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IMPORTANT NOTICES 

Disclaimer of Warranty  

CO-LaN documents and publications include software in the form of sample code. Any such software 

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind. 

CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied warrant 

or fitness for a particular purpose. The entire risk arising out of the use or performance of any sample code --- 

or any other software described by the CAPE-OPEN Laboratories Network --- remains with you. 

Copyright © 2015 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise. 

CO-LaN is a non for profit organization established under French law of 1901. 

 

Trademark Usage 

Many of the designations used by manufacturers and seller to distinguish their products are claimed as 

trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a 

trademark claim, the designations have been printed in caps or initial caps. 

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and 

Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation. Adobe Acrobat 

is a registered trademark of Adobe Corporation. 
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FOREWORD 

The errata and clarifications have been discussed and developed by the CO-LaN Special Interest Group 

dedicated to CAPE-OPEN Unit Operations. Only the approved Unit Operations Interface Specification 1.0 

document in its version 6.25 is to be followed when implementing CAPE-OPEN interfaces.  
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SUMMARY 

This document provides three corrections to the specification document and clarifies the flow of events of three 

Use Cases (Check Unit, Save Flowsheet and Retrieve Flowsheet), gives rules for zero flows in Material 

Objects, expands the range of report formats, and makes recommendation about the Ports. The document 

proposes a new named value to deal with resetting Unit Operations. A recommendation is also issued about 

modal dialogs. 
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ERRATA AND CLARIFICATIONS 

 

1. Errata 

1.1 UC-015 Check Unit 

The sentence  

“The Validate method must be called before Calculate when any (one or more) of the following have 

occurred since the last calculation:” 

 

should be replaced by 

 

“The Validate method must be called before Calculate when any (one or more) of the following have 

occurred since the last validation that leads to a CAPE_VALID status:” 
  

1.2 Validate method description 

In Section 3.6.1 within the Notes of the description of ICapeUnit::Validate, the sentence  

 

“However, Validate must be called before Calculate in case any (one or more) changes to the following 

configuration aspects of the Unit Operation have changed since the last call to Calculate:”  

 

should be replaced by  

 

“However, Validate must be called before Calculate in case any (one or more) changes to the following 

configuration aspects of the Unit Operation have changed since the last call to Validate that leads to a 

CAPE_VALID status:” 

 

1.3 Validate “message” argument description 

Issue: the specification document states that the message argument of Validate is optional. However a message 

must be provided regarding the reason for a Unit Operation not being in a valid state so that the end-user may 

take the appropriate actions to overcome that situation. Additionally, the description speaks of validation 

failure which suggests that Validate raises an exception. What is meant is a successful validation resulting in 

a validation state of the Unit Operation being CAPE_INVALID and Validate returning FALSE. 

Correction: description of the “message” argument of method Validate: “An optional message describing the 

cause of the validation failure” should be replaced by “If the Unit Operation is not in a valid state, a message 

conveying the reason for that situation.” 
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2. Clarifications 

2.1 Use case UC-001 “Add Unit to Flowsheet” 

Clarification: if the creation of the Flowsheet Unit fails, for example if ICapeUtilities:Initialize fails on the 

Flowsheet Unit, no further calls on the Flowsheet Unit must be made.  

2.2 Use case UC-018 “Save flowsheet” 

The Simulator Executive is responsible for ensuring that the previously persisted state of each Flowsheet Unit 

is consistent with the current state of each Flowsheet Unit at the time of saving a Flowsheet. 

When using the COM persistence interfaces, a Flowsheet Unit is responsible for ensuring that its state is 

properly reportable to the Simulator Executive. This state is reported through the IsDirty method on the 

IPersistStream or IPersistStreamInit interface implemented by the Flowsheet Unit. 

As part of the “Save Flowsheet” Use Case (UC-018), the Simulation Executive is expected to perform the 

“Save Unit” Use Case (UC-009) on the Flowsheet Unit.  

This flow of events is relaxed as follows: 

“The Simulator Executive can choose, without checking the IsDirty method on each Flowsheet Unit, to save 

the Flowsheet Unit by executing the [Save Unit] Use Case. 

Alternatively, the Simulator Executive has the option to check the persisted state of each Flowsheet Unit by 

calling the IsDirty method. Only if the IsDirty method of a Flowsheet Unit returns S_FALSE, the Simulator 

Executive will not execute the [Save Unit] Use Case on that Flowsheet Unit.” 

Consequently, it is the responsibility of the Flowsheet Unit to return S_OK from IsDirty in case a configuration 

change (through UC-008) has been made (or may have been made) that affects the data that is persisted by the 

Flowsheet Unit since the last time the Flowsheet Unit was either initialized, loaded or saved with a ClearDirty 

flag.  

2.3 Use Case UC-020 “Retrieve Flowsheet” 

Clarification 1: it is not required to validate a Flowheet Unit immediately after retrieving the Flowsheet. 

Validation may be postponed as long as it is performed before Calculate (in accordance with UC-015).  

So the Flow of events is relaxed as follows: 

« The Simulator Executive retrieves the native Flowsheet Units in its usual way. For each CAPE-OPEN 

Flowsheet Unit in the Flowsheet, it recovers the Flowsheet Unit type. The Flowsheet Unit is created. The 

Flowsheet Unit’s data is restored as in [Restore Unit]. 

The Simulator Executive recovers details of the Flowsheet Unit’s stream connections (which are saved in the 

simulator's native format) and asks each CAPE-OPEN Flowsheet Unit to connect their Ports to those specific 

streams. 

If the Flowsheet Unit fails to restore, the Flowsheet Builder is notified. » 

 

Consequently the post-conditions of this Use Case now include: <Flowsheet Unit validation status is 

CAPE_NOT_VALIDATED>. 

 

Clarification 2: failure to restore a Flowsheet Unit should be dealt with in a manner consistent with failure to 

create a Flowsheet Unit. Consequently if a Flowsheet Unit fails to restore, for example because Load fails or 

because Initialize fails, no further calls on the Flowsheet Unit must be made.  
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2.4 Material Objects with zero flow 

Problem: 

A stream can be defined by total flow rate and composition, or by compound flow rates. In the latter case, it is 

possible for all compound flow rates to be zero, which leaves composition undefined. 

Typically, a stream is defined by the user (feed stream) or as the product of a unit operation. A unit operation 

must set, according to the specification, overall total flow rate and composition, or compound flow rates, and 

request a phase equilibrium calculation on the stream.  

Composition may subsequently be requested by the PME, or by any PMC operating on the stream. Particularly, 

a scenario may appear in which a Unit Operation sets all zero compound flow rates and two flash conditions 

on a stream, and requests a phase equilibrium calculation. The phase equilibrium calculator (e.g. a Property 

Package) takes overall composition as input and would fail if the composition is undefined. 

Hence, for simplicity of PME operation, composition must always be present in Material Objects that represent 

material streams. As some PMEs require a valid composition even for material streams with zero flowrate, the 

strong requirement of material feed and product streams to be in thermodynamic phase equilibrium remains. 

Considering the fact that most Unit Operations have a material feed stream, it is always possible for a Unit 

Operation to use the composition of a feed stream for a product stream. Considering that a PMC knows best 

about the possible interaction of inlet information with its model, it has been decided that it is the responsibility 

of the PMC to provide a composition on its outlet streams. This may not be an intuitive or physically sensible 

solution but it is a pragmatic approach. In order to prevent a situation in which composition is not known on a 

stream, setting compound flows is disallowed in case all compound flows are zero. The following paragraphs 

have been changed: 

Section 2.1.6 Conceptual examples 

Material Objects connected to outlet ports: the Unit must have specified the conditions of each of the 

material outlet ports at the end of a successful calculation. It must specify either overall composition and total 

flow or overall compound flows (provided that at least one compound flow is non-zero and positive) and it 

must instruct the thermodynamic services to calculate the thermodynamic phase equilibrium on the outlets by 

specification of two additional variables (e.g. temperature and pressure, or pressure and enthalpy) and call of 

CalcEquilibrium method on the Material Object attached to each outlet stream. 

UC-025 Flow of events 

As in [Set Stream Data through Outlet Ports] except: the streams requested are material streams represented 

by Material Objects, and the Ports are material Ports. The Flowsheet Unit must specify either both overall 

composition and total flow, or overall compound flows provided that at least one compound flow is non-zero 

and positive. In addition the Flowsheet Unit must instruct the thermodynamic services to calculate the 

thermodynamic phase equilibrium on the outlets by specification of two additional variables (e.g. temperature 

and pressure, or pressure and enthalpy). Note that either compound flows or composition as well as the two 

additional variables must be specified prior to the thermodynamic phase equilibrium calculation, whereas the 

total flow may be set either before or after the phase equilibrium calculation. 

Outlet material streams with zero flow rate must be defined by setting the overall total flow to a value of zero 

and by setting a valid overall composition. Setting all zero values for overall compound flow is not permitted.  

As necessary, a dummy valid composition must be provided so that the state of the material stream may be set. 

Such a composition may be obtained from any inlet stream.  

 

Note: equimolar or other arbitrary composition may not be supported by the underlying thermodynamic system 

and may lead to a flash failure. In the absence of a composition prediction in the limit of zero flow, using an 

inlet composition should avoid this problem. 
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2.5 UC-015 Check Unit 

Currently the second paragraph of the Flow of events for that Use Case states: 

“During validation, the Flowsheet Unit may typically obtain information regarding the configuration (not 

the state) of the objects connected to the Ports. For example, it may ask for a list of compounds on each 

Port to see whether a) the Flowsheet Unit can deal with this list and b) the compounds on in- and outlet 

Ports are consistent. Therefore, a call to Validate may be relatively time consuming, and it is not 

recommended to call Validate before each call to Calculate, unless the configuration of the Unit has 

changed since the last call to Calculate.“ 

The last part of the last sentence of this paragraph does not reflect the entire set of conditions calling for a 

Validate to be used. The entire set of conditions may be found in the Notes of the Validate method description, 

as well as further down in UC-015. It is considered that further insight on the use of Validate should be brought 

in, giving the following text in replacement. 

“During validation, the Flowsheet Unit may typically obtain information regarding the configuration (not 

the state) of the objects connected to the Ports. For example, it may ask for a list of compounds on each 

Port to see whether a) the Flowsheet Unit can deal with this list and b) the compounds on in- and outlet 

Ports are consistent. Therefore, a call to Validate may be relatively time consuming, and it is not 

recommended to call Validate before each call to Calculate. In particular, calling Validate as part of each 

iteration in solving a Flowsheet should be avoided if not required.” 

2.6 ICapeUnitReport 

Issue 1: formatting reports during Calculate may impede on performance, particularly if the Unit Operation is 

included in a recycle loop. At intermediate recycle calculations, the report content will likely not be required. 

Recommendation 1: if formatting of a report requires significant computational effort (note that formatting 

numbers is potentially expensive), it should be postponed until ProduceReport.  

Issue 2: reports produced by ICapeUnitReport are text reports and there is no common consensus on how to 

render these reports. This makes difficult for Unit Operations to produce reports that contain data formatted 

for example in columns.  

Recommendation 2a: pertains to plain text reports.  

 Recommendation 2a.1 on PME: fixed-pitch fonts are to be used by PME to visually render reports 

supplied by PMCs.  

 Recommendation 2a.2 on PME: combinations of carriage return/line feed should be treated as line 

feed. 

 Recommendation 2a.3 on PME: all printable UNICODE characters are allowed. 

 Recommendation 2a.4 on PME: there should be no limitation on the length of a report.  

 Recommendation 2a.5 on PME: there should be no limitation on the line length of a report. 

Consequently PME should avoid breaking or wrapping lines. 

 Recommendation 2a.6 on PMC: carriage return characters should not appear without a line feed 

character immediately after. Line feed characters may appear by themselves.  

 Recommendation 2a.7 on PMC: the PMC should not put control characters (page break, form feed, 

back space) in their reports. TAB characters are not to be included either in the Report. Instead space 

characters should be used to align data. 

 

In addition to plain-text reports, various formatting protocols could be envisioned for reports in order to 

enhance reporting. Rather than defining a formatting protocol proprietary to CAPE-OPEN, it is decided to 

adopt a widely used and open format protocol (HTML) for which standard rendering software components are 

available. 
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Recommendation 2b: HTML provides formatting of text in a very flexible way. Reports from Unit Operations 

may require such flexibility. Reports formatted as HTML can only be used if this functionality is supported by 

both the PME and the PMC. Support for HTML formatted reports is optional, and subject to the following 

requirements. No particular HTML version or character encoding is enforced: it is up to the PMC to ensure 

that its report may be properly parsed by mainstream HTML rendering components. The intent is to provide 

support for text formatting, not object embedding functionality. The HTML report should preferably be self-

contained to ensure proper rendering. If HTML contains links to external objects (such as images, movies, 

etc...), it is the responsibility of the PMC to manage the life cycle of these objects. 

 Requirement 2b.1 on PME: PME should advertise to PMCs that HTML format is accepted. This is 

done by exposing the Boolean NamedValue “HTMLReportSupport” with a value of true. This 

NamedValue is exposed by ICapeCOSEUtilities interface. 

 Requirement 2b.2 on PMC: PMC must not provide reports in HTML format unless the PME accepts 

this format. 

 Requirement 2b.3 on PME: PME should detect that a report is formatted as HTML. In this case the 

report starts with a DOCTYPE declaration as follows: <!DOCTYPE html> 

 Requirement 2b.4 on PMC: HTML reports must begin with a DOCTYPE declaration as per 

requirement 2b.3. 

2.7 Port Collection 

It is not reasonable to assume the PME must re-evaluate the Port Collection each time the value of a Parameter 

changes or a Port gets disconnected. Therefore the Unit Operation must keep the Port Collection constant 

(order, name, type, direction of Ports need to remain the same) after changing a Parameter value or after 

connecting or disconnecting a Port. The only places suitable for changing the Port Collection is during Edit 

and Initialize. So the PME should re-evaluate the Port Collection after Edit is completed. The PME should 

exercise caution regarding change of names for Ports: equivalence of Ports before and after Edit can be asserted 

through the objects still connected to the Ports. During Edit, the PMC should retain connections of Ports that 

are not deleted. 

2.8 Reset Unit Operations 

Issue: it is desired to notify UOs that the Flowsheet has been reset to its initial state so that the Unit Operations 

can perform internal reset actions such as removing initial guesses. The Unit interface has no method to allow 

for this. 

Recommendation: a Boolean named value “ResetOnValidate” may be exposed by ICapeCOSEUtilities to 

convey to any Unit Operation that the PME is resetting its Flowsheet (for example because the end-user has 

asked for that Reset to happen). Such a Reset could mean to a Unit Operation that solution guesses specific to 

the Unit Operation have to be set back to their initial values. Once the PME has changed the value of 

ResetOnValidate to TRUE, the PME will call Validate on each Unit Operation. Unit Operations that support 

resetting check for the named value within their Validate method. If the named value is present and is TRUE, 

the UO internally performs a reset. Once Validate has been called on each Unit Operation, the named value is 

set back to FALSE.  

During normal validation, the PME should make sure that ResetOnValidate (if exposed) has a value of FALSE.   

This scenario can also be used to reset a subset of Unit Operations upon end-user request. 

2.9 Modal dialogs 

Issue: in single-threaded operations, unexpected interruption of the flow of events can occur from a Unit 

Operation displaying dialogs while appearing in a recycle. In multi-threaded operations, modal dialogs can 

lead to a dead-lock of an application. In headless operations (operation without a monitor, for example 

scheduled runs on cloud computers, SaaS – Software as a Service, etc…), dialogs should be avoided altogether. 
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Clarification: PMCs including Unit Operations should refrain from showing modal dialogs except for during 

the call to ICapeUtilities::Edit. 

 

 


