, Jean-Pierre Belaud, Bertrand Braunschweig, August

2003

Additional material

Web location www.colan.org

Implementation

specifications version

CAPE-OPENv1-0-0.idl (CORBA)

CAPE-OPENv1-0-0.zip and CAPE-OPENv1-0-0.tlb (COM)

Comments This document gathers, updates and completes a set of former

documents coming from the former Methods and Tools group.

So additionally to the above authors, many other peoples from

diverse companies have contributed to this document.

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.

CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied

warrant or fitness for a particular purpose. The entire risk arising out of the use or performance of any

sample code --- or any other software described by the CAPE-OPEN Laboratories Network --- remains with

you.

Copyright © 2003 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as

trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a

trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and

Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

4

SUMMARY

This document gathers the set of Methods and Tools (M&T) recommendations and guidelines for the CAPE-

OPEN (CO) standard.

It presents the conclusions of the Methods and Tools Group, in charge of making the choices on methods and

software tools for the CAPE-OPEN initiative. The main recommendations are to use the UML notation and

to implementation the open interfaces both for OLE/COM and CORBA.

It provides guidelines for developing CAPE-OPEN interface specifications. It addresses important software

analysis and procedural issues and makes specific recommendations in order that CO interface developers

can create uniform release design and documents.

It gives architectural and technical information for developing CO compliant components.

5

ACKNOWLEDGEMENTS

6

CONTENTS

1. INTRODUCTION.. 10

1.1 INTENDED AUDIENCE... 10
1.2 WHAT YOU SHOULD READ.. 10
1.3 CAPE-OPEN HISTORY AND THE FIRST RECOMMENDATIONS DOCUMENTS .. 11

2. FOREWORD.. 12

2.1 THE M&T GROUP... 12
2.2 M&T GROUP MEMBERSHIP ... 12
2.3 A NOTE ON TOOLS RECOMMENDED .. 12
2.4 NOTATION AND TERMINOLOGY USED IN THIS DOCUMENT .. 12

2.4.1 Notation .. 12
2.4.2 Terminology .. 13

2.5 WHERE TO FIND ADDITIONAL INFORMATION.. 13
2.5.1 CAPE-OPEN standard specifications... 13
2.5.2 Other documents ... 13

3. CONCEPTS AND DEFINITIONS... 15

3.1 OVERVIEW ... 15
3.2 REFERENCE MODEL.. 17
3.3 CO OBJECT... 18

4. SELECTED METHODS AND TOOLS... 19

4.1 MAIN TECHNICAL CHOICES .. 19
4.2 NOTATION AND INTERFACE DEFINITION LANGUAGES ... 19

4.2.1 Notation .. 19
4.2.2 Implementation specifications... 19

4.3 MODELLING TOOLS .. 20
4.4 WORK PROCESS.. 20

4.4.1 Requirements .. 20
4.4.2 Analysis and design .. 22
4.4.3 Interface specifications ... 24
4.4.4 Prototypes Implementation ... 25
4.4.5 Validation ... 25

5. SOFTWARE ENGINEERING ELEMENTS.. 26

5.1 ELEMENTARY TYPES .. 26
5.2 UNDEFINED VALUES... 27
5.3 ARRAYS ... 29
5.4 NAMING ... 29

5.4.1 Interfaces .. 30
5.4.2 Attributes and Methods ... 30
5.4.3 Arguments ... 31

5.5 ARGUMENT ORDERING... 31

6. GENERAL ARCHITECTURAL AND TECHNICAL ISSUES .. 32

6.1 ARCHITECTURAL ASPECTS OF INTERFACES .. 32
6.1.1 COM ... 32
6.1.2 CORBA ... 32

6.2 ADVICES ON INTERFACES DESIGN .. 32
6.2.1 Factoring of interfaces in COM.. 32
6.2.2 Note on preparing UML interface diagrams .. 33

6.3 RUNNING COMPONENTS IN-PROCESS, OUT-OF-PROCESS (LOCAL AND REMOTE).. 33

7

6.4 REGISTRY... 33
6.5 ERRORS.. 34
6.6 VERSION CONTROL OF INTERFACE SPECIFICATION DOCUMENT .. 34
6.7 COM-CORBA BRIDGING .. 35

7. COM-SPECIFIC ARCHITECTURAL AND TECHNICAL ISSUES .. 36

7.1 INTRODUCTION .. 36
7.2 COM INTERFACES ... 36

7.2.1 vtbl functions, the foundation of COM interfaces. .. 36
7.2.2 IUnknown (COM interfaces)... 37
7.2.3 Creation of COM components (IClassFactory) .. 39
7.2.4 Components re-use: Containment and Aggregation... 40

7.3 OLE AUTOMATION AND IDISPATCH. ... 41
7.3.1 Dispinterfaces ... 41
7.3.2 Type Libraries... 42
7.3.3 Dual Interfaces ... 42
7.3.4 Performance.. 43

7.4 DEVELOPING CAPE-OPEN COMPONENTS .. 43
7.4.1 CAPE-OPEN standard releases.. 43
7.4.2 Basics of COM component development... 44

7.5 COMPONENT DEPLOYMENT .. 50
7.5.1 What to do to "deploy/distribute" a new CAPE-OPEN unit? ... 50
7.5.2 Usage of InstallShield for CO components ... 50

8. CORBA-SPECIFIC ARCHITECTURAL AND TECHNICAL ISSUES.. 53

8.1 FORMAT RELEASE .. 53
8.2 FILE SYSTEM .. 53
8.3 VERSIONING SYSTEM ... 54
8.4 SCOPING STRATEGY ... 54
8.5 COMMENT LINES .. 55
8.6 CORBA IDL FILE OVERVIEW .. 55

9. COMMON INTERFACES ... 61

9.1 COMMON INTERFACES AND COSE INTERFACES... 61
9.1.1 Use-case diagram ... 61
9.1.2 Component diagram ... 62

9.2 COMMON INTERFACES AND BUSINESS INTERFACES .. 62
9.2.1 Primary and secondary (interface) object .. 62
9.2.2 Use-case diagram ... 63
9.2.3 Component diagrams.. 64

9.3 GENERAL IDEA... 65
9.3.1 Needs for CO common interfaces ... 65
9.3.2 Recommendations to the intended audience ... 65
9.3.3 General design principles ... 66
9.3.4 Versioning aspect.. 67
9.3.5 Associated documents ... 67

9.4 SUMMARY OF KEY FEATURES... 67
9.4.1 Error common interface.. 67
9.4.2 Identification common interface ... 68
9.4.3 Parameter common interface.. 68
9.4.4 Collection common interface .. 68
9.4.5 Utilities common interface .. 69
9.4.6 Persistence common interface .. 69

10. ANNEXE: TEMPLATE FOR INTERFACE SPECIFICATIONS DOCUMENTS 70

11. ANNEXE: COM-CORBA BRIDGING ... 71

11.1 COM-CORBA BRIDGING .. 71
11.1.1 Requirements/Business case for COM/CORBA bridging ... 71
11.1.2 Possible bridging mechanisms ... 71

11.2 THE BRIDGING PROTOTYPE .. 76
11.2.1 Technical background .. 76

8

11.2.2 Features of the Bridging Prototype .. 77
11.2.3 Technical Challenges ... 79
11.2.4 Overview of the Implementation... 80

11.3 CONCLUSION AND FURTHER WORK ... 84

9

LIST OF FIGURES

FIGURE 1 PROJECTS AIMING TO DEVELOP THE CAPE-OPEN SYSTEM ... 11
FIGURE 2 DOCUMENTATION ORGANISATION ... 15
FIGURE 3 REFERENCE MODEL.. 17
FIGURE 4 WORK PROCESS PHASES ... 20
FIGURE 5 USE CASE MAP EXAMPLE ... 21
FIGURE 6 SEQUENCE DIAGRAM EXAMPLE.. 23
FIGURE 7 INTERFACE DIAGRAM EXAMPLE ... 24
FIGURE 8 COMPONENT DIAGRAM EXAMPLE... 24
FIGURE 9 PREFIX OF METHOD NAME.. 30
FIGURE 10 USABILITY OF NEW COM COMPONENT VERSIONS BY EXISTING AND NEW APPLICATIONS 37
FIGURE 11 SETTING THE PROGID OF A COMPONENT.. 45
FIGURE 12 REFERENCING THE CAPE-OPEN LIBRARY .. 46
FIGURE 13 SAMPLE COM REGISTRATION ENTRIES ... 47
FIGURE 14 GUIDS FOR CAPE-OPEN COMPONENT CATEGORIES.. 47
FIGURE 15 USE-CASE DIAGRAM... 61
FIGURE 16 SIMULATION ENVIRONMENT COMPONENT DIAGRAM .. 62
FIGURE 17 USE-CASE DIAGRAM .. 63
FIGURE 18 UNIT OPERATION COMPONENT DIAGRAM ... 64
FIGURE 19 SMST COMPONENT DIAGRAM... 64
FIGURE 20 NUMERICAL SOLVER COMPONENT DIAGRAM .. 65
FIGURE 21 DEPENDENCY RELATIONS .. 66
FIGURE 22 APPLICATION OF A CUSTOM BRIDGE... 72
FIGURE 23 APPLICATION OF A GENERIC BRIDGE .. 73
FIGURE 24 ILLUSTRATION OF DIFFERENT MAPPING STRATEGIES.. 76
FIGURE 25 GENERAL BRIDGING SCENARIO ... 77
FIGURE 26 DYNAMIC BRIDGE.. 78
FIGURE 27 STATIC BRIDGE .. 78

10

1. Introduction

This document integrates a number of Methods and Tools (M&T) guidelines developed during the CAPE-

OPEN (CO) and Global CAPE-OPEN (GCO) projects. Its aim is to offer to the CAPE-OPEN interfaces and

components developers all the generic information needed. It is built an evolving document, as M&T

participants will continue to offer new material through CO-LaN organisation.

The document is not a summary of CAPE-OPEN interfaces. All vertical CAPE-OPEN interface

specifications (e.g. for physical properties calculations, unit operations, solvers etc.) are defined in other

documents. Instead, the M&T material provided here is seen as reference material for further developing and

implementing those domain-specific interfaces.

The subjects considered here are:

� Concepts and Definitions that defines the different types of interfaces and organises all CO

materials in a documentation set.

� Selected Methods and Tools that provides general decisions on methods and tools and on the

work process for developing CO interfaces.

� Software engineering elements that gives elementary recommendations for designing

uniform CO interfaces.

� General architectural and technical issues that discusses on the general architecture of CO

standard.

� COM-specific architectural and technical issues that concerns the Microsoft COM

platform.

� CORBA-specific architectural and technical issues that is related to OMG CORBA

platform.

� Common interfaces that explains the objective of common interfaces and introduces the

current interfaces.

1.1 Intended Audience

� developers of CAPE-OPEN compliant software components will find technical information

about the generic elements of the CAPE-OPEN standard

� developers of CAPE-OPEN standard interface specifications will find generic information

needed to produce additional specifications

� software and CAPE specialists interested in knowing more about the CAPE-OPEN standard

will find a summary of the generic information that supports the CAPE-OPEN standard.

1.2 What you should read

If you are a developers of CAPE-OPEN compliant software components, you should read sections 2, 3, 6, 7

or 8 and 9

If you are a developer of CAPE-OPEN standard interface specifications, you should read all the sections;

11

If you are just curious about the Common Services and Generic Guidelines for CAPE-OPEN, you should

read sections 2, 3 and 4.

1.3 CAPE-OPEN history and the first recommendations documents

As a reminder, the next figure shows the different projects that led to the CAPE-OPEN standard.

 Users Suppliers Academics

HHoonneeyywweellll

AAEEAA

AAssppeenntteecchh

SSiimmSSccii

QQuuaannttiiSSccii

RRSSII

IINNPPTT

RRWWTTHH..LLPPTT

RRWWTTHH..II55

IImmppeerriiaall CCoollll..

NNTTNNUU

UUnniivv.. VViirrggiinniiaa

DDTTUU

UUPPCC

TTIITTeecchh

KKyyoottoo UUnniivv..

CCMMUU

UUMMaassss

MMIITT

ProSim SA

Infochem

PSEnterprise

BELSIM SA

Dechema e.V.

Protesoft

IICCII

SShheellll

AAiirr PPrroodduuccttss

UUOOPP

AAiirr LLiiqquuiiddee

MMiittssuubbiisshhii

JJGGCC

Nº Nom de la tâche

1 OO-CAPE

2 OS-CAPE

3 CAPE-OPEN

4 Global CAPE-OPEN

5 CO-LaN

6 GCO-Support

1995 1996 1997 1998 1999 2000 2001 2002 2003

IIFFPP

TToottaallFFiinnaaEEllff

BBPP

BBaayyeerr AAGG

DDooww

BBAASSFF AAGG

DDuuPPoonntt

NNoorrsskk HHyyddrroo

Figure 1 Projects aiming to develop the CAPE-OPEN system

This document is an integrated document aiming at collecting and updating all the former M&T

recommendation documents produced by the M&T group for the CAPE-OPEN project and Global Cape-

Open project. These former documents are:

� CAPE-OPEN Methods & Tools Guidelines

(03_CO_Methods_and_Tools_Recommendations.pdf, September 1999)

� GCO Methods & Tools Guidelines (GCO-MGT-17v1-M&T Guidelines.DOC, January 2000)

� CAPE-OPEN Common Interfaces: Overview (CO Common Interfaces - Overview.doc, v4,

October 2001)

� Proposal on a "full" consistent CO CORBA Specification (CO CORBA Specification.doc,

v3, September 2000)

� COM Architecture Overview and Basic Principles (COM Architecture Overview.doc,

September 2000)

� COM-CORBA Bridging in Global CAPE-OPEN (GCO-MGT-xxv1-

COM_CORBA_Bridge.doc, July 2000)

� Update on Types, Interfaces Naming and Undefined Values (Update on types, naming and

empty values.doc, v2, June 2001)

This integrated document for the CO-LaN organisation substitutes now all these former documents.

12

2. Foreword

2.1 The M&T group

The role of the Methods and Tools group has been defined in the frame of CO-LaN organisation.

The Methods and Tools group takes care of assessing, selecting, adapting and applying software

methodologies and tools throughout the CAPE-OPEN (CO) standard lifecycling. Basically, the process

defined in CAPE-OPEN, which uses the UML notation with a tailored development process, is followed in

development of CO. However, as new methods and net tools will be proposed by the software industry, the

M&T group will continuously monitor the state of the art, especially in component software and

middleware technologies, and provide guidance on how to take advantage of these.

M&T recommendations documents were used at the start of CO initiative.

2.2 M&T Group Membership

Because of the formal role of the M&T group in the approval process for open standard specifications, there

is a need to define participation to this group. Therefore the following is proposed. It can be noted, however,

that the M&T group does not address consistency between the different interfaces from a CAPE-business

view. This is done by the Scientific and Technical Committee.

The initial members of M&T group were before the beginning of CO-LaN organisation: Pascal Roux,

Bertrand Braunschweig and Daniel Rahon (IFP), Ben Keeping (Imperial) Jean-Pierre Belaud (INPT), Juan

Carlos Rodriguez, Sergio Cebollero and Daniel Piñol (Hyprotech), Lars Von Wedel (RWTH.LPT), Jorg

Köller and Alexander Kuckelberg (RWTH.IS), Jacky Bernier (Total), Michael Halloran (Aspentech), Boris

Russel (DTU), Robert Huss (UMass). The group leader was Bertrand Braunschweig.

Through the CAPE-OPEN specifications life cycle management mission, the CO-LaN organizes the

maintenance, evolution, and expansion of the specifications; this is organized through Special Interest

Groups (SIGs), each created to take care of a meaningful subset of the standard. The work done by SIGs

follows a well-defined approval process. A specific SIGs is dedicated to M&T topics. The membership of

this M&T SIG is not defined at this time.

2.3 A note on tools recommended

Numerous tools are mentioned in this document. Much of the behind-the-scenes work of the Methods and

Tools group involves trying out, and thereby informally evaluating these tools.

2.4 Notation and terminology used in this document

2.4.1 Notation

This document uses the MS Word template document (Template for Interface Specification Documents.dot)

and so takes advantage of all the associated MS Word styles.

13

2.4.2 Terminology

• CAPE: Computer-Aided Process Engineering

• CO: CAPE-OPEN, an open standard in Computer-Aided Process Engineering for integration and

interoperability of process modelling software components

• COM: Common Object Model (© Microsoft Corporation)

• CORBA: Common Object Request Broker Architecture (© OMG)

• OMG: Object Management Group, a non-profit organization defining interoperability standards

• IDL: Interface Definition Language, a programming language for specifying interfaces

• MIDL: Microsoft Interface Definition Language

• CIDL: (OMG) CORBA Interface Definition Language

• UML: Unified Modelling Language, an OMG standard notation for Object-Oriented software

engineering

• OO: Object-Oriented, an approach for software development.

• PMC: Process Modeling Component

• PME: Process Modeling Environment

• M&T: Methods and Tools

• BSCW: Basic Support for Co-operative Work. A web-enabled software providing shared

workspaces.

2.5 Where to find additional information

2.5.1 CAPE-OPEN standard specifications

All materials related to CO standard is located on www.colan.org

2.5.2 Other documents

[1] “Inside COM”. Dale Rogerson. Microsoft Press. Washington (USA) 1997.

[2] “The C++ Programming Language” Second Edition. Bjarne Stroustrup. Addison Wesley. USA 1991.

[3] “OLE Automation Programmer´s Reference”. Microsoft Press. Washington (USA) 1996.

[4] “Doing Objects in Microsoft Visual Basic 5.0”. Deborah Kurata. Ziff-Davis Press. Emervylle, California

(USA) 1997.

[5] “Understanding ActiveX OLE”. David Chapel. Microsoft Press. Washington (USA) 1996.

[6] “Beginning ATL COM”. Wrox Press Ltd. Birmingham (UK) 1998

14

[7] www.microsoft.com for COM resources

[8] www.omg.org for CORBA and UML resources

15

3. Concepts and definitions

3.1 Overview

The CAPE-OPEN standard is characterized by a unique and global version number and is described by a set

of documents. Each document has its own versioning number in order to track its own life cycling, however

it depends on a specific version number. The CAPE-OPEN formal documentation set is shown in the Figure

2. It gathers the up-to-date materials - documents, software libraries and software tools - that were produced

by the partners along the CAPE-OPEN initiative. Altogether they define the version 1.0.0 of the CAPE-

OPEN standard.

CAPE-OPEN Standard

Version 1.0.0

General Vision Technical Architecture

COSE Interfaces Common Interfaces

Implementation Specifications

Synthesis Report

Road Map

Conceptual Document

Integrated Guidelines

Migration Methodology

Handbook

Integration Report

Path Recommendations

Template for Interface

Specification

Documents.doc/dot

Thermodynamic and Physical Properties

Unit Operation

Numerical Solvers

Sequential Modular Specific Tools

Physical Properties Data Base

Petroleum Fraction

Chemical Reaction/Electrolyte

Partial Differential Algebraic Equation

Optimisation

Parameter Estimation and Data

Reconciliation

Planning and Scheduling

Identification

Parameter

Error

Collection

Utilities

Persistence

Specifications for CORBA

Specifications for COM

CAPE-OPEN Component

Development Kit

Business Interfaces

 Interface Specifications

Simulation Context

Figure 2 Documentation organisation

The formal documentation set includes the blocks; general vision, technical architecture, interface

specifications and implementation specifications. The third first blocks enclose documents such as pdf files

while the latter is formed of software libraries and applications. That is essential to get a well-adapted

organisation for managing such complex software standard. The result suits with our software development

methodology that respects a kind of model driven style.

16

The general vision folder contains the documents that should be read first for regular general information

such as general requirements and needs.

The technical architecture folder integrates the horizontal technical materials and defines an

infrastructure with the aim of a process simulation based on the CO standard. This document belongs to

this block.

The interface specifications folder encloses a set of open interface specification document. Any open

interface specification document is available using pdf or HTML file. The interface specifications are refined

into three inner folders; business interfaces, common interfaces and COSE interfaces:

� The business interfaces1 folder owns all vertical interface specification documents. The

interfaces are domain-specific interfaces for CAPE application domain such as Unit

Operations, Numerical Solvers, etc. They form the core of conceptual model that leads to CO

components which can be involved in an execution of a CO process simulation application.

� CAPE-OPEN Simulator Executive (COSE) interfaces refer to horizontal interface

specifications. They are interfaces for simulation/modelling environments. Within this

category, services of general use are defined such as diagnostics and material template

system in order to be called by any CO components through a call back usage.

� The common interfaces folder contains horizontal interface specification documents for

handling concepts that may be required by any business interfaces and COSE interfaces.

This is a collection of interfaces that support basic functions and are always independent of

business/COSE interfaces.

The implementation specifications folder contains the implementation of the interface specifications -

business interfaces, common interfaces and COSE interfaces - for particular distributed computing platforms.

For implementing CO compliant software components any developer has to use these official

implementation specifications. The implementation specifications are currently available for (D)COM and

CORBA platforms through the Interface Definition Language (IDL) libraries.

� Specification for COM: Several files expressed in Microsoft IDL integrate all the

implementation specifications for COM platform. The corresponding type library - a

compiled version of the IDL source - required by the MS-Windows operating system is also

available.

� Specification for CORBA: One unique file expressed in OMG IDL integrates all the

implementation specifications for CORBA platform. No corresponding compiled version is

provided because that would be a strong contradiction to the CORBA objective of tools

suppliers independence (this point is discussed in section 8).

� CAPE-OPEN Component Development Kit: This CAPE-OPEN Component Development

Kit (COCDK) gathers a set of software tools in order to help developer in his compliant

software component development process. The COCDK encloses software tools that

correspond to a certain way in implementing the CO standard, so it relies on a specific CO

standard version, a given distributed platform and other technical stuff such as

implementation languages. This kit focuses on four topics; (i) interworking with the COM-

CORBA bridging tool; (ii) rapid application development with the thermo/unit wizards for

COM and migration materials, (iii) self-learning with video demonstration and code

1 Business interfaces can be roughly grouped in four categories; numerics, unit operations, physical

properties, and others.

17

samples; (iv) testing and labelling for COM with the unit, thermo, COSE, SMST, PPDB

testers.

The interface specifications folder gathers a set of open interface specification document. These key

documents contain the description, the explanation and the design of all the CO interfaces. At this level the

content of these documents are abstract specifications documents which create and document a conceptual

model in an implementation neutral manner. That means that their design is supposed to be clearly

independent of any distributed computing platform. So the core of interface specifications deals with the

conceptual model even if some parts relate to the implementation model for illustration.

3.2 Reference model

In order to make the difference between the service provider and the service requestor, the standard

distinguishes two kinds of CO software components: Process Modelling Component (PMC) and Process

Modelling Environment (PME), the former providing services to the latter. Typically, the PMEs are

environments that support the construction of a process model, and allow the end-user to perform a variety of

different tasks, such as process simulation or optimisation.

The next figure (using UML notation) identifies and characterises the components, interfaces, and

communication protocols. It includes the middleware component that enables the communication in a

distributed environment, the CO components (PMEs and PMCs) and three categories of interfaces (Common

Interfaces, COSE Interfaces and Business Interfaces).

<<Middleware>>

PMC

<<CO Component>>

PME

<<CO Component>>

Business
Interfaces

Common
Interfaces

Implementation
specifications

COSE
Interfaces

Relation of dependency

Figure 3 Reference model

The middleware component is the basic mechanism by which objects transparently make requests to and

receive responses from each other on the same machine or across a network. It forms the foundation for

building open simulation applications constructed from distributed CO components in both homogeneous

and heterogeneous environments.

18

3.3 CO object

An object is an instance of a class. An object satisfies a CO interface if it can be specified as the target object

in each potential request described by the CO interface. It belongs to the implementation step and so is out of

the CO scope. However this proprietary object is specific from the other usual proprietary objects since it

collects the CO calls so, we call it a CO (interface) object.

It is worth noting that we can have not only CO objects within a PMC but also CO objects within a PME. For

instance obviously there are such objects in a PMC unit operation respecting the Business Interface: Unit

Operation interface specification. But there can be also such objects in a simulation environment PME

respecting the COSE Interface: diagnostic interface specification. Nevertheless CO objects coming from

PMC can be viewed in a different way from CO objects coming from PME. As a matter a fact from an

architectural point of view the PME objects are currently only designed to be called by PMC objects with

respect to a call-back pattern.

19

4. Selected Methods and Tools

4.1 Main technical choices

The following technical decisions are supported by work done during the CO initiative and by individual

achievements of many partners involved in the development of modern software for process simulation.

(i) The standard interfaces should be defined and expressed using an object-oriented

approach. The OO approach is currently the best technical solution for developing interface

standards. It also encompasses the “conventional” procedural approach.

(ii) The standard interfaces assume that a process simulator is made of several components.

(iii) The standard interfaces should use existing middleware, namely ActiveX/COM and

CORBA. More specifically, the standard interfaces should be expressed in both forms in

order to be future-proof.

(iv) The standard interfaces should be applicable to several hardware platforms and operating

systems.

(v) There should be a distinction between project work and the standard. The life-span of the

standard is expected to be much greater than the duration of the initial CAPE-OPEN project

itself. Choices made for the project - because it has limited resources and duration - should

not compromise the quality and scope of the standard.

(vi) The standard interfaces should allow the encapsulation of legacy code.

4.2 Notation and Interface Definition Languages

4.2.1 Notation

We adopt the Unified Modelling Language (UML) for the CAPE-OPEN set of object models. UML unifies

the popular OMT, Booch and Jacobson methods for object-oriented projects, and it is becoming a de facto

standard with high acceptance from the OMG. UML is seen as the way forward for CAPE-OPEN.

4.2.2 Implementation specifications

We express the interface specifications both for ActiveX/COM and CORBA. This means that in addition to

the formal UML models coming from analysis the CAPE-OPEN interfaces are expected to be expressed in

two parts, one describing the COM specification, one describing the CORBA specification.

The COM specifications are expressed in MIDL, the Microsoft Interface Definitions Language.

The CORBA specifications are expressed in IDL, OMG’s Interface Definition Language.

We will evaluate bridge capabilities between COM and CORBA.

20

4.3 Modelling tools

We do not recommend a single modelling tool for developing the object models. As a consequence, the

UML models will be prepared with different tools (Rational Rose, Select, P+, Visio etc.) until we can

recommend the use of a single one. As another consequence, the COM and CORBA specifications will not

systematically be automatically generated from the UML models.

4.4 Work process

The definition of CO interfaces is done following a development process based on the UML object-oriented

notation for all formal models of the interfaces, including the user requirements, producing use cases,

sequence diagrams, state transition diagrams, class diagrams and, finally, interface diagrams which

accompany the corresponding middleware implementation.

The work process that we follow for each sub-task of CAPE-OPEN technical work expected to deliver

standard interface specifications and prototypes is presented in next Table.

In practice, an iterative approach where the different models and implementations were subject to

progressive refinements had to be adopted. Overall, this work process proved to be both an efficient and an

effective mechanism for developing commonly agreed standard interface specifications and prototypes

meeting those specifications, in an initiative involving a relatively large number of actors with widely

different backgrounds.

Phase Step Goal

REQUIREMENTS User requirements, text Requirements in textual format

REQUIREMENTS User requirements, Use-Cases Use Case model

DESIGN Design Models Sequence, state transition, and

interface models

SPECIFICATION CO-COM Implementation

Specification

Draft interface specification in

Microsoft IDL

SPECIFICATION CO-CORBA Implementation

Specification

Draft interface specification in

OMG IDL

IMPLEMENTATION COM Implementation

COM prototype

implementation

IMPLEMENTATION CORBA Implementation CORBA prototype

implementation

VALIDATION Standalone Testing Tested component

VALIDATION Integration testing Tested specification

DELIVERY Open interface specification

document

Approved specification. MS-

Word/pdf document with IDLs

files and prototypes binary

code

Figure 4 Work process phases

4.4.1 Requirements

The goal of the Requirements phase is to produce a structured set of users requirements in the form of a

textual description and of a set of Use Cases.

21

TEXTUAL REQUIREMENTS

Express the user requirements in written form. This should be obtained by consensus of the interface

designers team. No tools are used at this stage. The result is an MS-Word document which presents and

justifies the requirements. For the Petroleum Fractions Interface Specification, an example could read as

follows:

…

The CAPE-OPEN material template contains the component (species) information. To handle petroleum

assay and fraction, the material template should be extended to include assay and fractions. To allow

tracking of petroleum properties as the petroleum fractions go through the flowsheet from one Units model

to another (and may change in the Reactor model), the material template should be extended to include the

petroleum properties as attributes.

…

USE CASES

Build Use Case Models from the Users Requirements, using the UML notation. The Use Case models

express the core requirements and provide a basis for testing a proposed design. These models should be

obtained by consensus of the interface designers team. No tools are required (i.e. the drawing capacities of

MS-Word suffice) although the use of UML diagramming tools is encouraged. The result is an MS-Word

document including the models. The following example is the Use Case map from Petroleum Fractions

Interface Specification:

COSE

Add REF UNIT To
Flowsheet

Specify REF UNIT
Material Connections

UNIT

Evaluate REF UNIT

Flowsheet
Builder

REF UNIT Gets Petro
Props From Inlet

Material Connections

REF UNIT Sets Petro
Props In Outlet Material

Connections

REF UNIT Defines

Outlet Material Objects
From Inlet Material

Objects

Figure 5 Use Case map example

As example the following is the description of the [Add REF UNIT To Flowsheet] use-case:

Actors: Flowsheet Builder

22

Priority: As in UNIT Use Case Add UNIT to Flowsheet

Classification:

Context:

Pre-conditions: As in UNIT Use Case Add UNIT to Flowsheet

Flow of events:

As in UNIT Use Case Add UNIT to Flowsheet, but the UNIT is a Refinery UNIT.

And:

The Simulator Executive asks the UNIT is it is a Refinery UNIT (i.e. requires petroleum fraction properties)

If so, the Simulator Executive will ask the UNIT if it requires re-characterization of petroleum fraction properties (see

note below).

Note:

Typically, a Simulator Executive not aware of “component continuous properties” (SIM_A) will need duplicating the

component slate in the outlets to “emulate” continuous properties, while in a Simulator Executive able to cope with

“component continuous properties” (SIM_B) this is not required.

In both cases (SIM_A and SIM_B) the UNIT will be presented with a single component slate, and therefore, for a UNIT

there will be no difference regarding the capabilities of the Simulator Executive.

SIM_A will have a set of pseudo components in the inlets (e.g. HYP_GROUP_1) and two sets of pseudo components in

the outlets (e.g. HYP_GROUP_1 and HYP_GROUP_2). Flow rates of HYP_GROUP_1 in the outlets will be all zero,

since UNIT results will be in fact represented in HYP_GROUP_2.

To emulate continuous properties (from the perspective of a UNIT), SIM_A will have to clone outlets, and remove the

additional component slate HYP_GROUP_2. The cloned outlet will be the one presented to the UNIT (i.e. contain a

single component slate, e.g. HYP_GROUP)

When the UNIT operates on outlet hypo group (HYP_GROUP), SIM_A will know these operations have to actually be

performed on HYP_GROUP_2 and not on HYP_GROUP_1.

Post-conditions:

As in UNIT Use Case Add UNIT to Flowsheet.

Errors:

As in UNIT Use Case Add UNIT to Flowsheet

Uses:

Extends: UNIT Use Case <Add UNIT to Flowsheet>

4.4.2 Analysis and design

The goal of the Analysis and Design phase is to produce a set of design models using the UML notation

suitable for the requirements expressed in the Requirements phase. This model tries to be the result of an

analysis and design phase independently of any middleware implementation.

Build Sequence, Interface, Component models following the UML notation. Also each interface is described

precisely. These models are essential for the design of interface objects and are used in a later stage for

preparing the interface specifications. No tools are required (i.e. the drawing capacities of MS-Word suffice)

23

although the use of UML diagramming tools is encouraged. The result is an MS-Word document including

the models. The following examples come from Petroleum Fractions Interface Specification:

COSE UNIT

Material
Object

Query ICapeUnitTypeInfo

GetUnitType

Query ICapeUnit

Calculate

Query
ICapeThermoMaterialObject

GetProp() for flows, fractions, T
and P

Query
ICapeThermoPetroFractions

GetPetroProp() for TBPCurve,
MoleWeightCurve, etc

Blend oils and cut

SetPetroProp(petroFracsIDs) for
NBP, MW, Dens

Characterise

Query
ICapeThermoMaterialObject

SetProp() for flows, fractions, T
and P

CalcEqulibrium

Figure 6 Sequence diagram example

24

<<Interface>>

ICapeThermoPetroFractions

SetPetroProp

GetPetroProp

RemovePetroProp

Characterize

DefineFromPetroFractions

<<Interface>>

ICapeThermoMaterialObject

<<Interface>>

ICapeUnitTypeInfo

GetUnitType

<<Interface>>

ICapeUnit

Figure 7 Interface diagram example

COSE UNIT

ICapeInterface

ICapeIdentification

ICapeUnit1 *

ICapeThermoMaterialObject

ICapeThermoPetroFractions

ICapeUnitTypeInfo

Figure 8 Component diagram example

4.4.3 Interface specifications

The goal of the Specifications phase is to produce the CAPE-OPEN Interface Specifications in Microsoft

IDL and OMG IDL from the design models established in the Analysis and Design phase. Some notes can

give clarifications and details on this “translation” from the middleware-independent design to middleware-

dependant specification.

INTERFACE SPECIFICATION IN MICROSOFT IDL

Microsoft IDL specifications for interface objects are built from the design models developed in the design

phase.

No tools are recommended at this stage: a text editor suffices. However, automated generation of some of the

Microsoft IDL specifications could be envisaged later on during the project, depending on the reassessment

of UML compatible tools.

INTERFACE SPECIFICATION IN OMG IDL

IDL specifications for interface objects are built from the design models developed in the design phase.

No tools are recommended at this stage; a text editor suffices. However, automated generation of some of the

IDL specifications could be envisaged later on during the project, depending on the reassessment of UML

compatible tools.

25

4.4.4 Prototypes Implementation

The goal of the implementation phase is to produce prototype COM and CORBA compliant components

using the interface specifications developed in the Specifications phase. Many of these components

encapsulate legacy code.

COM PROTOTYPE AND WRAPPING OF LEGACY CODES

Prototype COM-compliant implementations are produced by generating the interface code with the

Microsoft IDL (MIDL) compiler and encapsulating other pieces of code within the interface. The generated

interface code comprises:

(i) a set of header files defining the interfaces;

(ii) code for proxies and stubs needed for local and remote methods invocation;

(iii) code for filling the COM object library.

Legacy code in FORTRAN or other language has to be wrapped.

The use of the MIDL compiler is mandatory for this phase.

The result of this phase is a binary executable expected to work with ActiveX/COM and ready to be tested.

CORBA PROTOTYPE AND WRAPPING OF LEGACY CODES

Prototype CORBA-compliant implementations are produced by generating the interface code with an IDL

compiler and encapsulating other pieces of code within the interface. The generation of interface code

comprises

(i) class declarations for the interface

(ii) additional code for client-server communication

(iii) skeletons to be used for the implementation of the interface

Legacy code in FORTRAN or other language has to be wrapped. The use of an IDL compiler is mandatory

for this phase. The result of this phase is a binary executable expected to work with any CORBA 2 or upper

ORB (Object Request Broker) and ready to be tested. No specific ORB product is recommended knowing

that CORBA 2.0 and upper allows inter-ORB communication.

4.4.5 Validation

The goal of the Validation phase is to do a quick standalone test of the prototype components before

submitting them to the integration validation. The tests are expected to be done by the developers and should

not need external review unless specific problems arise.

The result of this phase is a set of tested prototype components ready to be delivered for integration in the

validation environment. Both COM and CORBA implementations need such validation.

26

5. Software engineering elements

This part provides software elements for developing CAPE-OPEN interface specifications.

The areas considered in this part are as follows, together with the section number:

(i) Data Types to be used in arguments of interface methods;

(ii) Undefined values when a value is not available;

(iii) Arrays of object or elementary types:

(iv) Naming : how names are given to interfaces, methods, properties and arguments;

(v) Argument Ordering : order of arguments in interface methods;

5.1 Elementary types

The CAPE-OPEN standard is adopting a standard set of data types that are handled by the CAPE-OPEN

interfaces. These types are independent of the component implementation language, and middleware, but

they must be capable of being easily mapped to the middleware or implementation language types that are

used. Developers of prototypes define the mappings from these CAPE-OPEN types to middleware data

types.

The most common set of data types to appear in interfaces are presented in the table below. T refers to any

other CAPE-OPEN type, e.g. an object (ICapeUnit) or a basic type such as Long.

CAPE-OPEN Analysis COM CORBA

CapeLong long long long

CapeShort short short short

CapeDouble double double double

CapeFloat float float float

CapeBoolean boolean VARIANT_BOOL boolean

CapeChar char BYTE char

CapeString string BSTR string

CapeDate string date DATE string

CapeURL URL string BSTR string

CapeVariant container of any other type VARIANT any

CapeInterface CO interface LPDISPATCH Object

CapeArrayT array of T VARIANT sequence<T>

The defined CAPE–OPEN data types are used in IDL files with appropriate definitions for the specific

middleware types. The CapeInterface type is used when passing other interfaces through argument lists of

methods. So for example in Unit we may have a method on the ICapeUnit interface named GetPorts, which

could return the ICapeUnitPort interface and then this would be represented generically in IDL by (however

in some cases CO interface designers could make use of strong typing in the case of CORBA IDL):

27

interface ICapeUnit

{

...

GetPorts([return] CapeInterface portsInterface)

...

}

It may be useful to add some missing types among the above elementary types. For example we could add:

 long long CapeLongLong

 long double CapeLongDouble

 wchar CapeWChar

 wstring CapeWString

On the CORBA side, as these types are not available for all platform we choose not to add them at this time.

5.2 Undefined values

In some CO specifications such as Physical Properties Data Base, information can be unavailable and that is

not an abnormal process (CO error handling should not be applied). Therefore as a common specification for

all interfaces the following undefined constants are defined:

� CORBA part

const CapeLong CapeLongUNDEFINED =-2^31;

const CapeShort CapeShortUNDEFINED =-2^15;

const CapeDouble CapeDoubleUNDEFINED =-4.9E-324;

const CapeFloat CapeFloatUNDEFINED =-1.4E-45;

const CapeChar CapeCharUNDEFINED ='\0';

const CapeString CapeStringUNDEFINED ="";

const CapeDate CapeDateUNDEFINED ="";

const CapeURL CapeURLUNDEFINED ="";

#define CapeArrayLongUNDEFINED NULL;

#define CapeArrayShortUNDEFINED NULL;

#define CapeArrayDoubleUNDEFINED NULL;

#define CapeArrayFloatUNDEFINED NULL;

#define CapeArrayCharUNDEFINED NULL;

#define CapeArrayStringUNDEFINED NULL;

#define CapeArrayDateUNDEFINED NULL;

#define CapeArrayURLUNDEFINED NULL;

� COM part

// Commented out because it causes MIDL to generate a .h file that

// does not compile, needs further investigation.

//

//const CapeLong CapeLongUNDEFINED =-2^31;

//const CapeShort CapeShortUNDEFINED =-2^15;

//

//const CapeDouble CapeDoubleUNDEFINED =NaN;
2

2
 NaN: Not a Number, defined by the IEEE double float format, e.g. 7fff ffff ffff ffff (0111 1111 1111 1111 1111 1111

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111), Test for NaN of floating point number x: ((x & 7ff0 0000

0000 0000)>0)&&((x & 800f ffff ffff ffff)>0) returns true, if x is not a number; false otherwise. & is the bitwise AND,

&& the logical AND. See also function “isnan” of library libm.so of Solaris systems or equivalent libraries.

28

//const CapeFloat CapeFloatUNDEFINED =NaN;
3

//

//const CapeChar CapeCharUNDEFINED ='\0';

//const CapeString CapeStringUNDEFINED =NULL;

//const CapeDate CapeDateUNDEFINED =NULL;

//const CapeURL CapeURLUNDEFINED =NULL;

Notes on COM implementation of undefined values for strings and variants types:

BSTR types : CapeString and CapeURL

• C++

//Valid Implementation:

BSTR strArg = NULL;

//Invalid implementation:

BSTR strArg = ::SysAllocString(L"");

• VB

// Valid Implementation:

Dim strArg as String

strArg = vbNullString

// Invalid implementation:

Dim strArg as String

strArg = ""

VARIANT:

• C++

// Valid Implementation:

// the vt type of the VARIANT is

// set to VT_EMPTY

VARIANT VarArg;

VariantInit(&VarArg);

// Invalid implementation:

VARIANT VarArg;

• VB

// Valid Implementation:

Dim VarArg as Variant

VarArg = Empty

// Invalid implementation:

Dim VarArg as Variant

VarArg = vbEmpty

3 NaN: Not a Number, defined by the IEEE single float format, e.g. 7fffffff (0111 1111 1000 000 0000 0000 0000

0000), Test for NaN of floating point number x: ((x & 78000000)>0)&&((x & 87ffffff)>0) returns true, if x is not a

number; false otherwise. & is the bitwise AND, && the logical AND. See also function “isnan” of library libm.so of

Solaris systems or equivalent libraries.

29

5.3 Arrays

It was decided that a common naming has to be used. Therefore the term for the list of something is the same

for the analysis view and the implementation specification view (COM and CORBA).

For CORBA we have:

typedef sequence<Type> CapeArrayType.

Note that we always use the sequence CORBA type and not the array CORBA type. Therefore we get for the

elementary types such arrays:

� CORBA

typedef sequence<CapeLong> CapeArrayLong;

typedef sequence<CapeShort> CapeArrayShort;

typedef sequence<CapeDouble> CapeArrayDouble;

typedef sequence<CapeFloat> CapeArrayFloat;

typedef sequence<CapeChar> CapeArrayChar;

typedef sequence<CapeString> CapeArrayString;

typedef sequence<CapeBoolean> CapeArrayBoolean;

typedef sequence<CapeDate> CapeArrayDate;

typedef sequence<CapeURL> CapeArrayURL;

typedef sequence<CapeVariant> CapeArrayVariant;

typedef sequence<CapeInterface> CapeArrayInterface;

� COM

typedef VARIANT CapeArrayLong;

typedef VARIANT CapeArrayShort;

typedef VARIANT CapeArrayDouble;

typedef VARIANT CapeArrayFloat;

typedef VARIANT CapeArrayChar;

typedef VARIANT CapeArrayString;

typedef VARIANT CapeArrayBoolean;

typedef VARIANT CapeArrayDate;

typedef VARIANT CapeArrayURL;

typedef VARIANT CapeArrayVariant;

typedef VARIANT CapeArrayInterface;

5.4 Naming

For CAPE-OPEN interface specifications, the following guide is used in order to provide naming

conventions for the actual interfaces, for the methods which belong to interfaces, and for the arguments

which belong to methods.

English is the base language to be used. Names should contain a clear indication of the purpose of the

interface, method or argument and use mixed case words not allowing the underscore character (_) as a

separator. There is no maximum length for names.

Care should be taken in the use of abbreviated words. The meaning of shortened words may not be obvious

to non-native English speakers, or to people that are not involved in the software development process.

In naming interfaces, it should be noted that Microsoft IDL and CORBA IDL are case sensitive. However,

CORBA IDL does not allow different names that differ only in case.

In this document the IDL used by Microsoft and the IDL used by OMG are frequently encountered. They are

referred to as MIDL and CIDL in order to simplify the text of this document. When the term IDL is used

alone, it implies a generic CAPE-OPEN interface language (IDL), rather than a particular implementation.

30

5.4.1 Interfaces

The CAPE-OPEN interfaces themselves are prefixed as:

ICapeTopicName

where I implies interface, Cape refers to the domain, and Topic is the scope of the common/business/COSE

interface such as Unit, Thermo, Numeric, Parameter, etc… Following this prefix is the function name such

as Solver, Port, MaterialObject, PetroFractions, …

As an example, for the numerical scope we have an interface named

ICapeNumericLinearSolver

And following the same rules, for the Unit, we might have:

ICapeUnitPort

5.4.2 Attributes and Methods

Within an interface there are methods to perform defined services of the interface. CO methods should start

with an upper case. These methods can be classified as follows:

(i) Properties/attributes access methods

(ii) Object creation and object release and/or destruction

(iii) Object enhancement or extension

(iv) Specialist domain behaviors (such as pre-conditioning an iterative solver)

Methods used to provide standard base services of the CAPE-OPEN interfaces should use names that map

naturally to their middleware counterparts if this is possible. For each of these groups, the methods names

should follow a standard convention to aid someone who wishes to use the methods in the interface or in the

future to extend the interface. The proposed naming convention for each of these is as follows:

Type of method Prefix

Data obtaining Get

Data providing Set

Data inquiring Query

Object creation Create

Object release Release

Object destruction Destroy

Object enhancement Add

Object restrict Remove

Object duplication Clone

Specialist behaviour [none]

Figure 9 Prefix of method name

Object release is used in COM and in CORBA it is supported as well, but not across address spaces. Object

destroy is needed on the CORBA side since CORBA does not provide any other method to shut down an

31

object by releasing it from the client. We have identified the need for object duplication, therefore we have

defined a method of name «Clone».

5.4.3 Arguments

Interface method arguments should be named so that they define clearly their purpose. In the full IDL

produced, the type of the argument is also needed. This type information must reflect upon the types CAPE-

OPEN supports in its interfaces as described previously. Attributes should begin with a lower case letter and

multiple words should capitalise the initial letter of the second and subsequent words.

Examples are:

pressure, deltaPressure, numTraysInColumn

5.5 Argument ordering

In methods within interfaces, the arguments to those methods should always have a consistent ordering to aid

clear reading from the user. Read arguments should appear first and be marked with the [in] IDL attribute,

followed by read-write arguments marked with the [in,out] attribute, then write-only arguments marked with

the [out] attribute. Finally in MIDL the function return value marked with the [out,retval] attribute whereas

in CIDL it is implied by the return type. For the generic IDL the return value should be marked as [return].

� So in MIDL we would have

HRESULT Methodname ([in] type readarg1,…, [in,out] type rwarg1,…, [out] type warg1,…,

[out,retval] type* retval)

Due to VB issues, [out] is not used. [in,out] is used using the following define statement:

#define ACTUALLYout in,out

� In CIDL we would have

type Methodname (in type readarg1, ..., inout type rwarg1, ...,out type warg1,...);

and for methods that may raise exceptions:

type Methodname (in type readarg1, ..., inout type rwarg1, ...,out type warg1,...) raises

(Exception1, ...);

32

6. General architectural and technical Issues

6.1 Architectural aspects of interfaces

Each interface specification document produces interface specifications that include the interface diagram

and a generic UML model. This keeps the CAPE-OPEN interfaces independent of the middleware

implementation in MIDL or CIDL. The specification releases also provide both MIDL and CIDL because

both COM and CORBA prototypes are being implemented.

The following is given as a guide to the production of specifications for the MIDL and CIDL versions. The

objective of this approach is to use the different strengths of COM and CORBA implementations in the

CAPE-OPEN prototyping work.

6.1.1 COM

The analysis version of the interface diagram is prepared showing inheritance with a traditional inheritance

notation. For the MIDL specification, the interface designers should write the MIDL assuming an

implementation that is not done with custom interface inheritance. The actual design/implementation work

can then decide whether to handle such inheritance with delegation/aggregation, containment techniques or

whether to use some other alternatives.

All COM interfaces are dual interfaces, directly inherited from IDispatch. This is a common recommended

COM practice that allows users of scripting languages, such as Visual Basic for Applications (VBA), to

access properties and methods.

6.1.2 CORBA

The analysis version of the interface diagram also shows an inheritance relationship with the traditional

UML notation. However, in this instance, the interface diagram can map the inheritance relationships

directly into the CIDL.

6.2 Advices on interfaces design

6.2.1 Factoring of interfaces in COM

One of the biggest issues to be considered when designing interfaces is factoring. Factoring is the process by

which you decide how many interfaces to design, how many methods each of the interfaces have, and how

many parameters each of the methods has. An entire book could be written on strategies for factoring

interfaces, and there is much literature available on the topic of object-oriented analysis and design that is

applicable. However, there are some basic rules you can use as you design your interfaces. These rules are

described in the following sections.

NUMBER OF METHODS PER INTERFACE

Experience has shown that interfaces with fewer methods are better. Interfaces with many methods that are

intended to be implemented by a large number of objects usually end up having most of the methods return

E_NOTIMPL.

Fewer methods, however, means more interfaces. The greater the number of interfaces, the greater the

number of times a client might be forced to call QueryInterface just to execute a simple task. The general

rule is if two sets of functions are independent, that is, you expect either to be implemented without the

33

other, the sets of functions should be contained in different interfaces. In most cases, if you are tempted to

have a “capability flag” to indicate whether some functions are implemented, you should separate interfaces

and take advantage of QueryInterface instead.

Also, try to eliminate options no one will want to use or implement. Often, interface designers try to think up

every conceivable use for their interface and thus add additional methods to satisfy these “potential” users.

Do not fall into this trap. Instead, focus on your primary users and design the interface so that it fits their

needs. If a customer needs additional, special functionality, you can provide that functionality in another

interface.

NUMBER OF PARAMETERS PER METHOD

When factoring your design, think about “round trips”. Each call to an interface method involves at least one

“round trip”, potentially across a process or machine boundary. Therefore, it is “cheaper” to send everything

needed to execute a call with one method than to have to call two methods with half as many parameters.

However, it is sometimes possible to reduce the amount of data marshalled by doing just the opposite: have

one “setup” method and then let users call the various “worker” methods without having to supply the

“setup” information each time.

Also, try to limit the number of parameters a method contains. Having to call a method that takes more than

five or six parameters is bothersome to many programmers (and you may start reaching the bounds of what

the programmer’s compiler can handle).

6.2.2 Note on preparing UML interface diagrams

Interface diagrams used by CAPE-OPEN are an extension of the official UML. However, they are consistent

with the thrust of UML and have been found to be a useful tool for moving from use cases to interface

specifications. They are required as part of the interface specification documentation. The following

comments are provided for guidance.

The aggregation relation within the interface diagrams seemed to confuse some members. The intention

behind drawing an interface aggregation is not to specify in MIDL an interface that consists of some other

interface, but to show the actual aggregation relationship between the objects that are modeled. MIDL

definitions will not use aggregation relationships or custom interface inheritance implicitly, whereas the

CIDL can.

6.3 Running components in-process, out-of-process (local and remote)

There should be no implications for the design of the interfaces at the design stage as regards the memory

space in which the component implementing the interface should run. It should be noted here that in-process

server components are much more efficient than out-of process servers. Thus, whenever the overhead

imposed by the calling represents a high percentage of the overall calculation time (e.g. in a simple Unit

Operation, or for flashing a Material), an in-process server would be preferred.

6.4 Registry

The middleware environment provides registration. In CORBA this feature is implemented with the Naming

and Trader Services which may be used. COM/ActiveX uses the Windows Registry.

There is a naming hierarchy of CAPE-OPEN components. The CAPE-OPEN interfaces are logically

grouped in categories that are shown in next COM section.

This classification of the components into categories assists applications which can offer to users only those

external components which claim to be of the right category. Obviously, further checks is made to establish

34

that the components do actually support the CAPE-OPEN standard interfaces. Note that this categorisation

does not imply that any extra interfaces need to be developed and that also components can be in more than

one category (or subcategory).

6.5 Errors

There are different mechanisms to handle errors within both middleware architectures. COM uses HRESULT

return types, whereas CORBA uses an exception mechanism similar to C++/Java. For CAPE-OPEN at least

two types of errors should be distinguished:

� Errors: Report error when the contract between caller and callee was violated in a manner

that the calculation could not be finished. Those errors require user interaction or

notification.

� Warning: Report warning when the calculation is performed, but some problem occurs that

may influence the result and should be reported to the user, e.g. violating the valid range for

some physical property correlation.

The authors of interfaces define the contracts for each methods and property access. A violation of the

contract, such as passing a Word document object to a physical property calculation, should result in an

exception or the return of an error HRESULT, as appropriate for the platform. An exception or error return

would typically result in a break in the program flow in the calling routine. Handling an error or exception is

typically much more expensive than a successful function return so methods should be defined to avoid

using exceptions and error result to communicate conditions that can do not justify a break in program flow.

For example, if it is anticipated that the caller would be able to take corrective action for an extrapolation

beyond the recommended range for a correlation, extrapolation should be communicated by a different

mechanism. The documentation of each method should list anticipated error codes or exceptions.

The Common Error Interface deals with the error topic. It explains how to manage in CO standard the error

situation using the COM and CORBA architectures.

6.6 Version control of interface specification document

The following practice is used for versioning a specific open interface specification document. It is not

relevant to the versioning of CO standard. Version numbers consist of three digits separated by dots, e.g.

0.5.8. The version numbers are increased as follows:

� last digit: the last digit is increased according to the development releases by the organisation

responsible for the prototype and for describing the actual interface implementation. For a

release, such as 0.5.8, the particular organisation will use its own release scheme for the

actual software, e.g. Version 0.5.8 Build 3.

� middle digit: this version number is the responsibility of the interface designers team leader.

Each new release on this level is given to validation, in the beginning it is stand-alone

validation, towards the end of the project, and it is integration testing.

� first digit: increasing the first digit is in the responsibility of the CO-LaN organisation, and it

is assigned to the project leader. That means, it cannot be changed, unless integration testing

was successful.

When a release is published, it must include the following as a minimum:

(i) UML descriptions (sequence diagrams, interface diagrams, etc.)

35

(ii) Documentation (e.g. help files). The documentation could be provided in HTML format and

includes the generic CAPE-OPEN IDL form of the interfaces.

(iii) CIDL/MIDL definitions for COM AND CORBA.

(iv) Binary of any simple component prototype implementing the interface

(v) Source code for a simple test harness or other supporting code

All these items should be clearly identified with the version number of the release to ensure consistency. The

documentation should mention the releases of other prototypes that the release is designed to operate with for

backward compatibility.

The CO standard versioning system is not “directly” related to the version numbers of interface specification

documents.

6.7 COM-CORBA bridging

This part located in annexe describes the results of the COM-CORBA bridging activities carries out in the

first half of 2000. It describes the bridging prototype based on the IK-CAPE thermo package which was

developed to create a real world example for the integration of different middleware approaches within the

project.

36

7. COM-specific architectural and technical issues

This part describes the general principles of COM. The COM Object Model, the most important standard

interfaces of COM and some general rules for implementers of COM Components.

This part is not intended as a comprehensive guide of COM, but as a general introduction to the technology,

in order that CAPE-OPEN Component developers can get a grasp of what COM is about. It also provides a

practical guide for developing and deploying CAPE-OPEN components. The guide is focused on using the

VB language due to its simplicity.

7.1 Introduction

As Visual Basic and other scripting languages, COM only supports interface inheritance. Therefore, rather

than providing mechanisms for reusing code through direct code inheritance, COM objects reuse code by

other techniques involving co-operation of several objects (see aggregation or containment, later in this

chapter).

COM (Component Object Model) is a Microsoft standard that establishes rules for implementing

components that can be dynamically interchanged and linked to a particular application. COM is not a

programming language but a binary standard for connecting components. COM deals with interfaces

between components rather than with the components themselves.

There is no guarantee that a compiled C++ component will work when trying to link it together with other

objects or applications that were generated with a different compiler. The goal of COM is to provide binary

compatibility between components that need to be distributed out of the originating organisation.

This part describes the main concepts of the COM architecture, as well as providing a practical guide for

developing and deploying CAPE-OPEN components. The guide is focused on using the VB language due to

its simplicity. The practical guide is also intended to aid developers (with experience in programming COM

components with other languages) on how to apply their COM skills on developing CAPE-OPEN

components.

7.2 COM Interfaces

In the following paragraphs we will be describing some of the most remarkable concepts that make COM a

widely used binary standard. In some particular points fragments of code are included with the aim of

illustrating those concepts, but you encouraged to read some of the titles included in the list of references,

where you will find a more detailed and exhaustive information.

7.2.1 vtbl functions, the foundation of COM interfaces.

For a C++ programmer an interface can be seen as a pure abstract class that, when compiled, gives a specific

memory structure consisting of a virtual function table (e.g. an array of pointers to the different functions

contained in the class) and a pointer to the virtual table (vtbl). Every component inheriting from this base

class will inherit same memory structure.

A component can implement more than one interface (e.g. in the C++ analogy it can multiple inherit from

more than one pure abstract base class). If this is the case, the vtbl will be expanded to accommodate the new

member functions of other interfaces, and the memory layout will also contain necessary pointers to specific

vtbl locations that represent the beginning of every interface.

37

Interfaces represent how a client communicates with the component, and vtbl pointers represent the entry

points for accessing the functionality those interfaces offer.

7.2.2 IUnknown (COM interfaces)

Nevertheless, for a component to be a COM Component the above memory layout is not enough, and the

vtbl of its interfaces has to contain the addresses of three additional functions (i.e. QueryInterface, AddRef

and Release).

These three methods are the behaviors of a crucial COM interface called IUnknown and therefore, it follows

that every COM interface has to inherit non-virtually from IUnknown. This is the way every COM interface

can be treated polymorphically.

QUERYINTERFACE

QueryInterface is the key member function of IUnknown and therefore, of COM interfaces. The purpose of

QueryInterface is allowing client components to navigate through the different interfaces the server

component implement, this is to ask for an interface pointer through a pointer to a different interface.

Because every COM interface inherits from IUnknown, every COM interface defines a QueryInterface

method that allows this navigation.

There is no fixed rules for implementing QueryInterface, you can choose among if-then-else statements,

hash tables, etc… as a way of selecting the appropriate pointer to be returned, this is completely up to the

programmer. Nevertheless, some basic principles should be followed when implementing the function:

• The most important is that when a client asks for a pointer to IUnknown, the component has to return

the same IUnknown pointer, no matter through which interface the client is asking for it. This is an

essential COM principle that allows clients to check whether two different interfaces are

implemented within the same components, just by querying IUnknown from two separate interfaces

and comparing the returned pointers.

• A Null value has to be returned when the component does not implement an interface the client is

asking for.

• The client needs to be allowed to navigate through all the interfaces regardless the starting point (e.g.

the initial interface pointer the client holds)

The above paragraphs establish an interesting COM principle: a compiled client will ask for those interfaces

it knows a priori and will remain “unaware of” and “unaffected by” the rest of interfaces the server

component supports. And, in fact, it could not be in a different way, since a client will never need to know

about the rest of interfaces, because once compiled there is not any way of writing code at run-time, for

calling those interfaces. From the above, it follows that an existing COM component can be upgraded by

adding new interfaces that implement the new required functionality. Existing applications that use the

component will continue using the component through the old interfaces, while new applications can benefit

from the services implemented in the new interfaces.

old version

new version

old version

new version

client component
IOne

IOne

ITwo

Figure 10 Usability of new COM component versions by existing and new applications

38

You should not even think in supplying new functionality by updating existing and already delivered and

being used, COM interfaces. By definition COM interfaces are fixed once compiled, and only in extreme

cases you should plan a new version of your component by modifying and recompiling the interface, but in

this case you have to advise your clients about this fact, because it can potentially break their applications.

Every COM interface is characterized and identified by an IID (a universally unique identifier for the

interface). This identifier is a structure that can automatically generated by compilers or specific purpose

tools such as the Microsoft “Guidgen.exe”. An example of IID is shown below.

// {7771D770-C346-11d1-8214-0080C879AC43}

static const GUID <<name>> =

{0x7771d770,0xc346,0x11d1,{0x82,0x14,0x0,0x80,0xc8,0x79,0xac,0x43}};

Since the interface IID is the value client will pass to QueryInterface to get the actual interface pointer

back, IIDs never have to be changed. Otherwise clients will ask for pointers to interfaces no longer existing,

and therefore they will not be able to access services they could access in previous versions of the

component, resulting in that backwards compatibility will be lost.

If in version “n” the component needs to implement additional services to the ones included in version “n-1”

an additional interface with a different IID needs to be implemented in the component.

ADDREF AND RELEASE (I.E. REFERENCE COUNTING AND THE LIFE CYCLE OF COM COMPONENTS).

The two other functions in IUnknown, i.e. AddRef and Release represent the COM strategy to control the

life cycle of components.

Clients of COM components use AddRef and Release for notifying them they want to use or leave using a

specific interface. Thus, a client of a COM component will never delete it, instead it will call Release on the

interface it is pointing to, and the component will delete itself if its reference counting decreases to zero. This

mechanism allows several clients to access the same server component at the same time without resulting in

an application crash caused by the accidental of the server by one of its clients.

But still the client of COM components has some responsibilities in this memory management system.

A client should call AddRef every time it copies an interface pointer to another interface pointer, because the

server component will not be aware of this action.

A client is ever responsible for calling Release on a particular interface when it no longer is going to use

that interface pointer. This is true even when the component implements more than one interface (i.e. the

client has to call Release in every interface pointer although they are implemented within the same

component). Nevertheless, it is up to the component designer to keep a reference counting for every interface

or just a global reference counting for the component.

As a general rule, the client would not need to call AddRef when getting an interface pointer by invoking a

function, because the implementation of the function would have to be done in such a way that AddRef is

called before returning the interface pointer. This is true in QueryInterface and also in

CoCreateInstance (this function will be commented later).

The implementation of AddRef and Release could be as simple as a global reference counter that is

increased in every call to AddRef and decreased in every call to Release. Besides, if a statement can control

the deletion of the component when the reference counter reaches zero.

Of course there are several strategies for reducing the number of times AddRef and Release are called

within a component. You can optimize the performance of your applications by omitting calling AddRef and

Release in an interface pointer which lifetime is completely nested within another pointer to the same

interface.

39

7.2.3 Creation of COM components (IClassFactory)

COM components and applications using COM components usually have to perform many routine actions,

such as browsing in type libraries, loading servers or instantiating components. To ensure that these

operations are performed in a standard way, a COM library exists supporting this functionality and much

more (OLE32.dll).

CoCreateInstance is one of the functions exposed by the COM library and it is among the most

remarkable one.

The client that needs to create a new component calls ::CoCreateInstance, passing in the class id of the

component to create (CLSID) and the interface id (IID) it wants to point to.

The same way and interface is uniquely identified by an IID (interface ID), a component class is identified by

a unique CLSID (class ID) and a type library is identified by a LIBID (library ID). The three one are

universal unique identifiers

CoCreateInstance rather than directly instantiating the component it creates an additional component

called class factory (or class object), points to one of its interfaces (very commonly IClassFactory) and

invokes its method CreateInstance that actually instantiate the component.

Why use class factories instead of directly creating the component? Usually class factories are designed by

the same component implementer, and they are a useful mean of encapsulating specific task that have to be

done for the correct instantiation of the component. Very often class objects are implemented in the same

server responsible for delivering the actual components.

Between the time lapses that begin when a client calls CoCreateInstance and ends when the component is

actually instantiated, COM will connect with the right server of components and it will ask for an appropriate

class factory.

CoGetClassObject is the COM function used to retrieve the appropriate class factory that knows how to

instaciate the component it is being asked for. CoGetClassObject is also a function exposed by COM, so

that the client can bypass CoCreateInstance, and directly invoke CoGetClassObject to get the class

factory.

As it can be seen the definition of both functions is quite similar, but CoGetClassObject rather than

returning a pointer to the component that needs to be created, returns a pointer to the class factory

responsible for its creation. After that, the client needs to invoke ::CreateInstance through the

IClassFactory pointer.

The latest creation mechanism is used when several components need to be instantiated at once (i.e. by using

CoCreateInstance CoGetClassObject os called as many times as number of objects need to be

instaciated while directly accessing the class factory requires only one call regardless of the number of

objects). is achieved till there is another mechanism for triggering the creation of a new COM component,

this is the COM function CoGetClassObject (in fact, CoCreateInstance implementation makes use of

CoGetClassObject).

The second circumstance in which you have use class factories is when you want to connect to an interface

different from IClassFactory (e.g. IClassFactory2), because CoCreateInstance only access class factories

trough IClassFactory.

IClassFactory is a quite simple interface, with only two member functions: CreateInstance and

LockServer. LockServer is a mechanism for keeping a server alive regardless of the existence of clients or

not. By locking a server, this is prevented from being unloaded from memory (see ref Inside COM for a

complete description of a C++ COM component implementing IClassFactory).

40

7.2.4 Components re-use: Containment and Aggregation

As previously mentioned, COM does not rely on implementation inheritance. Instead, specialization of COM

components has to be made by containment or aggregation. Both techniques allow achieving the same

objective, i.e. an outer component uses the services provided by the inner component, but using a different

approach.

CONTAINMENT

By containment the outer component connects with the inner component pointing to its COM interfaces.

Frequently class factories have responsibilities in initializing the group consisting of outer and inner

components. Calls from a client are directly forwarded and delegated to the inner component interfaces.

The outer component can implement its own interfaces or even the same interfaces as the inner component.

In the mean time, the outer component can perform some tasks before and/or after delegating the client call

to the inner component/s. This technique is widely used as a mean of extending the behaviour of an interface.

No special implementation details have to be included when reusing components by containment. Since the

life cycle of the inner components is completely nested within the lifetime of the outer the reference counting

of the inner components can be super-seeded. The only precaution that needs to be taken into account is to

design an IClassFactory able to instantiate the outer as well as the inner components.

AGGREGATION

A more specialized, although no so widely used way of re-using COM components is called aggregation.

Conversely to containment, when a component aggregates other components, a client will see both, the outer

and the inner components. But the interesting thing is that the client will not be able to distinguish which

interfaces are really implemented by the outer and which ones by the inner component. This way, a client

pointing to one of the inner component interfaces should be allowed to navigate to the interfaces

implemented in the outer component.

As you can figure out, aggregation has more implications and difficulties as regards to its proper

implementation than the simpler containment. First of all, it is necessary to make the client believe that both

components are just one single entity. To achieve this goal, when the outer component creates the inner one,

by using the traditional CoCreateInstance or IClassFactory::CreateInstance, a pointer to its IUnknown

interface it is passed as an [in] argument (second argument of CoCreateInstance, or first arg. of

IClassFactory::CreateInstance). This pointer is the back door for the inner component to call the member

functions of the outer, because through the IUnknown pointer the inner component can query other interfaces

of the outer component

As discussed earlier, a COM principle is that a client needs to be allowed to ask for an IUnknown pointer

through pointers to two different interfaces and get the same response (e.g. the same IUnknown pointer).

This raises an interesting question: if from an aggregated component (i.e. the inner component) a client

queries an IUnknown, he expects the returned pointer be the same as the pointer to the outer component

IUnknown rather than the inner component IUnknown.

The easiest approach to solve these two circumstances is to forward every call to one of the inner IUnknown

methods to the outer component IUnknown implementation. Therefore, the inner component implements

what it is usually called a delegating IUnknown.

But this delegating IUnknown is only useful for components that are going to be aggregated what most of the

times is now known a priori. If the component implements only a delegating IUnknown and it happens that

finally the component is contained instead of aggregated, then the outer component will not be able to

control the inner component because every call to its IUnknown methods will be delegated back.

Definitively this is something nobody would like to happen, and the obvious solution is to implement two

IUnknown interfaces within the inner component:

41

• A delegating IUnknown, i.e. the implementation that a client of the component will see when the

component is aggregated

• A non-delegating IUnknown, i.e. the implementation that the outer component will use to control the

inner one. An external client will never see the non-delegating IUnknown.

The key point of aggregation is to let a component know when it is going to be aggregated or contained, and

as previously said, this has to be done when the inner component/s is created (ref.).

7.3 OLE Automation and IDispatch.

What we have described above is strictly what a component needs to implement in order to be a full rights

COM component. Automation is not something different from COM but an additional mechanism

implemented on top of COM foundation.

Automation is widely used by interpreted languages, such as VB and Java, and also by applications such as

Excel, Word or Access. The main advantage of automation is that it makes extremely easy to create code for

calling and controlling other applications and components.

7.3.1 Dispinterfaces

An automation controller rather than in “compile-time type casting” relies on “run-time casting”. While a

C++ application needs the header files of the components it wants to use, so that the compiler can check

types when compiling, an automation controller does not need them.

To achieve this flexibility an automation controller does not use directly the component COM interfaces, but

a different interface implemented by automation servers, which name is IDispatch. To put it in few words,

IDispatch is a macro that allows invoking whichever member function of the COM interfaces in a single

way.

IDispatch is not a new type of interface, it is a normal COM interface that, as every COM interface inherits

from IUnknown.

IDispatch is basically a mechanism for obtaining information of a component (i.e. GetTypeInfoCount,

GetTypeInfo and GetIDsOfNames) plus the generic invoking mechanism (i.e. Invoke) valid for all kind of

functions and a given set of valid argument types.

GetIDsOfNames and Invoke provide the key behaviour of IDispatch. An automation client uses

GetIDsOfNames to obtain the DISPID of a member function (i.e. a long integer identifying a specific

member function of the dispinterface), and Invoke to actually call that method.

Conversely to LIBID, IID or CLSID, a DISPID is not a uuid, every automation interface will supply its own

particular DISPIDs which can be the same as those implemented by a different interface.

An automation interface (an interface derived from IDispatch), provides a common gate and a common way

of invoking component methods, independently of what those methods looks like. To achieve this goal, the

client does not call directly a particular method, it puts this responsibility in IDispatch::Invoke. In this sense

an automation interface acts as a translator between the server and the client.

But, in this so flexible approach, the client also needs to know some information about a method before

calling it, e.g. what are the arguments of that method and which are their types?

To be more precise, the client does not need to know this information in order to successfully call the

method. In fact, as long as you call Invoke passing an array of arguments which types can be represented by

42

a VARIANTARG structure (see below), the call will be successful. Obviously when Invoke tries to call the

dispinterface method it will fail and what the client will obtain is a DISP_E_XX error (an automation error).

We will not discuss here the VARIANTARG or the DISPPARAM structures in any further detail. The interested

reader can find this information in most of the bibliographic references dealing with COM standards (see e.g.

Inside COM, etc). Just mention that the OLE automation programmer has to be aware of the allowed types

that can be represented by the VARIANT union because there is limited number of them.

7.3.2 Type Libraries

Most object-oriented programmers are used to utilize type libraries in an indirect fashion. Thus, for example,

a VB programmer very often uses the Object Browser Microsoft delivers as part of the new versions of the

programming environment to find out information about components he want to use or to call inside his

application.

He needs this information in order to spell properly the method or property names, as well as method

argument names or types. A user of OleView (included in Visual C++) is dealing with a quite similar tool.

But, the obvious question now is where all this information comes from? How a component exposes its

method names, argument names and types so that such sort of tools can make use of it? The answer is “Type

Libraries”.

Type Libraries are binary files that can be generated by appropriate tools such as MkTypeLib or the newer

MIDL compiler. These compilers generate type libraries from textual descriptions of components and

interfaces, often referred as IDL files. IDL files are completely language independent. Somehow a type

library is the way COM replaces header files in C++.

If you want to experiment with the many options type libraries offer, just open the VB5.0 DevStudio and add

a reference in your project to TLBINF32.dll. Using the Object Browser you will see what this can offer to

you.

If you want to have a more clear idea about what an IDL file looks like, launch OleView and load one

component you know about. One of the cool things of OleView is that it automatically generates an IDL-like

definition for you component. Even more, you can copy that IDL definition and change it slightly to generate

a new type library with new interfaces (be sure you have changed GUIDS before compiling. Guidgen.exe

will help you with that).

Once compiled (e.g. using MIDL.exe, also included in C++ DevStudio) the library and its contained

interfaces will be ready to be used. Thus, for example, open VB5.0, create a new DLL project, open the

window of references, search for the newly created type library, add a reference to it, and finally, inside your

class, key Implements InterfaceName. VB5.0 will look for that type library, and will utilize it to, on-the fly,

generate definitions of all member functions and properties defined in the interface.

The key idea of type libraries is to have a binary file representing all that information a client of COM

components may need to make use of them. In summary, it can be said that a type library is a C++ header

file that only includes the public members of the classes (i.e. interfaces). Most programming environments

can interpret these binary files in the appropriate way for the language (e.g. Microsoft DevStudio will

generate header files, while VB will directly supply a class skeleton).

7.3.3 Dual Interfaces

A better approach than implementing dispinterfaces or COM interfaces is to merge these two behaviours into

a single interface structure, in order to get what is called dual interfaces. This approach gets the benefit of the

faster access to vtbl functions (that C++ programmers will acknowledge) and the flexibility of dispinterfaces

that will make automation programmers happier.

43

A dual interface is an interface that inherits from IDispatch rather than directly from IUnknown. By doing

this, the vtbl of our custom interface will contain pointers to the 3 IUnknown methods, plus to the four

IDispatch methods plus the specific function pointers of the interface. This way part of the dispinterface can

be integrated within the COM part of the dual interface.

7.3.4 Performance

There is an obvious penalty associated with the flexibility of automation components and the usage of

IDispatch, and this is performance. A call to a member function through the vtbl could be 100 times faster

than a call to the same function through IDispatch.

7.4 Developing CAPE-OPEN Components

7.4.1 CAPE-OPEN standard releases

The CO standard for the COM platform is released using two zipped packages. The first one enclose the raw

MIDL files and the second one the result of Microsoft MIDL Compiler especially the TLB library.

For example for the version 1.0.0, we have:

• CAPE-OPENv1-0-0.zip enclosing 15 IDL files (5 342 lines)

o CAPEOPEN.idl

o COGuids.idl

o Common.idl

o Parameter.idl

o Error.idl

o COSE.idl

o Thrm.idl

o Unit.idl

o Smst.idl

o Solvers.idl

o Ppdb.idl

o Reactions.idl

o PetroleumFractions.idl

o Minlp.idl

o Psp.idl

• CAPE-OPENv1-0-0.tlb.zip

o CAPE-OPENv1-0-0.tlb

44

o capeopen_i.c

o capeopen_p.c

o dlldata.c

o CAPE-OPENv1-0-0.h

o buildcom.bat that allows to generate the above tlb and .c/.h files from MIDL files. Produced

by midl version Microsoft MIDL Compiler Version 5.01.0164 (Visual Studio 6.0). Also

successful compilation with midl version Microsoft 32b/64b MIDL Compiler Version

6.00.0361 (Visual Studio .NET Beta 2003 version 7.1.2292). The command is:

midl capeopen.idl /nologo /server none /client none /tlb CAPE-OPENv1-0-0.tlb /h CAPE-

OPENv1-0-0.h

7.4.2 Basics of COM component development

In C++

There are several ways to develop COM components in C++. For non experts, it is strongly recommended to

use a helper library, such as Microsoft ATL [6].

In VB

• Create an ActiveX DLL project

• Add a class module

45

• Rename the project and class module. Be aware that the progID of your component will be name up

of the name of the VB project plus the name of the class module. In the example below, the progID

would be Mixer.MixerCO.

Figure 11 Setting the ProgID of a component

• Reference the CAPE-OPEN library. if the CAPE-OPEN library does not appear in the list of

available references, press “Browse” button and locate the CAPE-OPENvX-X-Xtlb

46

Figure 12 Referencing the CAPE-OPEN library

• Use the Implements keyword for each desired CAPE-OPEN interface.

• Implement each method of each interface.

 Where to place the CAPE-OPEN type library and how to register it

Technically, it doesn't matter where to place the file, but GCO will recommend

\Program Files\Common Files\CAPE-OPEN

You don't need to register it if you have installed a CAPE-OPEN compliant simulator. If you haven’t you can

register it with REGTLIB.EXE CAPE-OPENv0-9.tlb

If it’s not registered, it won’t appear in list of Figure 12.

HOW TO MAKE A SIMULATOR AWARE OF NEW CAPE-OPEN COMPONENTS

How to register a CAPE-OPEN component

It's not enough registering it with regsvr32 (or the automatical registration that VB performs after

compiling), because the CAPE-OPEN categories must also be assigned to the components.

One way is double clicking on a CLSID.reg file as showed in Figure 13.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{434DA84A-0EF6-11D4-A3DE-00902724BD35}]

@="HYP/Mixer-Splitter”
4

4
 Not required by the CAPE-OPEN standard, but useful for some COM browser applications.

47

[HKEY_CLASSES_ROOT\CLSID\{434DA84A-0EF6-11D4-A3DE-00902724BD35}\CapeDescription]

@=""

"Name"="HYP/Mixer-Splitter"

"Description"="Mixer Splitter with multiple inputs and outputs"

"CapeVersion"="0.9"

"ComponentVersion"="1.0.2"

"VendorURL"="http://www.hyprotech.com"

"HelpURL"="file://<ProgramFilesDir>\\AEA Technology\\CAPE-OPEN\\CO Mixer-

Splitter\\RELEASE NOTES.doc"

"About"="Hyprotech European HQ\\nPg. de Gràcia, 56\\n08007 Barcelona\\nSpain\\nPhone:34-

93-215-6884\\nFax: 34-93-215-4256"

[HKEY_CLASSES_ROOT\CLSID\{434DA84A-0EF6-11D4-A3DE-00902724BD35}\Implemented Categories]

[HKEY_CLASSES_ROOT\CLSID\{434DA84A-0EF6-11D4-A3DE-00902724BD35}\Implemented

Categories\{678C09A1-7D66-11D2-A67D-00105A42887F}]

[HKEY_CLASSES_ROOT\CLSID\{434DA84A-0EF6-11D4-A3DE-00902724BD35}\Implemented

Categories\{678C09A5-7D66-11D2-A67D-00105A42887F}]

Figure 13 Sample COM Registration entries

There are more sophisticated ways to register your CAPE-OPEN components that double clicking on a .reg

file. All of them will finally consist in registering the above registry entries. However, since the aim of this

part is to describe the CAPE-OPEN requirements, rather than the COM mechanisms, this part will focus on

working with this .reg file.

Let’s review the file. In Figure 13, {434DA84A-0EF6-11D4-A3DE-00902724BD35} is the CLSID of the

registered component. Next sections explain how to know the CLSID of your own component.

The file adds registry sub-entries (information) to the registration of your component in the windows

registry.

The ‘CapeDescription’ entry adds user-friendly description to the component.

The ‘Implemented Categories’ assigns categories to your component, according to the following table:

CAPE-OPEN Component {678c09a1-7d66-11D2-a67d-00105a42887f}

CAPE-OPEN Thermo Routine {678c09a2-7d66-11D2-a67d-00105a42887f}

CAPE-OPEN Thermo Property System {678c09a3-7d66-11d2-a67d-00105a42887f}

CAPE-OPEN Thermo Property Package {678c09a4-7d66-11D2-a67d-00105a42887f}

CAPE-OPEN Unit Operation {678c09a5-7d66-11D2-a67d-00105a42887f}

CAPE-OPEN Thermo Equilibrium Server {678c09a6-7d66-11D2-a67d-00105a42887f}

Figure 14 GUIDs for CAPE-OPEN Component categories

How do I know the ProgID of my component?

� In C++

The developer must enter manually the ProgID. So, you must check your source code.

� In VB

The progID is name up of the name of the VB project plus the name of the class module. See Figure 11

How do I know the clsid of my component?

� In C++

The developer must enter manually the CLSID. So, you must check your source code.

48

� In VB

VB assigns automatically a CLSID every time you compile a COM component. You can only look it up after

the component is compiled. There are Two alternatives:

o Oleview.exe (it’s a Visual Studio tool)

 go to ObjectClasses\AllObjects

 Look for the Progid of your component , Mixer.MixerCO (if .reg file has not yet been executed) or

"HYP/Mixer-Splitter" (after running succesfully your .reg file).

The name "HYP/Mixer-Splitter" is registered by one of the first lines of the .reg file.

To get the CLSID, right click on your component and choose "copy CLSID to clipboard"

o Browse through the windows registry (more complex)

 Run regedit.exe

 go to branch HKEY_CLASSES_ROOT\CLSID

 Select menu Edit\Find\

 Type the progid of your component.

 The clsid is the name of the parent of the progID branch

VB6 SHORTCOMINGS

Since VB changes the CLSID of your component everytime you compile, the developer should replace the

CLSID value in Figure 13 every time you compile.

To avoid that, you’ll find how to set the compatibility option to keep the CLSID fixed everytime the

component is compiled, which will prevent you from having to edit this .reg file everytime.

How to keep fixed the CLSID of a COM component

(i) Compile once your component.

(ii) from outside of VB, take a copy of your target dll file (eg target.dll) to the same path (eg.

Name it target_ref.dll). You have created a reference dll.

(iii) From VB, select the project that makes up the CAPE-OPEN component (in case you’re

browsing a set of projects)

(iv) Select menu “project”\”<your project> properties”

(v) Go to tab "Component".

(vi) Set “Version compatibility” option to “binary compatibility”.

(vii) Type in the name of the reference dll (eg. target_ref.dll)

(viii) Compile (make) again to test everything went ok.

49

What’s a “reference dll”?

You have created a reference dll of your COM component which will "never" be changed.

Setting the compatibility option, every time you compile and make a new dll, VB will assign the same

CLSID to your component (getting the CLSID) from your original reference dll. Keep in mind that VB can

only keep the same CLSID if the interface of the component has not changed.

It is advisable to be aware of all the concepts required to develop COM components in VB. A part from the

VB online documentation, there are a lot of books in the market about this topic (important concepts are:

COM component, progid, clsid and dll).

Edit your .reg file only once

After following steps from “How to keep fixed the CLSID of a COM component”, you must edit the .reg file

Edit the clsid.reg replacing EVERYWHERE {434DA84A-0EF6-11D4-A3DE-00902724BD35} with the

CLSID of your component.

FOR YOUR CAPE-OPEN SIMULATOR TO BE ABLE TO FIND THE COMPONENT, YOU WILL

ALWAYS HAVE TO DOUBLE CLICK ON THE CLSID.REG AFTER YOU START or STOP

DEBUGGING IT FROM VB.

Since the CLSID will not change any more, why isn’t it then sufficient to double-click the clsid.reg ONE

time?

The reason of this shortcoming is that VB6 removes the category information from your component AFTER

YOU CLICK START or you STOP. And without the category information, a CAPE-OPEN simulator will

not find your CAPE-OPEN component in the windows registry.

The reason is that, when you debug, VB6 maps temporarily your component progId to its own dll to be able

to debug it properly. When you press stop VB6 restores automatically the mapping from your component

progId to you memphis.dll. In this process of un/registering, VB6 looses the registered categories for your

component.

DEVELOPMENT TROUBLESHOOTING

My Simulator cannot find my registered CAPE-OPEN component anymore

Be aware that, in a machine, you can only have installed once a component with a given ProgId or CLSID.

For instance, if you install the binary MixerSplitter component distributed by Hyprotech and you also

compile and make the source code of this component, only one of these two components will remain

registered (the one that was registered last).

To avoid this, you should better change the CLSID, ProgID and the name of the compiled component. How

to change each of them:

• CLSID: remove the “binary compatible” setting and repeat steps in 0. You must also redo step 0.

• ProgID: In VB, as explained in 0, you should change the name of the project or the name of the

class module.

• User friendly Name: Change the following lines of .reg file.

@="HYP/Mixer-Splitter"

"Name"="HYP/Mixer-Splitter"

50

7.5 Component deployment

7.5.1 What to do to "deploy/distribute" a new CAPE-OPEN unit?

You can use an install application such as Installshield. See 7.5.2 for a practical guide on the use of

Installshield Express

You can also use the "package & deployment wizard", which is distributed with MS Visual Studio (it’s in

"Windows start button"\"MS VisualStudio\tools).

7.5.2 Usage of InstallShield for CO components

Guidelines to prepare a setup for a CAPE-OPEN COM component with InstallShield Express 2.0, by

InstallShield Corporation. Still, some mentioned hints are useful for any kind of setup technology.

These guidelines are structured following the Checklist GUI of the software. Each one of the following

sections refers to one of the dialogs of the application that are used to configure each one of the checklist

actions.

Installshield Express allows to:

• Copy as many files as your CAPE-OPEN component requires (including release notes, ...)

• Register the COM DLLs, and adding any kind of information to the Windows registry

• Prepare a consistent uninstall procedure.

SET VISUAL DESIGN

App Info

“Default Destination Dir(DDD)” is made up of concatenating the previous fields (resulting in

ProgramFilesDir\Company\AppName).

If you want to break this rule, set the DDD AFTER setting the company or the Application Name.

The Application Name cannot contain a backslash (\). Otherwise, in the registry key under

([HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\),

It is interpreted as a subfolder and “Control Panel/Add-Remove Programs“ won’t display the entry. So, it

would then be impossible to uninstall the component.

The DDD cannot contain a /. So, if the Application Name contains a /, take care it’s not transmitted

automatically to the DDD

Features

Select the ‘automatic uninstaller’ checkbox.

SPECIFY INSTALLSHIELD OBJECTS

InstallShield can automatically determine which Installshield Objects your application requires. We don’t

use this option, but we specify the required files manually.

51

SPECIFY COMPONENTS AND FILES

Groups

Create a Group for each set of files that share the same destination directory.

We have used:

Program Files

 Normal files required by the component. Install in <INSTALLDIR>.

Type Libraries

 COM type libraries, such as the CAPE-OPEN0-9.tlb. Install in <INSTALLDIR>.

System Files

System files required by your component. They will be copied on the Windows system directory and will

upgrade the whole Windows System. Install in <WINSYSDIR>

Common Files

 Imagine you plan to distribute several CAPE-OPEN components (CO1 & CO2)that share a common COM

component(CCC). It would not be wise to install the CCC component in <INSTALLDIR>, since a COM

component can only be registered in a single windows directory at a time. That means that, if you unregister

or remove the files from CO1, you might unregister CCC from the system, and then CO2 would not work.

So, it is recommended to place them in <CommonFilesDir> (C:\Program Files\Common Files\Vendor

Shared in my case)

Insert the required files for each group. Click on properties and select ‘Allow Express to Self-Register this

file’ for the files that contain COM components that require to be registered. The DLL of your CAPE-OPEN

components and some System files require this action.

MAKE SYSTEM FILE CHANGES

Not required for our examples (fortunately!)

SELECT USER INTERFACE COMPONENTS

Dialog Boxes

select program folder

If you want to place some links in the pop up menu accessible through “Windows Start button”\ “Programs”,

enter the program folder name. We use the standard CompanyName\CAPE-OPEN\ComponentName.

Although when building the disks there’s a warning about the above path being too long, something as long

as “AEA Technology\CAPE-OPEN\HYP CO Kit v1.0” work properly in Win98 & WinNT.

MAKE REGISTRY CHANGES

CAPE-OPEN components need the following registry entries:

• Categories: For the COSES to find them easily in the registry.

• Static description of the software components: Description, version, about,...

52

If your components don’t add these entries within DllRegisterServer procedure of you component, you can

do with the help of your setup application.

Registry-keys/Registry value

Not recommended, since it has some bugs and it’s difficult to maintain.

REG files

The easiest way to register categories and the CapeDescription folder is adding the corresponding .REG file

to this tab . See Figure 13 for a sample of the required registry entries.

SPECIFY FOLDERS & ICONS

Add here the links that you want to appear in the Program Folder (“Windows Start button”\ “Programs”),

such as release notes, test cases, ...

How to add an uninstall icon to the program folders

If you want to add uninstall icon, add the icon with these parameters

Run command: <WINDIR>\uninst

Run command parameters: -f"<INSTALLDIR>\DeIsL1.isu"

Description: Name of the icon

RUN DISK BUILDER

If there’s an error complaining that a file cannot be found, it could be that the file is open by another

program, such as Word, that locks the file.

COPY TO FLOPPY

If you choose the option ‘Path for a 1 File installation’, it will generate a single self-extractable file (useful to

send by e-mail or publishing in a Web page).

53

8. CORBA-specific architectural and technical issues

On the COM side, the definition and the distribution of a common file for the CO COM specifications have

been decided. This file is a compiled version of the COM IDL sources, required by the MS-Windows

operating systems. It is named CAPE-OPENvX-X-X.tlb. This COM TLB is versioned using the build-in

COM versioning system. There is a single COM TLB for all the CO COM interfaces. An equivalent

functionality has to be found for the CO CORBA specification.

We present below some technical alternatives and final selected options corresponding to each issue. Some

technical information are provided. As a constraint, we want to be close to the solutions (when they exist and

when they are acceptable) coming from the COM side.

8.1 Format release

The COM side makes public not only the IDL files but the type library which is the compiled version of

these files. This choice is feasible since COM is a proprietary technology.

From a CORBA view, we could supply a corresponding library but this library will depend on the ORB

software supplier, the implementation language and the operating system. We would be obliged to supply

several libraries.

Somehow that is not the philosophy of the CORBA technology, the standard is at the level of IDL since the

language mappings are standardised. Additionally, we would limit the CO standard to certain ORB

implementation which is a strong contradiction to the aim of implementation independency.

The CO standard for CORBA platform is released using raw IDL files.

8.2 File system

The alternatives are:

• x file: one file per topic

• 3 files: one file for each types of interface: common/business/COSE

• 1 file: one file for all.

In order to be closer to the COM type library (1 file), we choose the last alternative. Furthermore, we decide

to have a high-level scope (e.g. CORBA module) named CapeOpen for all CO CORBA specifications. So

due to the scoping rules in CORBA one file is mandatory.

Even so we should note that this single file involves some drawbacks at the implementation level such as for

instance to get an arduous generated code, to have some useless generated code and to get big size generated

files. But this drawback is not a real problem in praxis. Normally, the application developer does not have to

look into the generated stub/skeleton code and most intelligent linkers will eliminate such kind of dead code.

On the other hand, no include statements are necessary thereby simplifying the handcrafted code which is

much more interesting. Furthermore one IDL file simplifies the handling of the interface definitions in

several ways:

• There is only one include directive necessary,

• The maintenance of the IDL itself is simpler as we do not have to keep track of a lot of files,

54

• If the developer has to manage only one IDL file he can be sure that is versioning consistent. This is

not the case for several IDL files. This could cause some problems during prototype development,

• Easy dissemination,

• and easy version management.

8.3 Versioning system

Contrary to the COM technology where the COM type library is versioned which allows to be updated

without invalidating all software using a previous version, the CORBA technology has no built-in versioning

capacity even if CORBA 3.0 gives some solutions.

Consequently, the future IDL development should make possible the downwards compatibility manually at

the design level. Without giving a lot of details, some ways are addition of methods, interfaces, use of

inheritance, … That will be investigated when necessary.

The OMG directive #pragma version allows giving a version number to the repository id. It isn't used here

and somehow it doesn't solve the problem.

We could imagine a version number per specifications topics. But to be basic and to be close to the COM

choice, one version number characterises the whole CORBA IDL file. Comment lines at the beginning of the

IDL file display the version number of the CO CORBA specification such as:

/* IMPLEMENTATION SPECIFICATION VERSION

Type = CAPE-OPEN IDL library for CORBA platform

Version number = 1.0.0

Delivering date = March 2003

*/

Additionally, following this number the version number corresponding to the compliant CORBA

specification is displayed. At present the final IDL file is compliant with the CORBA specification 2.0 (The

Common Object Request Broker: Architecture and Specification 97-02-25; see the omg web site) and upper.

The versioning should also reflect clearly the downwards compatibility of the IDL definitions. At least a

comment in the file should point out compatibility such as:

/* COMPATIBILITY VERSION

CORBA Specification version number with which this file is compliant = 2.0 and upper

Visit the web site of the CORBA standard at www.omg.org

*/

It is worth noting that we can identify some limits of our previous decisions . For example, let us suppose the

Smst topic wants to use the Value Type introduced since the CORBA 2.3.1. Then not only the Smst part but

also the whole CO CORBA IDL has to be compliant with the CORBA 2.3 instead of 2.0. This jump has

significant consequences on the implementation and deployment phases. We simplify the standard life cycle

management but we loose some kind of flexibility. However solutions exist and M&T group will work on

that if necessary.

8.4 Scoping strategy

It is decided to have a high level scope (module CapeOpenXXX). Indeed CORBA allows having nested

modules which give an additional encapsulating level, in opposition to COM where all the specifications

have a same and global scope. For information, the CORBA module is mapped to the C++ namespace and to

the Java package according to the Language Mapping Specifications. Hence we can note two alternatives:

55

• One module CapeOpenXXX with no nested modules

• One module CapeOpenXXX with nested modules. It remains to intend the number of module levels

This choice is not so obvious, as a matter a fact that has important effects on the CO CORBA component

development. To keep the second alternative brings to a better design but the implementation is more

complex because the developer will be obliged to manage scoping due to the CO standard. Their use is

recommended for a good development (almost mandatory to Java developers).

More over some C++ ORB software map the module to the class instead of the namespace (for example

Inprise VisiBroker 3.x) since few compilers currently support the namespace concept. Then the developer

looses the namespace functionality such as the using directive.

In spite of these drawbacks, in order to have an additional encapsulation level we recommend the use of

nested modules. Even if we will be far from the COM type library, we want to use this encapsulating ability

knowing that some solutions exist for the bridging COM-CORBA.

The final IDL file has nested modules organising Common, Business and COSE modules within the high

level CAPE-OPEN scope.

8.5 Comment lines

Comments are inserted to give some generic information (for instance versioning, module, interface). No

method is documented in order to avoid repetitive information (and so possible inconsistencies) with the

Interfaces Descriptions part enclosing in the Open Interface Specification documents.

8.6 CORBA IDL file overview

As illustration, here is below the skeleton of the final CORBA IDL file version 1-0-0. This file is called

CAPE-OPENv1-0-0.idl (August 2003).

/* IMPORTANT NOTICE

(c) The CAPE-OPEN Laboratory Network, 2002.

All rights are reserved unless specifically stated otherwise

Visit the web site at www.colan.org

This file has been edited using the editor from Microsoft Visual Studio 6.0

This file can viewed properly with any basic editors and browsers (validation done under

MS Windows and Unix)

*/

/* IMPLEMENTATION SPECIFICATION VERSION

Type = CAPE-OPEN IDL library for CORBA platform

Version number = 1.0.0

Delivering date = August 2003

*/

/* COMPATIBILITY VERSION

CORBA Specification version number with which this file is compliant = 2.0 and upper

Visit the web site of the CORBA standard at www.omg.org

*/

// This file was developed/modified by JEAN-PIERRE BELAUD for CO-LaN organisation -

August 2003

56

// ==

// IMPLEMENTATION SPECIFICATION FOR CORBA PLATFORM

// ==

// ---- The global scope is defined by a CAPEOPEN100 Module -------------------

module CAPEOPEN100 {

 // ---- The scope of the common interfaces --------------------------------

 module Common{

 // ---- The scope of the types and undefined values -------------------

 // Reference document: Types and undefined values

 module Types{

 // elementary type definitions

 typedef long CapeLong;

 typedef short CapeShort;

 typedef double CapeDouble;

 typedef float CapeFloat;

 typedef boolean CapeBoolean;

 typedef char CapeChar;

 typedef string CapeString;

 typedef string CapeDate;

 typedef string CapeURL;

 typedef any CapeVariant;

 typedef Object CapeInterface;

 // sequence definitions

 typedef sequence<CapeLong> CapeArrayLong;

 typedef sequence<CapeShort> CapeArrayShort;

 typedef sequence<CapeDouble> CapeArrayDouble;

 typedef sequence<CapeFloat> CapeArrayFloat;

 typedef sequence<CapeChar> CapeArrayChar;

 typedef sequence<CapeString> CapeArrayString;

 typedef sequence<CapeBoolean> CapeArrayBoolean;

 typedef sequence<CapeDate> CapeArrayDate;

 typedef sequence<CapeURL> CapeArrayURL;

 typedef sequence<CapeVariant> CapeArrayVariant;

 typedef sequence<CapeInterface> CapeArrayInterface;

 // Definition of CapeValidationStatus type

 typedef enum eCapeValidationStatus{

 CAPE_NOT_VALIDATED,

 CAPE_INVALID,

 CAPE_VALID

 } CapeValidationStatus;

 typedef sequence<CapeValidationStatus> CapeArrayValidationStatus;

 // Definition of Undefined values

 const CapeLong CapeLongUNDEFINED =-2^31;

 const CapeShort CapeShortUNDEFINED =-2^15;

 const CapeDouble CapeDoubleUNDEFINED =-4.9E-324;

 const CapeFloat CapeFloatUNDEFINED =-1.4E-45;

 const CapeChar CapeCharUNDEFINED ='\0';

 const CapeString CapeStringUNDEFINED ="";

 const CapeDate CapeDateUNDEFINED ="";

 const CapeURL CapeURLUNDEFINED ="";

 #define CapeArrayLongUNDEFINED NULL;

57

 #define CapeArrayShortUNDEFINED NULL;

 #define CapeArrayDoubleUNDEFINED NULL;

 #define CapeArrayFloatUNDEFINED NULL;

 #define CapeArrayCharUNDEFINED NULL;

 #define CapeArrayStringUNDEFINED NULL;

 #define CapeArrayDateUNDEFINED NULL;

 #define CapeArrayURLUNDEFINED NULL;

 }; // END Types module --

 // ---- The scope of the error interface ------------------------------

 // Reference document: Error Common Interface

 module Error{

…

 }; // END Error module --

 // ---- The scope of the identification interface ---------------------

 // Reference document: Identification Common Interface

 module Identification{

…

 }; // END Identification module ---------------------------------------

 // ---- The scope of the collection interface -------------------------

 // Reference document: Collection Common Interface

 module Collection{

…

 }; // END Collection module ---

 // ---- The scope of the utilities interface --------------------------

 // Reference document: Utilities Common Interface

 module Utilities{

…

 }; // END Utilities module --

 // ---- The scope of the parameter interface --------------------------

 // Reference document: Parameter Common Interface

 module Parameter{

…

 }; // END Parameter module --

 // ---- The scope of the persistence interface ------------------------

 // Reference document: Persistence Common Interface

…

 }; // END Persistence module --

 }; // END Common module ---

 // ---- The scope of the COSE interfaces ----------------------------------

58

 module Cose{

 // ---- The scope of simulation context interface ---------------------

 // Reference document: Simulation context interface

 module SContext{

…

 }; // END SContext module ---

 }; // END Cose module ---

 // ---- The scope of the Business interfaces ------------------------------

 module Business{

 // ---- The scope of the Physical Properties interfaces -------------------

 module PhyProp{

 // ---- The scope of thermodynamic and physical properties interface

 // Reference document: Thermodynamic and physical properties

 // and Petroleum Fractions

 module Thrm{

 // ---- Cose module --

-

 module Cose{

…

 }; // END Cose module --

-

 // ---- ThermoSystem module ----------------------------------

-

 module ThermoSystem{

…

 }; // END ThermoSystem module --------------------------------

-

 // ---- CalculationRoutine module ----------------------------

-

 module CalculationRoutine {

…

 }; // END CalculationRoutine module --------------------------

-

 // ---- EquilibriumServer module -----------------------------

-

 module EquilibriumServer {

…

 }; // END EquilibriumServer module ---------------------------

-

 }; // END Thrm module ---

59

 // ---- The scope of the Reactions interfaces -------------------

 // Reference document: Chemical Reactions

 module Reactions{

…

 }; // END Reactions module

 // --- The scope of the Physical Properties Data Base interfaces

 // Reference document: Physical Properties Data Base

 module Ppdb{

…

 }; // END Ppdb module

 }; // END PhyProp module --

 // ---- The scope of the Numeric interfaces ---------------------------

 module Numeric{

 // ---- The scope of numerical solvers interface ------------------

 // Reference document: Numerical Solvers and Partial Differential

Algebraic Solvers

 module Solvers {

 // ---- The scope of the Eso ---------------------------------

-

 module Eso{

…

 }; // END Eso module --

-

 // ---- The scope of the PDA ESO -----------------------------

-

 module PdaEso{

…

 }; // END PdaEso module --------------------------------------

-

 // ---- The scope of the Model -------------------------------

-

 module Model{

…

 }; // END Model module ---------------------------------------

-

 // ---- The scope of the Solver ------------------------------

-

 module Solver{

…

 }; // END Solver Module --------------------------------------

-

 }; // END Solvers module --

60

 // ---- The scope of the Optimisation interfaces ------------------

 // Reference document: Optimisation

 module Minlp{

…

 }; // END Minlp module --

 // ---- The scope of PEDR interfaces ------------------------------

 // Reference document: Parameter Estimation and Data Reconciliation

 module Pedr{

…

 }; // END Pedr module ---

 }; // END Numeric module --

 // ---- The scope of the Unit Operations interfaces -------------------

 module UnitOp{

 // ---- The scope of unit operation interface ---------------------

 // Reference document: Unit Operation

 module Unit{

…

 }; // END Unit module ---

 }; // END UnitOp module ---

 // ---- The scope of the Other interfaces -----------------------------

 module Other{

 // ---- The scope of smst interface -------------------------------

 // Reference document: Sequential Modular Specific Tools

 module Smst{

…

 }; // END Smst module ---

 // ---- The scope of PSP interface --------------------------------

 // Reference document: Planning and Scheduling Interface

Specification

 module Psp{

…

 }; //End Psp module ---

 }; // END Other module --

 }; // END Business module ---

}; // END CAPEOPEN100 module --

61

9. Common Interfaces

This part gives an overview of the CAPE-OPEN Common Interfaces. It sets out a proposal for a cross

concept: the CO Common Interfaces.

The Common Interfaces are interfaces and implementation models for handling concepts that may be

required by any COSE Interfaces and Business Interfaces. Any Common Interface, COSE Interface and

Business Interface are described through an open interface specification document.

One of the objectives of Methods & Tools group is to provide reusable interfaces for the CAPE-OPEN

interface designers to be able to concentrate on engineering concepts and not on plumbing details. There is a

set of simple unrelated functionalities that would be useful for any kind of Process Modelling Component,

since it would allow maximum integration between Process Modelling Components and any Process

Modelling Environment to which provide services.

These recommendations are especially dedicated to the designers of CO interfaces. They introduce the

Common Interfaces and explain how to integrate them within the Business Interface and COSE Interface that

the designers develop. However the developers of CO components will find useful information for

understanding the Common Interfaces that they will have to implement.

These recommendations and the related concepts come from a conceptual approach and are independent to

the distributed platform such as (D)COM and CORBA

Therefore this section 9 on how to integrate the Common Interfaces differentiates the interactions with PMC

objects from Business Interfaces and with PME objects from COSE Interfaces. Indeed the need of

integrating the Common Interfaces is different, the PME objects requires only providing the error handling

strategy. While in regards to the services coming from the Common Interfaces, two kinds of PMC objects are

defined, primary and secondary. That allows identifying the role and the scope of a PMC object. Thus

according to its kind, the Common Interfaces services that the PMC object provides are specified.

The part defines which common services have to be proposed by the PMC objects and PME objects.

9.1 Common interfaces and COSE interfaces

This section defines the Common Interfaces that any PME object has to provide to any PMC. In fact this

requirement is straightforward, the PME objects have to integrate the CO error handling strategy.

9.1.1 Use-case diagram

All PME objects have to respect the error handling strategy as shown in the below diagram.

PME Object

Handling Error

The functionalities (defined by the Common Interfaces) that the
PME Objects have to expose

Figure 15 Use-case diagram

All PME objects depend on the specification document: Error Common Interface.

62

9.1.2 Component diagram

The following diagrams show PME objects (rectangles) and the interfaces (circle-ended lines) which may be

provided by each object. The interfaces written in bold are described in the COSE Interfaces specification

documents while the others in the Common Interfaces specification documents.

PME

ObjectPME

Object

ICapeDiagnostics
ICapeError

ICapeMaterialTemplate

System

ICapeError

Environment Simulation PME

Figure 16 Simulation Environment Component Diagram

9.2 Common interfaces and business interfaces

We distinguish two kinds of PMC objects: PMC primary object and PMC secondary object. Thus the

services they offer to any PME are clearly identified.

9.2.1 Primary and secondary (interface) object

PMC primary object: When a PME requires some kind of external functionality, it checks with the help of

the CAPE-OPEN categories which suitable components are available in the system. The user will then select

one of those and the PME will create a CO object that will expose the required CO interfaces. We will call

PMC primary object to this instance which is created explicitly by the PME. The only exception to this rule

are those objects created through a System (Factory like) interface. That is the case of ICapeThermoSystem,

which may create property package instances on behalf of a PME. This means that each Business Interfaces

Specification document will have to specify which are its primary objects.

PMC secondary object: Adding other objects is the normal way to design a PMC from an object-oriented

approach. All the services provided by the PMC can not be (in many cases) present within one single PMC

primary object. Therefore a Business Interface has PMC secondary objects which do not need to make

available the same Common Interfaces services. For instance, a Unit Operation to expose its ports provides a

way for PMEs to have access to a set of port object instances. These objects are PMC secondary objects and

are only related to base Common Interfaces such as error handling and identification.

An advantage of interface models (such as the component paradigm) consists in the fact that interface clients

get abstracted from the actual objects that implement the functionality. However, it is important to classify

these two kinds of objects because PMEs will give them different treatments. For instance, it makes sense

that any PMC primary object satisfies Edit and Persistence interfaces, since it is comfortable for PMEs to

have a single point of entry for configuring and persisting the state of a PMC.

63

9.2.2 Use-case diagram

All PMC objects (primary and secondary) have to provide Common Interfaces services to any PME such as

an identification process and an error handling strategy.

A PMC Primary object has to expose specific Common Interfaces services such as a persistence

management. The following diagram summarises the mandatory functionalities that PMC objects have to

supply.

There is no mandatory recommendation for the PMC Secondary Object but it could also provide services

coming from the Common Interfaces. This design choice is up to the designers of CO interfaces. For instance

a PMC Secondary Object could provide Collecting Items functionality.

Identifying

PMC Object

Handling Error

Persisting State

PMC Primary ObjectPMC Secondary Object

n

has

Collecting Parameters

Editing

Running Utilities

<<include>>

<<include>>

Managing Simulation Context

<<include>>

The functionalities (defined by the Common Interfaces) that the
PMC Objects have to expose

1

Figure 17 Use-Case diagram

Based on the previous diagram, we can identify the Common Interfaces documents according to its scope:

All PMC Objects depends on the following specification documents:

• Error Common Interface

• Identification Common Interface

All PMC Primary objects depends on the following specification documents:

• Persistence Common Interface

• Utilities Common Interface

64

9.2.3 Component diagrams

As illustration, the following component diagrams show the primary and secondary concepts for some

PMCs.

The diagrams show the PMC objects (rectangles) and the interfaces (circle-ended lines) which may be

provided by each object. The interfaces written in bold are described in the Business Interfaces specification

documents while the others in the Common Interfaces specification documents. Note only few secondary

objects are drawn.

PMC

Primary

Object PMC

Secondary

Object

PMC

Secondary

Object

ICapeUnit

ICapeError

ICapeIdentification

ICapePersistence

ICapeUtilities

ICapePort

ICapeError

ICapeIdentification

ICapePort

ICapeError

ICapeIdentification

Unit Operation PMC

Figure 18 Unit Operation Component Diagram

PMC

Primary

Object PMC

Secondary

Object

PMC

Secondary

Object

ICapeNumericGATComponent

ICapeError

ICapeIdentification

ICapePersistence

ICapeUtilities
ICapeNumericProcessGraph

ICapeError

ICapeIdentification

ICapeNumericTearing

ICapeError

ICapeIdentification

Sequential Modular Specific Tools PMC

Figure 19 SMST Component Diagram

65

PMC

Primary

Object PMC

Secondary

Object

PMC

Secondary

Object

ICapeSolverManager

ICapeError

ICapeIdentification

ICapePersistence

ICapeUtilities

ICapeNumericLASolver

ICapeError

ICapeIdentification

ICapeNumericNLASolver

ICapeError

ICapeIdentification

Numerical Solver PMC

Figure 20 Numerical Solver Component Diagram

9.3 General idea

9.3.1 Needs for CO common interfaces

The Common Interfaces are a collection of interfaces that support basic functions and are always

independent of Business/COSE Interfaces. Within CAPE-OPEN there have been currently few opportunities

and initiatives to reuse design concepts across the business topics. In some instances this design reuse could

be facilitated to provide one means of achieving consistency across the deliverables of the standard (i.e. the

interface specifications). In addition to design reuse, it may be possible to go further and produce

implementations of these designs, which are also reusable across the CO component development.

9.3.2 Recommendations to the intended audience

The Common Interfaces specifications are aimed at designers of CO interfaces and developers of CO

components.

DESIGNERS OF CO INTERFACES

They design the Business/COSE Interfaces belonging to the CO standard and write the corresponding open

interface specification document.

Methods & Tools group requires Common Interfaces to be part of future Business/COSE Interfaces

specification if this specification needs functionalities which can be supplied by already existing Common

Interfaces. In the case this specification requires further functionalities than the ones provided by Common

Interfaces, the Methods & Tools group will consider enhancing the Common Interfaces.

The designers of a CO interface specification have to use the Common Interfaces. Thus the designers have to

integrate the existing Common Interfaces within their design. The way to include them is described in the

Common Interfaces specification documents. Indeed each specification document show clearly how to

integrate these common functionalities within any design of Business/COSE Interfaces . For example the

Error Common Interface describes how any CO object handles the CO errors. Therefore any Business/COSE

66

Interfaces have to be compliant with these recommendations. The designer should illustrate the dependencies

between his specification and the Common Interfaces; basically for instance through the UML model by

drawing specific diagrams.

COSE Interface

PME objects provide the Common Interfaces functionalities as explained in the section 9.1.

Business Interface

The designers of CO interfaces have to clearly identify the interfaces as primary or secondary. With respect

to this kind, the resulting PMC objects provide the Common Interfaces functionalities as explained in the

section 9.2.

DEVELOPERS OF CO COMPONENTS

They develop applications/components which are compliant with the CO standard.

The Common Interfaces are general purpose interfaces that are mandatory for developing CO-based

components. The CO component developer has to implement not only the Business/COSE Interfaces but also

the Common Interfaces which are related. For instance the CO Unit developer has to implement the

Identification interface since the Unit interface specification requires the use of the Identification interface.

9.3.3 General design principles

� The Common Interfaces are built in the same manner than any Business/COSE Interface

specification. Therefore the content and the syntax used to specify the Common Interfaces

are similar to the ones used to specify any Business/COSE Interface specification. Each

Common Interface is specified by a separate document. So as specified by the Methods &

Tools group at present, the Template for Interface Specification Document is the reference

document. A priori this the Methods & Tools group that is in charge of producing the

Common Interfaces.

� The textual requirements and the UML model should make no reference to any other

Business/COSE Interfaces, since the Common Interfaces are of general purpose. However,

use cases and diagrams can be added as concrete examples of how Common Interfaces are

used by some Business/COSE Interfaces and corresponding CO components. Basically the

next figure shows the dependency between the COSE/Business Interfaces and Common

Interfaces.

Business
Interfaces

Common
Interfaces

COSE
Interfaces

Figure 21 Dependency Relations

67

� The design of Common Interfaces leads to interfaces which a priori are integrated directly

within the design of any Business/COSE Interfaces. It is only a factorisation of general

interface, similar to famous design patterns. That means that there is no client/server relation

between Business Interfaces and Common Interfaces (from a CO point of view since the

proprietary implementation can always distribute subsets of a PMC). The resulting CO

component will implement not only Business/COSE Interfaces but also as required Common

Interfaces. For instance, the Unit PMC will provide the implementation of Unit and

Identification interfaces. The interface of Identification Common Interface is designed in

order to provide interfaces to the PME and not to the PMC itself.

� The designers of Business/COSE Interfaces have to integrate the Common Interface(s) in

their design as recommended in this part. Each Common Interface specification document

specifies the integration design to respect.

9.3.4 Versioning aspect

The Implementation Specifications under the IDL form is represented by a single library; one for the COM

platform and one for the CORBA platform. One version number corresponds to the whole library.

The Implementation Specifications enclose the Common Interfaces. The Common Interfaces belong to the

standard versioning system and so don't have any specific version number. Only a version number for

internal use is applied. The designers of the CO interfaces could refer to it but that has no interest for

developers of CO components.

The CO components only need to be compliant with a specific version of Implementation Specification, for

instance version 0.9.3 using the CAPE-OPENv0.9.3.idl which involves some Common Interfaces.

9.3.5 Associated documents

The CO Common Interfaces involve the following documents:

� Open Interface Specification: Identification Common Interface;

� Open Interface Specification: Parameter Common Interface;

� Error Handling Strategy: Error Common Interface;

� Open Interface Specification: Utilities Common Interface;

� Open Interface Specification: Persistence Common Interface;

� Open Interface Specification: Collection Common Interface;

9.4 Summary of key features

9.4.1 Error common interface

• This report gives the guidelines to manage the error within any Business Interfaces and COSE

Interfaces.

68

• By definition the error is an abnormal termination. It represents a binary status; either there is no

error or an error occurs. When a request is made, if this request is successful it raises no error

otherwise it raises an error. When an error occurs, the execution is immediately aborted.

• The error strategy is first defined from a conceptual view. Thus the strategy is independent from any

architecture, system and implementation language. The result uses the UML notation. Then the error

strategy is applied to the COM and CORBA platform.

• This document describes a classification and a hierarchy of potential errors occurring in the CO

standard. These errors are common to all the CO interfaces which can easily reuse them.

9.4.2 Identification common interface

• This specification will be used by those CO components that wish to expose its name and

description. This information refers to an instance of the component, not to the software class.

• A particular situation in a system may contain several CO components of the same class. The user

should be able to assign different names and descriptions to each instance in order to refer to them

unambiguously and in a user-friendly way.

• The Unit Operations interface specification has for instance the following requirements: If a

flowsheet contains two instances of a Unit Operation of a particular class, the CO Simulator

Executive needs to provide the user a textual identifier to distinguish each of the instances. For

instance, when the CO Simulator Executive requires to report about an error occurred in one of the

Unit Operations.

• The interface contains a straightforward interface called ICapeIdentification.

9.4.3 Parameter common interface

• This specification will be used by those CO components that wish to expose its name and

description. This information refers to an instance of the component, not to the software class.

• This specification will be used by those CO components that wish to expose some of its own internal

data to its clients, so that the latter may utilise it through standard interface.

• The interface is made up of two different parts, each corresponding to a different client need:

o The first part is a fixed, static aspect that describes the Parameter, such as a type, name,

description, dimensionality and so on. This is proposed to be used to assist the human users

in deciding what value to give to the Parameter.

o The second part deals with value of the Parameter itself. It is expected that the parameter

values will change quite frequently both within and outside of the Component that needs it.

Additionally, several parameters of a system may share the same parameter description.

9.4.4 Collection common interface

• The aim of the Collection interface is to give a CO component the possibility to expose a list of

objects to any client of the component. The client will not be able to modify the collection, i.e.

removing, replacing or adding elements. However, since the client will have access to any CO

interface exposed by the items of the collection, it will be able to modify the state of any element.

69

• CO Collections don’t allow exposing basic types such as numerical values or strings. Indeed, using

CapeArrays is more convenient here.

9.4.5 Utilities common interface

• This interface represents a holdall concept. That allows to gather many basic functionalities within a

single Common Interface specification. Of course this design choice is convenient because the

services that are integrated in the “utilities” object are straightforward, only apply to PMC primary

object and does not need to be reuse outside this holdall.

• This interface allows any PME to manage simulation context, to collect parameters and to edit the

PMC.

9.4.6 Persistence common interface

• Most simulation environments allow the possibility to store at any moment the state of a simulation

case, in order to be able to restore it at any time in the future. In the CO (distributed) architecture,

where different pieces of the simulation may be implemented by different vendors, there must be a

standard mechanism to provide this feature.

70

10. Annexe: Template for interface specifications documents

This section delivered as a separate document called Template for Interface Specification Documents in the

MS Word format (.doc) and in MS Word model format (.dot).

71

11. Annexe: COM-CORBA bridging

11.1 COM-CORBA bridging

This subject was almost completely treated during the second six months period. We present here a

preliminary study of the strength of the business case for interworking technology within the CAPE-OPEN

community. We present also the possible bridging techniques that have been studied by the group. Finally,

we will present the bridging approach chosen for the prototype. Technical detail on the prototype and the

COM-CORBA data conversion will also be given. The only remaining part for the third six month period is

the complete integration test of the bridge with Aspen+ and Hysys. There have been some successful

experiments demonstrating the correctness of the approach taken. A final test will follow.

11.1.1 Requirements/Business case for COM/CORBA bridging

A questionnaire was sent to all project partners. As of Jan. 28th, 2000, only seven answers were received, and

even one of them mostly saying "I don't know". From the others we can depict what the current situation

seems to be.

The interoperability on COM and CORBA components is meaningful only for those ones who have a at least

a minimal understanding. It is important as far as some commercial or operational products (COSEs or

components) are solely available in one flavour (COM or CORBA). This can be in the form of integrating

legacy components in an environment, or of mixing "best-of-class" commercial components.

The business value is not easy to assess. Benefits are expressed in terms of "better and faster" rather than

using euros. This question of business value was raised because we were wondering whether the bridging

was worth the effort. We will have to go on armed with our belief, supported by some statements from users,

that this can bring benefits in the medium and long term. It will be interesting to convert the qualitative

estimates into quantitative ones when the effort is completed.

The most frequent use will be with a small number of components from one flavour (e.g. one CORBA

component) being accessed from a COSE (e.g. a COM-based COSE). This will run on the company network

using several (two?) machines.

There are no conclusions on other middleware because only Steven Groot Wassink replied to this one with

something else than "don't know".

In summary, there seems to be some value in bridging COM and CORBA components but real benefits

needs to be demonstrated: hopefully the example with the IK-CAPE thermo will give ideas to the partners.

The next part presents technical aspects of bridging and summarises what the group plans to do.

11.1.2 Possible bridging mechanisms

BACKGROUND

An early decision in CAPE-OPEN was to provide all interface specifications in both OMG’s CORBA IDL

and Microsoft’s COM IDL (or more strictly in the form of Automation interfaces). These will be referred to

as ‘CIDL’ and ‘MIDL’ respectively hereafter. The original concept was for a “general” CAPE-OPEN

interface definition language to provide the primary version of each interface, with the CORBA and

Automation versions being derived from this. This was achieved to some extent in the final documents, in

that the interfaces were detailed along with their semantics in a series of tables, before the MIDL and CIDL

versions were presented. In practice, however, the development effort inevitably focussed on the particular

middleware favoured by the team concerned: for Unit this was Automation, while for Solvers and GAT it

72

was CORBA. The only group of interfaces implemented for both middlewares was Thermo. In particular,

prototypes were largely produced only for one choice of middleware in each case.

However, a CORBA IDL version of the Thermo interface was developed, and a prototype IKCAPE thermo

server created in accordance with it. This illustrates how the need for Automation/CORBA interworking is

likely to arise. A simulator executive designed to provide Automation “sockets” for a CO thermo package

will require some intervening software in order to access this CORBA version. Conversely, an Executive

with CORBA sockets would require CORBA/Automation interworking to access (for example) Aspen’s

Thermo package. In general, it is probably unrealistic to expect every software provider to create two

versions of their product, one for each type of middleware. Because there are two implementations of the

Thermo interfaces in both COM and CORBA these interfaces were chosen to demonstrate COM-CORBA

bridging. The prototype of the bridge will use the native CORBA IK-CAPE thermo components and will

enable the use of these components in the COM based simualtor executives Aspen+ and Hysys.

The problem of different middleware approaches used in one context is of course not unique to CAPE-OPEN

framework. A considerable effort has been undertaken by the OMG consortium to define a standard for

interworking of COM (or Automation) components with CORBA. The result is defined in the CORBA 2.3

specification document, available as http://www.omg.org/corba/corbaiiop.html, chapters 17 and 19. These

define standard mappings from interfaces defined in Automation or CORBA to their counterparts in the other

language. The OMG’s objective is to encourage software companies (probably the ones currently providing

ORBs) to create generic bridging software supporting this standard. Later we will present some more detail

on existing bridging solutions. Thus, in the next section we present a methodology allowing immediate

testing of the interworking concept, before discussing these longer term issues.

Figure 22 Application of a custom bridge

 CUSTOM BRIDGING

In the OMG’s terminology, our short term aim is to create a ‘custom bridge’ between the Automation

Thermo socket and the CORBA Thermo plug. This will be a specially written software component which

exposes an Automation plug (for example it will be instantiated using the COM mechanisms) but provides a

CORBA socket to the IK-CAPE component (for example it might access the server via a CORBA name

service). This is illustrated in Figure 22.

The M&T Group has created a custom bridge as described above within the last months as a proof of

concept. Using this bridge it will be possible to access any CORBA Thermo component from any

Automation Thermo client — provided of course both conform to the existing IDL definitions that were used

for the two prototypes. The bridge implemented in the prototype is a one-way bridge capable of making a

native CORBA server available to a COM based client process as depicted in Figure 3. But for some

technical reasons explained below the prototype is internally a two-way bridge. Therefore, using the

prototype for making COM components available to the CORBA world will take only little effort.

The conformity of MIDL and CIDL has been ensured by applying some minor corrections to the CORBA

IDL. The first official releases of the COM type library and the CORBA IDL-file are compliant with regard

73

to bridging. Therefore, this approach has the benefit of requiring no changes to the MIDL or CIDL versions

of the interfaces, or to the prototype codes already developed in accordance with these. It is thus the most

conservative approach in terms of working with the end products of the CAPE OPEN project. However,

adoption of this approach on a wider scale would imply the production and maintenance of a significant

number of such bridges because we need one custom bridge for each interface. Additionally, every change of

the standard interfaces implies a change in the according bridge. But this maintenance problem is not as bad

as it may sound because the effort needed to adopt a bridge to a change in the interfaces is very small. The

reasons for this will become clear when we present the technical detail of the prototype.

Figure 23 Application of a generic bridge

Nevertheless, a longer term aim be for the two versions of the interfaces to relate to each other in conformity

with the OMG’s interworking mapping referred to above, which would allow the use of generic bridging

tools rather than custom bridges. See Figure 23 for an illustration of this concept. This could be

accomplished with the implementation of the interface- and analysis repository located in the CO-LaN

implementation. One of its goals is to provide automated generation of MIDL and CIDL from the UML

definitions stored in these repositories. This automated IDL generation will be compliant to the OMGs

interworking specification. But also the custom bridge tries to take this specification in account as far as

possible. We will come back to this later.

The idea of using a generic bridging product as a short term solution was also dropped for some additional

reasons. Some commercial bridging products are available, such ase COMet from IONA, the DAIS suite, or

a bridge intergrated in the VisiBroker from Inprise. But these products are still at an early stage of

development which could bear one or more of the following problems:

• Unstable run-time behaviour

• Most products are only one-way bridges therefore not offering additional functionality to the custom

bridge

• Compliance to the OMG bridging specification is questionable which possibly means problems

when change the bridging product.

Additionally, these products are not free so everyone wanting to use both middlewares simultaneously in a

simulator executive would have to pay extra money. On the other hand the custom bridges could be made

freely available on the CO-LaN web-site.

74

One might ask, since the CIDL and MIDL versions were developed from the same design, why might they

fail to satisfy this mapping? This is mainly a question of details arising from decisions on the handling of

particular issues such as exceptions, where the OMG’s recommendations differ from our own. For example,

the current MIDL specification for the ThermoSystem interface is as follows:

#ifndef _THERMOSYSTEM_IDL_

#define _THERMOSYSTEM_IDL_

// Provide an interface for Thermo System

// Definition of the Thermo System configuration

import "oaidl.idl";

import "ocidl.idl";

// Include GUIDs

#include "COGuids.idl"

// Fundamental types

#include "Fundamental.idl"

// Material Template and Material Object

#include "Cose.idl"

// ICapeThermoSystem interface

[

 object,

 uuid(ICapeThermoSystem_IID),

 dual,

 helpstring("ICapeThermoSystem Interface"),

 pointer_default(unique)

]

interface ICapeThermoSystem : IDispatch

{

 // Get the list of available property packages

 [id(1), helpstring("method GetPropertyPackages")]

 HRESULT GetPropertyPackages([out, retval] CapeArrayString *propPackageList);

 // Resolve a particular property package

 [id(2), helpstring("method ResolvePropertyPackage")]

 HRESULT ResolvePropertyPackage(

 [in] CapeString propertyPackage,

 [out, retval] CapeInterface *propPackObject);

};

#endif //_THERMOSYSTEM_IDL_

while the CIDL version is this:

#include "base.idl"

#include "cose.idl"

#ifndef THERMO_SYSTEM_IDL

#define THERMO_SYSTEM_IDL

module ThermoSystem {

 interface ICapeThermoPropertyPackage;

 interface ICapeThermoSystem;

 /* Sequence definitions */

 typedef sequence<ICapeThermoPropertyPackage>

 CapeThermoPropertyPackageSequence;

 typedef sequence<ICapeThermoSystem>

 CapeThermoSystemSequence;

 /* Interface definitions */

 interface ICapeThermoSystem : Cape::ICapeIdentification {

75

 Cape::CapeStringSequence GetPropertyPackages();

 // returns a name for all available Property Packages

 ICapeThermoPropertyPackage

 ResolvePropertyPackage(in Cape::CapeString propPkg)

 raises (Cose::CapeThermoUnknownIdentifierException);

 // This method returns Property Package Interface pointer for

 // given Property Package. Exception indicates that package is

 //not available

 };

A few points illustrating the details involved in a compliant mapping (with page references to the OMG

document for CORBA 2.3) are:

• Due to the presence of a module definition in the CIDL, the OMG mapping would require the MIDL

interface to be renamed DIThermoSystem_ICapeThermoSystem.

• Single inheritance of interfaces should be the same in both MIDL and CIDL: thus

DIThermoSystem_ICapeThermoSystem should inherit from DICape_ICape-Identification

(which might in turn inherit from IDispatch).

• The MIDL operations (GetPropertyPackages and ResolvePropertyPackage) should both have

an additional argument marked as [optional, out] to return exception information.

Clearly, there is some effort — and potentially a moderate loss of readability — involved in conforming to

these standards, but the potential saving of effort if generic bridging tools can be used appears worthwhile.

Thus another area of our activity in the next few months will be concerned with modifying the CIDL and

MIDL Thermo specifications5 so that they become compliant mappings of each other. Figure 24 illustrates

the point: here a vertical line denotes a compliant mapping. Thermo is the currently defined MIDL interface,

and Cust(Thermo) the currently defined CIDL version. Thermo’ represents a modified version of the MIDL

interface designed to satisfy the mapping: OMG(Thermo’) is the compliantly mapped CIDL version.

5 The examples given above were presented from the point of view of changing only the MIDL material: however in

practice, it will probably be appropriate to make changes to both in order to reach the best compromise between the

styles of the two types of middleware. The aim should be to minimise the combined impact of these changes on the

effort of maintaining both the Automation and CORBA software.

76

Thermo

CIDL

Thermo'

MIDL

Cust(Thermo)OMG(Thermo')

Custom

bridge

Generic

bridge

Figure 24 Illustration of different mapping strategies

11.2 The bridging prototype

In this section we present some conceptual and technical background information about the bridging

prototype. The prototype that was implemented during the last months is a complete custom bridge for the

thermo interfaces in the sense of what was shown in the last section. Its core is based on the IK-CAPE

thermo package which was wrapped and made CAPE-OPEN compliant in the CAPE-OPEN project. It was

chosen for the prototype testing because thermo seemed to be the simplest solution for testing the bridging.

The thermo interfaces can be tested quite standalone and it seems to be interesting to use the IK-CAPE

thermo within the commercial CAPE-OPEN compliant simulators Aspen+ and Hysys. Some integration tests

with Hysys and the bridged and wrapped IK-CAPE thermo have been done and were basically successful.

Further testing and a complete plug-and-play integration for both simulators is planned and is aimed to be

demonstrated in November 2000.

Although the prototype is restricted to the thermo interfaces and capable of bridging CORBA to COM only it

we be no large effort to extend it to the remaining CAPE-OPEN interfaces and the direction COM to

CORBA. The reasons for this will become clearer in the following sections.

11.2.1 Technical background

We will now describe in more detail which functionality is included in the bridging prototype and what tools

were used for its implementation. Furthermore we will present the problems that had to be addressed in the

implementation phase.

77

As the agreed by the Methods and Tools Group the scenario for the bridging prototype is based on the IK-

CAPE CORBA thermo server and properties package. This package which was originally written in

FORTRAN and is available as a Solaris library resp. Windows DLL was made CAPE-OPEN compliant by

wrapping it with a CORBA shell. It was decided to make this wrapped IK-CAPE available to the COM

world via a COM-CORBA bridge. This bridge should then be used to employ the wrapped and bridged IK-

CAPE in Aspen+ and Hysys. As these systems are Windows based and the IK-CAPE CORBA server is

Solaris based we have the following scenario:

Figure 25 General Bridging Scenario

In this scenario it is quite natural that the bridge resides on the Windows system since COM is a native

Windows technology. Although there are implementations of COM and DCOM for Unix/Solaris based

systems we have decided to build the bridge on Windows itself. This has several reasons: First, building the

bridge on Unix require an additional COM implementation on Unix which is expensive. As we want to use a

much free software for the bridge as we can this is not a good idea because COM is already shipped with

Windows at no extra cost. Second, as the bridge is designed to be usable for any CORBA CAPE-OPEN

thermo system regardless whether it resides on Windows, Linux, Solaris or whatever we need only one

bridge for the Windows system and not one for each operating system.

For implementation we decided to use Microsoft Visual C++ 6.0 which offers quite good support for

programming COM based applications via the ATL-Library. For the connection to the CORBA parts we

used OmniOrb 2.7.3 which was also used for wrapping the IK-CAPE package on the Solaris side. But both

products can be changed as not too much code is specific to these systems. Especially for CORBO it is no

problem to plug CORBA servers that are not based on OmniOrb into the bridge since IIOP, the

communication protocol of CORBA, is standardised. Some ORB integration tests which were carried out in

the early phases of Global CAPE-OPEN have shown that this really the case (with some difficulties). Before

we come to the technical details of the implementations we will present some general properties of the

bridging prototype.

11.2.2 Features of the Bridging Prototype

As stated above the bridging prototype implements a custom one-way-bridge which enables us to make

implementations of CORBA thermo interfaces available to the COM world but not vice versa. Additionally

the prototype is restricted to the thermo interfaces only. These decisions were made because the bridge is

supposed be a proof of concept only. As we will see later the concepts used in the prototype can be easily

extended to the other CAPE-OPEN interfaces. We will also see that the implementation of a bridge working

the other way namely making COM components available to CORBA is also conceptually captured in the

prototype. Some features necessary for this have already implemented in the prototype. As there are certain

callback mechanisms in the interactions between a Material Object and a Properties Package these features

were implemented to make the one-way bridge work.

78

Another important restriction of the bridge is that it is a static one. We can distinct two different kinds of

bridges: static and dynamic bridges. Dynamic bridges are server processes which can be used to create COM

objects the are connected CORBA objects at runtime. If you need COM access to a CORBA object you

would have to render a CORBA reference to the server process which then would create end expose an

appropriate COM object. This object would contain the CORBA reference handed over to the server before

and use it to access the CORBA object. Such bridges can be used to create COM objects dynamically for

arbitrary CORBA objects at runtime. Depending on whether the bridge is generic or custom CORBA objects

with arbitrary interfaces can be plugged into the server. Some of the generic bridges mentioned above work

that way, i.e. are dynamic bridges.

Figure 26 Dynamic Bridge

Static bridges are quite similar to wrappers. The only difference to the kind of wrapper used for making IK-

CAPE CAPE-OPEN compliant is that the code that is wrapped is not necessarily on the same machine. As

we deal with CORBA objects the CORBA implementation to be provided with a COM wrapper can reside

somewhere in a network and is accessed trough the CORBA reference. In contrast to the dynamic approach

there is no server process which can generate new COM objects for existing CORBA objects at runtime. The

connection between COM and CORBA is established at compile time directly via a set of classes

implementing the bridging. These classes can be reused for different CORBA objects if they have the same

interface.

Figure 27 Static Bridge

Static bridges are simpler to implement because the server process managing the run-time generation of new

COM-CORBA connections has not to be implemented. But in their core both strategies are similar because

all data and calling conversions are the same. There is only more effort to be put in the handling of the

objects. Therefore, in this prototype the static and custom approaches were taken. The serve as a proof of

concept and can be extended to the other approaches by implementing the necessary features. But the very

core of the bridge will stay the same.

As another restriction the prototype does not cover any error handling. At the time of its implementation no

error handling strategy was defined. Although there were some exceptions defined in the CORBA thermo

interfaces these were completely ignored. Error handling and a translation between the according COM and

79

CORBA concepts will be one of the future issues for COM-CORBA bridging in CAPE-OPEN. We will now

present the main technical problems that had to be solved for implementing the bridge and after that show

how these problems were solved.

11.2.3 Technical Challenges

As the COM and CORBA interfaces were derived more or less independently from the UML specifications

they are not in line with the OMG's specifications for COM-CORBA mappings. Therefore, the mapping

specifications of the OMG have only limited influence on the implementation of our bridge. We have

regarded the existing interfaces as fixed and have developed our own mappings where needed. In principle

this no problem we just loose the compliance to the OMG's mapping. However most basic data types which

could be mapped in compliance to the OMG's definitions for COM/Automation to CORBA interoperability.

These basic types (which are aliases for the basic CAPE-OPEN types such as CapeLong) are:

CAPE-OPEN Type COM IDL Data Type CORBA IDL Data Type

CapeLong long long

CapeDouble double double

CapeString BSTR string

ICapeXXX LPDISPATCH CORBA object reference

CapeVariant VARIANT any

The basic data types which are not mapped in a OMG compliant way are:

CAPE-OPEN Type COM IDL Data Type CORBA IDL Data Type

CapeBoolean VARIANT_BOOL

(should be boolean)

boolean

CapeDate DATE string

(should be double)

In compliance to the OMG's defintions all CORBA sequences for the basic types and for the interfaces were

mapped the Safearrays. How the actual mappings were implemented will be presented in the following

section.

In order to create the bridging prototype custom bridges for the following CAPE-OPEN interfaces had to be

built:

• ICapeThermoPropertyPackage

• ICapeThermoSystem

• ICapeThermoMaterialTemplate

• ICapeThermoMaterialObject

The first two interfaces encapsulate the core functionality of the IK-CAPE package and the latter ones were

needed to test the prototype and to access the properties and calculating methods in the properties package.

This strong connection among the interfaces has caused has caused some problems and lead to inefficiencies

in implementation. This is due to the fact that for accessing and storing data for a calculation callbacks from

a properties package to a material object are needed. The problem was already addressed in the CAPE-OPEN

internal paper " A critical assessment of CAPE-OPEN Interfaces from a user’s view point". We will now

80

describe this problem in more detail using a scenario for a call to a properties package calcProp method for

calculating an enthalpy.

If we want to calculate an enthalpy in a liquid mixture via an MaterialObject and a PropertyPackage the

following calls are made:

mo->setIndependentVar(...); // set temperature and pressure

proplist[0] = "enthalpy";

phases[0] = "liquid";

mo->calcProp(proplist,phases,"Mixture")

Here we can see that we need the MaterialObject Bridge for testing the PropertyPackage which is called

within the calcProp method of the MaterialObject. The MaterialTemplate is needed for creating the

MaterialObject. This situation causes no problem concerning the bridge. If we have CORBA MaterialObjects

we just need an appropriate simple bridge. The problems arise when we take a look into the calcProp

Method. Within this call a call to the calcProp Method of the PropertyPackage is made with the

MaterialObject as Parameter:

pp->calcProp(mo,proplist,phases,"Mixture");

The situation is the same when the calculation is called directly from outside. The problem is that the

MaterialObject is needed as parameter for the PropertyPackage calcProp implementation for retrieving or

storing data. As a result in this case a simple bridge for the COM-CORBA bridge for the PropertyPackage is

not sufficient. Let us consider the following situation: A native CORBA PropertyPackage is present as it is

the case in our IK-CAPE scenario. Therefore, we have to implement a bridge for this package making it

available as COM object. If we want to perform a calculation with the COM object we need a COM

MaterialObject to exchange data as seen above. But in the COM implementation of the PropertyPackage

bridge a CORBA call to native CORBA implementation of the PropertyPackage is issued. This call requires

a CORBA MaterialObject as Parameter. This would be no problem if the COM MaterialObject put as

parameter into the bridge were also a native CORBA object with some bridging code around it. But in

general this will not be the case. Therefore, we have the situation of having to plug the native COM

MaterialObject into the CORBA call to the PropertyPackage. As a result we need a CORBA wrapper for the

COM MaterialObject.

Therefore our bridging prototype contains not only code for making CORBA objects available as COM

object but vice versa as well. This is why we stated earlier that in fact we do not only have one-way bridging

code but two-way code. However, the code is available for both directions only for the MaterialObject but as

we will see later using it for other interfaces is more or less a matter of cut-and-paste. In the next section we

will give a brief overview of the implementation itself.

11.2.4 Overview of the Implementation

As MS Visual C++ offers quite good support for writing ATL (Active Template Library) based

Automation/COM applications via some wizards only the core functionality of the bridges had to be

implemented manually. Only the method implementations of the server skeletons had to be filled and the

data conversion between COM and CORBA had to be done. Therefore the prototype basically consists of the

following main modules:

• Data conversion module which implements the mappings for the basic data types and sequences as

presented in Section 11.2.3.

• CORBA-to-COM bridge for the interfaces ICapeThermoSystem, ICapeThermoPropertyPackage,

ICapeThermoMaterialTemplate, and ICapeThermoMaterialObject

81

• COM-to-CORBA bridge for the ICapeThermoMaterialObject interface needed for the situation

depicted in the last section.

We will now describe the modules in more detail.

DATA CONVERSION

As we have seen before the data types (basic and complex) are not the same for COM and CORBA. In order

to convert parameters and results of calculations a set of data conversion routines has been implemented. The

routines are the very core of the bridge and are used in almost every method of the bridges. These conversion

routines are not specific to the thermo interfaces and can be used in custom bridges for other interfaces

without any change. They can also be used in more advanced bridges like dynamic and/or generic bridges.

The conversion module contains the following routines:

BSTR String_2_BSTR (const char * const CORBA_String);

Cape::CapeString BSTR_2_String (const BSTR COM_String);

Cape::CapeBoolean VTBOOL_2_boolean(const CapeBoolean COM_Bool);

CapeBoolean boolean_2_VTBOOL (const Cape::CapeBoolean CORBA_Bool);

void COM_CapeVariant_to_CORBA_CapeStringSequence

 (Cape::CapeStringSequence * CORBA_StringSequence,

 const CapeArrayString COM_StringVariant);

void CORBA_CapeStringSequence_to_COM_CapeVariant

 (const Cape::CapeStringSequence CORBA_StringSequence,

 CapeArrayString* Com_StringVariant);

void CORBA_CapeLongSequence_to_COM_CapeVariant

 (const Cape::CapeLongSequence CORBA_LongSequence,

 CapeVariant* COM_LongVariant);

void COM_CapeVariant_to_CORBA_CapeLongSequence

 (Cape::CapeLongSequence* CORBA_LongSequence,

 const CapeVariant COM_LongVariant);

void CORBA_CapeDoubleSequence_to_COM_CapeVariant

 (const Cape::CapeDoubleSequence CORBA_DoubleSequence,

 CapeVariant* COM_DoubleVariant);

void COM_CapeVariant_to_CORBA_CapeDoubleSequence

 (Cape::CapeDoubleSequence * CORBA_DoubleSequence,

 const CapeVariant COM_DoubleVariant);

void CORBA_CapeBooleanSequence_to_COM_CapeVariant

 (const Cape::CapeBooleanSequence CORBA_BooleanSequence,

 CapeVariant* COM_BooleanVariant);

void COM_CapeVariant_to_CORBA_CapeBooleanSequence

 (Cape::CapeBooleanSequence * CORBA_BooleanSequence,

 const CapeVariant COM_BooleanVariant);

The first four routines convert the basic types boolean and string from COM to CORBA and vice versa.

Their implementation is quite simple and contains only a few lines of code. Nevertheless implementing the

conversion required a lot of work for finding out which routines had to be called. This was a general problem

when writing the conversion routines. The routines as such were quite straightforward but finding out which

API routines to use for it was very complicated. As low level C++ COM programming is far from being

simple this has required some intensive investigation on how COM and Automation handle their data.

Conversion routines for long and double are obviously not needed as both are the same in COM and

CORBA. Conversion for object references was not implemented because this is very simple and can be

performed directly where needed. Additionally, the code to be written there depends on what kind of object

reference (i.e. what interface) you want to handle which would require routines for all interfaces. In the sense

of generally applicable conversion routines we considered it not to be relevant to implement.

Conversion for CapeVariant and CapeDate was not implemented as it was not needed in our prototype.

THE BRIDGES

We will now present a short overview over the implementations of the different bridges. As all custom

bridges look very similar we will take only three examples demonstrating the basic concepts. We will show

82

one example for both COM-to-CORBA and CORBA-to-COM bridging and the implementation of the

calcProp Method of the PropertyPackage which contains the dynamic conversion from COM to CORBA

objects.

All CORBA-to-COM bridges internally hold a CORBA object reference providing access to the native

implementation of the object. Therefore, the MaterialObject bridge holds a reference to the CORBA

MaterialObject implementation. How this reference is obtained depends on the interface the bridge is

designed for. The PropertyPackage, ThermoSystem and MaterialTemplate bridges obtain the CORBA

reference in their constructors via the CORBA naming service. Therefore, in this prototype the connection of

the bridge to the CORBA object is fixed. It would be no problem to break this up and add a parameter to the

constructor containing the CORBA reference. The object reference for the MaterialObject is explicitly set by

the MaterialTemplate which creates it. This has some technical reasons which will not be explained here.

The situation is the analogous for the COM-to-CORBA bridge for the MaterialObject but here a COM

reference is used internally and explicitly set from outside. These internal references are then used to call the

native COM or CORBA methods.

Every bridge CORBA-to-COM implements every method for its interface. But as it is designed to handle

arbitrary CORBA objects internally it contains no computational logic of its own. The only thing it does is to

forward a call made to the COM object (i.e. the bridge object) to the CORBA object. To do so every bridge

method follows the same scheme:

(i) Convert data types of COM parameters to CORBA data types using the conversion routines

mentioned above.

(ii) Call the CORBA object using the internal reference with the converted parameters (result of

step 1)

(iii) Convert the result of the CORBA call back to COM data structures and set the COM out

parameters appropriately.

As an example we present the GetComponentConstant method of the MaterialObject.

STDMETHODIMP CCapeThermoMaterialObject::GetComponentConstant

 (CapeVariant props, CapeVariant compIds, CapeArrayDouble * propVals) {

 // create CORBA data structures

 Cape::CapeStringSequence CORBAstringSequence_props;

 Cape::CapeStringSequence CORBAstringSequence_compIds;

 Cape::CapeDoubleSequence_var

 CORBAdoubleSequence_results = new Cape::CapeDoubleSequence();

 // convert COM parameters to CORBA

 COM_CapeVariant_to_CORBA_CapeStringSequence

 (&CORBAstringSequence_props,props);

 COM_CapeVariant_to_CORBA_CapeStringSequence

 (&CORBAstringSequence_compIds, compIds);

 // call the CORBA implementation

 try {

 CORBAdoubleSequence_results = pMaterialObject->GetComponentConstant

 (CORBAstringSequence_props,CORBAstringSequence_compIds);

 }catch (CORBA::SystemException& e) {

 check_exception(e);

 return S_FALSE;

 }

 // convert the results back to COM

 CORBA_CapeDoubleSequence_to_COM_CapeVariant

 (CORBAdoubleSequence_results,propVals);

 return S_OK;

}

The according function in the COM-to-CORBA bridge follow the same principle but have to do the data

conversions in the reverse order. As an example we present the same methods of the COM-to-CORBA

bridge:

83

Cape::CapeDoubleSequence * corbaMOwrapper::GetComponentConstant

 (const Cape::CapeStringSequence & props, const Cape::CapeStringSequence & compIds) {

 //create COM data structures and convert the parameters

 //from CORBA to COM

 CapeArrayString * comProps = new CapeArrayString;

 CORBA_CapeStringSequence_to_COM_CapeVariant(props, comProps);

 CapeArrayString * comCompIds = new CapeArrayString;

 CORBA_CapeStringSequence_to_COM_CapeVariant(compIds, comCompIds);

 _variant_t comResults;

 //call the COM implementation

 try {

 comResults = comMO->GetComponentConstant(comProps,comCompIds);

 }catch (_com_error e) {

 cout << e.ErrorMessage();

 return NULL; }

 //convert the results

 Cape::CapeDoubleSequence * corbaResults =

 new Cape::CapeDoubleSequence();

 COM_CapeVariant_to_CORBA_CapeDoubleSequence(corbaResults,comResults);

 return corbaResults;

}

As we can see here the implementation of the bridge is very generic and can be adopted to all other CAPE-

OPEN interfaces very easily. This is also an advantage if the interfaces change over time (what they surely

will) because adopting the bridges to a new version of the standard will be no large effort.

As the last example of the bridge implementation we will show how the callback problem to the

MaterialObject within the calcProp method of the PropertyPackage is handled. This situation is not specific

to just this method but will occur every time a complex COM object is passed through the bridge as a

parameter to a method of a native CORBA object. Then, the COM object has to be plugged into an COM-to-

CORBA bridge (or a CORBA wrapper for the COM object) before the native CORBA method can be called

and the object is passed as a parameter. With the bridge the CORBA object can in its implementation access

the COM object's implementation and call the method it needs. This procedure looks in case of the calcProp

methods of the CORBA-to-COM PropertyPackage bridge as follows:

STDMETHODIMP CCapeThermoPropertyPackage::CalcProp

 (CapeInterface materialObject, CapeVariant props, CapeVariant phases,

 CapeString calcType) {

// create CORBA data structures

 Cape::CapeStringSequence _props;

 Cape::CapeStringSequence _phases;

 Cape::CapeString _calcType;

// convert COM parameters to CORBA data structures

 COM_CapeVariant_to_CORBA_CapeStringSequence(&_props ,props);

 COM_CapeVariant_to_CORBA_CapeStringSequence(&_phases, phases);

 _calcType = BSTR_2_String(calcType);

// get COM MaterialObject from COM parameter

 MATOBJWRAPPERLib::ICapeThermoMaterialObjectPtr pCTMO;

 materialObject->QueryInterface(&pCTMO);

// create CORBA wrapper for the COM MaterialObject

 corbaMOwrapper * cmow = new corbaMOwrapper(pCTMO);

 cmow->_obj_is_ready(boa);

 try {

// call CORBA method with bridged COM object. The CORBA CalcProp method

// internally accesses the MO via a CORBA reference

 pPropPack->CalcProp(cmow,_props,_phases,_calcType);

 }catch (CORBA::SystemException& e) {

 check_exception(e);

 return S_FALSE;

 }

// no results have to be converted here. The calcProp results are stored

// internally in the MO

 return S_OK;

}

84

11.3 Conclusion and Further Work

In this paper we have presented an overview over the COM-CORBA bridging prototype and its

implementation. Although the implementation looks quite simple and is not too large it was quite

complicated to get it running. The main problem is that low level COM programming with C++ is a quite

complex task. But the result has shown as a proof of concept that the IK-CAPE package can be used within a

COM based environment. Further tests will have to be performed especially for integration in Aspen+ and

Hysys. A integration test with Hysys was a partial success and will have to be repeated in the near future.

We have also seen that if there are some resources and interest in the topic the bridge can easily be extended

for other CAPE-OPEN interfaces. Another interesting issue could be an alternative implementation using

Visual Basic. As there is a new CORBA ORB for Visual Basic which seems after some initial testing quite

stable it could be promising to migrate the bridge to visual basic because COM programming is a lot easier

there.

