
CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in Computer-Aided Process Engineering

Thermodynamic and Physical Properties v1.0

www.colan.org

 i

ARCHIVAL INFORMATION

Reference CO-LaN Thermo Version 1.08.008.DOC

Filename (if different)

Authors Daniel Piñol, Hyprotech

Juan Carlos Rodriguez, Hyprotech

Michael Halloran, AspenTech

Werner Drewitz, BASF

Richard Szczepanski, Infochem

Michel Pons, TotalFinaElf

Malcolm Woodman, BP

Peter Banks, BP

Jasper van Baten, AmsterCHEM

Date May 2011

Number of Pages 87

Version Version 1.08.008

Reviewed by (date) Reviewed by

 Thermo SIG

Distribution

Additional Material

Location on BSCW

 ii

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN CAPE-OPEN documents and publications include software in the form of sample code. Any such

software described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of

any kind. CO-LaN disclaims any warranties including without limitation an implied warrant or fitness for a

particular purpose. The entire risk arising out of the use or performance of any sample code --- or any other

software described by CO-LaN --- remains with you.

Copyright  2001-2011 CO-LaN. All rights are reserved unless specifically stated otherwise.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as

trademarks. Where those designations appear in CO-LaN CAPE-OPEN publications, and the authors are

aware of a trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and

Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

 iii

SUMMARY

This document describes the CAPE-OPEN Thermodynamic and Physical Properties Interfaces. It is an

update of the original CAPE-OPEN Thermodynamic and Physical Properties Interface Specification.

The document is consistent with the version 1.0 CAPE-OPEN COM type library as well as with the other

elements of the version 1.0 CAPE-OPEN Standard. It also provides recommendations for developers of CO-

compliant thermodynamic components and sockets on how to use these deliverables. Interfaces for reactions,

electrolytes and petroleum fractions are described in separate specifications.

This document has been updated from published version 1.06 to version 1.08 in order to include errata and

clarifications. None of these errata modifies the interface definitions themselves. The version 1.0 IDL

available from the CO-LaN web site (http://www.colan.org/) therefore is to be used together with this

document.

 v

ACKNOWLEDGEMENTS

We gratefully acknowledge the work of Work Package 2, led by Hans-Horst Mayer of BASF during the

CAPE-OPEN project, who produced the original specification from which this document has been

developed.

- 7 -

CONTENTS

1. IMPLEMENTATION RESOURCES .. 10

2. CAPE-OPEN IDENTIFIERS ... 11

3. CAPE-OPEN THERMODYNAMIC AND PHYSICAL PROPERTIES INTERFACE SPECIFICATION . 12

3.1 INTRODUCTION .. 12
3.2 COMPONENT DIAGRAM & SUPPORTING INTERFACES... 12

3.2.1 Material Classes - Description ... 13
3.3 GENERAL REMARKS ON USAGE OF INTERFACE METHODS ... 15

3.3.1 Convention Note on UNDEFINED and Empty and arrays.. 15
3.3.2 Argument interpretation of Get/Set/CalcProp Standard Methods .. 16

Values format..16
Overall interpretation ..16
How to request information of non existing entities (such as compounds or phases) ...17
Fraction and Flow ...18
Get/SetIndependentVar...19
Specific properties ..19
Basis conversion ...19

3.4 CAPE-OPEN CALLING PATTERN DESCRIPTION .. 20
3.5 CAPE-OPEN CALLING PATTERN & MATERIAL OBJECT ... 21
3.6 CAPE-OPEN USE CASE DRIVEN COMPONENT MODEL... 22

3.6.1 Native Property Package Diagram... 23
3.7 CAPE-OPEN THERMO INTERFACE DIAGRAM ... 24
3.8 CODE SAMPLE OF CAPE-OPEN CALLING PATTERN & MATERIAL OBJECT... 26

3.8.1 Declare Material Object ... 26
3.8.2 Example 2: Calling a flash and then calculating a viscosity:... 27

3.9 INTERFACE DESCRIPTIONS ... 29
3.9.1 ICapeThermoMaterialTemplate ... 29
3.9.2 ICapeThermoMaterialObject.. 31
3.9.3 ICapeThermoSystem ... 49
3.9.4 ICapeThermoPropertyPackage .. 51
3.9.5 ICapeThermoCalculationRoutine ... 61
3.9.6 ICapeThermoEquilibriumServer... 65

3.10 CAPE-OPEN PROPERTIES LIST... 69
3.10.1 Constant Properties Identifiers .. 69
3.10.2 Universal constant properties .. 70
3.10.3 Non-constant Properties (or Model Dependent Properties) .. 71

Basis and units: ...75
Number of values returned and order:...76

3.11 CAPE-OPEN PHASE LIST ... 77
3.11.1 Phase Details.. 77

4. SI UNITS .. 78

5. NOTES.. 79

5.1 NOTES ON ARGUMENT INTERPRETATION OF GET/SET/CALCPROP STANDARD METHODS) 79
5.1.1 Non-constant properties ... 79

5.2 NOTES ON CALCPROP DESCRIPTION... 79
5.2.1 CalcProp and CalcEquilibrium .. 79
5.2.2 Multiple calculations .. 79
5.2.3 Side-effects during calculation ... 79

5.3 NOTES ON CONSTANT PROPERTIES IDENTIFIERS .. 79
5.3.1 Compounds supported by a Property Package... 80

- 8 -

5.4 NOTES ON GETCOMPONENTCONSTANT ... 80
5.5 DESCRIPTION OF COMPOUND CONSTANTS ... 80

5.5.1 CasRegistryNumber .. 80
5.6 NOTES ON PHASES ... 81

5.6.1 Equilibrium calculation types ... 81
5.6.2 Notes on two-phase properties... 82
5.6.3 Existence of a phase.. 83

5.7 NOTES ON ENUMERATION OF PROPERTY PACKAGES AND THERMO SYSTEMS .. 83
5.8 NOTES ON RECOMMENDED ERROR CODES .. 83
5.9 IMPLEMENTATION OF THE PERSISTENCE INTERFACE.. 84
5.10 INITIALIZATION AND TERMINATION ... 84

6. GLOSSARY OF TERMS USED .. 85

- 9 -

INTRODUCTION

This document describes the CAPE-OPEN Thermodynamic and Physical Properties Interfaces. It is an

update of the original CAPE-OPEN Thermodynamic and Physical Properties Interface Specification and its

purpose is to remove the ambiguities identified during interoperability testing.

The remainder of this document recommends an approach to the development and implementation of new

Thermodynamic and Physical Property plugs and sockets. The implementation information is based on the

current Type Library 1.0, which is also compatible with the previous versions 0.9.0 and 0.9.3. The document

finishes with information on units of measure, notes to clarify points that have been found to be confusing in

the use of the specification and finally a glossary of terms. Interfaces for reactions, electrolytes and

petroleum fractions are described in separate specifications (see http://www.colan.org/index-33.html).

Since the original specification version, a choice has been made to identify chemical species with the term

compounds rather than components. This is to avoid a conflict with the term components that is used for

software components. This change in terminology is not reflected in the names of methods; e.g. to get the

number of compounds from a material object, one would use GetNumComponents.

Implementation of a Unit Operation component is not dealt with here. It is covered by the CAPE-OPEN Unit

Operations Interface Specification, plus the example unit operations components used in the Interoperability

Demonstration (see http://www.colan.org/index-33.html).

- 10 -

1. Implementation Resources

The following resources are available from the CO-LaN web (http://www.colan.org/) for developers of

physical property components and sockets:

Resources for Physical Property Components

� CAPE-OPEN Thermodynamic and Physical Property Interface Specification Version 1.0

(this document)

� The demonstration video, which shows the current look and feel of open simulation

interoperability

� The CAPE-OPEN Logging and Testing tool (COLTT), available to CO-LaN members

� The freely available CAPE-OPEN to CAPE-OPEN simulation environment (COCO),

http://www.cocosimulator.org

In addition to these specific resources, background information on COM implementation is available in a

document called “COM Architecture Overview and Basic Principles”. See the CO-LaN web site

(http://www.colan.org/) for current status and availability of all of these implementation resources.

For new thermodynamic property package implementations, it is advised to use the version 1.1 CAPE-OPEN

thermodynamic standard, available from http://www.colan.org/index-16.html.

Resources for Physical Property Sockets

The same resources are available for socket developers. In this case, the first thing required is to develop a

Material Object.

- 11 -

2. CAPE-OPEN Identifiers

In this document, CAPE-OPEN Methods and Tools recommendations are followed for property identifiers

and method names, i.e. property identifiers start with a lower case letter and method names start with an

upper case letter. (See: http://www.colan.org/Spec%2010/Methods&Tools%20Integrated%20Guidelines.pdf

)

However, for actual implementation purposes, to avoid uppercase / lowercase problems, all comparisons of

CAPE-OPEN identifiers are case insensitive. Namely:

� Properties

� Phase details

� Flash type details

� Calculation type details

Property values are also case insensitive. The only exception to this rule is the compound constant property

chemicalFormula, for which character case is important (e.g. to tell the difference between Cobalt (Co) and

carbon monoxide (CO)).

- 12 -

3. CAPE-OPEN Thermodynamic and Physical Properties Interface
Specification

3.1 Introduction

This specification provides practical guidelines for using and implementing CAPE-OPEN Thermodynamic

and Physical Properties (THRM) interfaces. As with all CAPE-OPEN Interface Specifications, this

specification was developed using Universal Modelling Language (UML). More details of this process can

be found in the original THRM document and in other documents available from the CO-LaN web site.

The first sections provide an overview of the interfaces, which is then refined in the subsequent reference

section. The document also pseudo-code examples to show how the interfaces are constructed and used.

3.2 Component Diagram & Supporting Interfaces

CAPE-OPEN Component Diagram

The Component Diagram shows the interfaces supported by each of the components in the CAPE-OPEN

Thermodynamics and Physical Properties system. The diagram does not show common interfaces that should

or may be exposed by software components, like ICapeIdentification and ICapeUtilities and the error

common interfaces. The associations, represented by the lines from the components to the interfaces, are also

detailed. The way in which these associations of the Component Diagram are implemented is proprietary to

the PMC/PME vendor. The diagram shows the two ways that any PME can use to instantiate a Property

Package:

Route a), it is a Stand Alone component (not needing to be inside a Thermo System).

Route b), it is Thermo System dependent (needing to be resolved by its Thermo System). In this case it is

necessary to resolve the Property Package to get a handle to it.

Each white arrow represents the interface the PME gets.

CAPE-OPEN Simulation Executive

Calculation Routine

ThermoSystem
Simulation Exec/ COSE

ICAPEThermoPropertyPackage

ICAPEThermoMaterialObject

ICapeThermoCalculationRoutine

ICAPEThermoMaterialTemplate

Equilibrium Server

ICapeThermoEquilibriumServer

UNIT

ICAPEThermoSystem

UnitSystem

a) Stand-alone PP

b) PropSystem

dependent PP

PropSystem

resolves PP

- 13 -

3.2.1 Material Classes - Description

The UML Material Class Diagram below shows a possible implementation of a Material Object class. This

diagram documents the implementation, rather than the CAPE-OPEN interface view. The Material Template

defines the characterisation of a material, and the Material Object defines an instance of material. Material

Objects can be created from Material Templates. Material Objects are implemented by a CAPE-OPEN

Process Modelling Environment. Process modeling clients like Unit Operations have access to Material

Objects that are connected to Material Ports.

Material Template interfaces are – if supported – implemented by a CAPE-OPEN Process Modelling

Environment. They are exposed to Process Modeling Clients through the ICapeMaterialTemplateSystem

interface, that may be exposed through the simulation context object.

The Material Template definition consists of:

� A compound List ,

� Zero or more present phases,

� Optionally, a reference to a CAPE-OPEN Property Package.

Material

GetEnthalpy ()
GetViscosity ()

Materials are modelled
as a Material Templates

Abstract interface to
databases (DIPPR, etc...)

Cluster

ComponentCount : Int

Defines the
physical contextContainer

Material System

Temperature
Pressure
Composition

IsPureComponent ()
IsatEquilibrium ()

1..*

0..*

Component

Get VaporPressure ()

1..*

1

Substance

Name : String

GetCriticalPressure ()
GetCriticalTemperature ()
... ()

0..*

1

{VaporPhaseCount + LiquidPhaseCount +
SolidPhaseCount > 0}

Container Vapor

0..1

Container Liquid

0..*

Container

Multiphase System

VaporPhaseCount : Int = 0
LiquidPhaseCount : Int = 0
SolidPhaseCount : Int = 0

Solid

0..*

Phase

PhysicalState

Get Fugacity ()

0..1

0..*

0..*

 UML Material Class Diagram

The above diagram splits chemical species into compounds and substances. Substances are the actual

species, whereas chemical compounds are instances of the substances used in the simulation. We can have

more than one compound based on the same concept of a substance. All parameters are ultimately associated

with compounds, since any substance parameter could be overridden for a compound. The end user of the

- 14 -

Material Object is only concerned about compounds. The substance branch of the diagram is really

implemented internal to a property system.

The Material Object is responsible for keeping the total mixture state consistent with the phase states.

Assumption: all phases share the same temperature and pressure, so the phase holds composition and phase

fraction or amount. Please note that the CalcEquilibrium method is explicitly part of the Material

Template/Object definition as an internal implementation detail. Therefore a Material Object can “flash”

itself if it needs to.

The Material Object structure is extensible, and will include solids, polymers, etc. So a generic approach was

developed to make property calls. A summary of the essential calls follows:

CapeError SetProp(in CapeString property, in CapeString phaseQualifier, in

CapeArrayString componentIds, in CapeString calculationType, in CapeString basis, out

CapeArrayDouble propVals);

CapeError CalcProp(in CapeArrayString propList, in CapeArrayString phaseQualifiers, in

CapeString calculationType);

CapeError GetProp(in CapeString property, in CapeString phaseQualifier, in

CapeArrayString componentIds, in CapeString calculationType, in CapeString basis, out

CapeArrayDouble propVals);

CapeError CalcEquilibrium(in CapeString flashType, in CapeArrayString propList);

CapeError GetUniversalConstants(in CapeArrayString constantList, out CapeArrayVariant

propVals);

CapeError GetComponentConstant(in CapeArrayString propList, out CapeArrayDouble

propVals);

- 15 -

3.3 General Remarks on Usage of Interface Methods

3.3.1 Convention Note on UNDEFINED and Empty and arrays

Throughout the document UNDEFINED refers to a NULL BSTR for string arguments. UNDEFINED for a

VARIANT argument is of the type VT_EMPTY. See below how to implement these values in C++ and in VB

for COM:

Type of Data Declaration and Usage

BSTR In C++

 Acceptable

 BSTR strArg = NULL;

 Not Acceptable

 BSTR str = ::SysAllocString(L“”);

In VB

 Acceptable

 Dim strArg as String

 strArg = vbNullString

 Not Acceptable

 Dim strArg as String

 strArg = “”

VARIANT In C++

// the vt type of the VARIANT is

// set to VT_EMPTY

VARIANT VarArg;

VariantInit(&VarArg);

Remember that VariantInit must always be called after

declaring a VARIANT

In VB

Dim VarArg as Variant

Arrays are defined as VARIANT data types. The element type of an array depends on the data type

specified, e.g. CapeArrayDouble contains VT_R8 elements in the array, whereas CapeArrayVariant contains

VT_VARIANT elements in the array. For example, property calculactions that can only return real values

will use CapeArrayDouble, but result from GetComponentConstant can be strings or real values, hence the

return value is CapeArrayVariant. It is advised to have 0 as the lower bound index of an array.

Be aware that the UNDEFINED value depends on the type of the corresponding argument and on the version

of IDL used (COM or CORBA). This special value is described in the “Methods & Tools Integrated

Guidelines version 1.0” document, available from

http://www.colan.org/Spec%2010/Methods&Tools%20Integrated%20Guidelines.pdf.

UNDEFINED is only used when one of the arguments is irrelevant for the particular method, such as basis

for the Temperature property. UNDEFINED is never allowed in the property or phases qualifiers.

- 16 -

UNDEFINED must not be used to express a default value.

UNDEFINED must also be used when an argument type is CapeArray and its length is 0 (otherwise VB has

problems).

Further information on data types are defined in the “Methods & Tools Integrated Guidelines version 1.0”

document, available from

http://www.colan.org/Spec%2010/Methods&Tools%20Integrated%20Guidelines.pdf.

3.3.2 Argument interpretation of Get/Set/CalcProp Standard Methods

See section 5 for more information.

The original specifications of the GetProp and SetProp methods could be interpreted in several ways. This

section describes the agreed interpretation of the methods for each property.

VALUES FORMAT

Although the Values argument has VARIANT type in COM and some properties will always return a single

value, this argument must always contain an array (possibly with a single element). The proper data type for

the Values argument is CapeArrayDouble.

OVERALL INTERPRETATION

If Phases contains "Overall", only the properties that refer to the overall phase will be calculated. To request

the values for each particular phase, the particular identifiers of all the phases must be included in the phases

argument.

Property Phases Comp ID

vector

Calculation

type
Return value

Temperature

Pressure

etc.

Overall.

UNDEFINED Mixture Scalar (i)

 UNDEFINED Mixture Scalar

UNDEFINED Vector of values

for all compounds

(ii)

enthalpy

entropy

volume density

viscosity

thermalConductivity

heatCapacity

Filled

Pure

Vector of values

for specified

compounds (iii)

 UNDEFINED Vector of values

for all compounds

 Filled

Mixture(*)

Vector of values

for specified

compounds

 UNDEFINED Vector of values

for all compounds

fugacityCoefficient

activitycoefficient

 Filled

Pure

Vector of values

for specified

compounds

- 17 -

Table comments

(i) As stated in the specifications, the value is always an array. Scalar means here that the array

will only contain one value

(ii) All compounds means the value of the property for each compound of the Material Object

(iii) The value of the property for each compound specified in argument compIds.

 (*)Normally, mixture means that the value is a single scalar that refers to the whole fluid, and pure means

that the value is a list of property values for each compound. In these particular properties

(fugacityCoefficient,...), mixture/pure has a special meaning. In them, “mixture” means that the

property values refer to the compounds when they are within a fluid, and “pure” means that the property

values refer to the compounds when they are in pure state (not mixed with other compounds).

Although it could sound appealing to use GetComponentConstant instead of GetProp with “pure”, it is not

the case because these properties depend on the physical conditions of the fluid: temperature, pressure,...

Temperature and Pressure are, as opposed to the version 1.1 specification, not available for individual

phases. The proper phase ID to specify for GetProp and SetProp for Temperature and Pressure is Overall.

The calculation type should be UNDEFINED.

When a Property Package is requested to perform an overall property calculation, it should not perform an

equilibrium calculation. Instead, it should assume that the present phases and compositions, as well as

overall pressure and temperature are given. A Property Package typically performs the following operations

for performing an overall property calculation

o Get overall temperature and pressure, list of compounds, list of present phases

o Iterate over the present phases

� Get phase fraction

� Get the phase composition

� Calculate the property for the phase at phase composition, pressure and temperature

o Calculate the overall property from contribution of each phase

o Set the calculation result on the overall phase of the Material Object

Derivatives for overall properties should not be provided by Property Packages. The definition of these

derivatives is not clear (mostly overall properties are requested at phase equilibrium; the change of the

phase equilibrium with the property with respect to which the derivative is taken would in such case need to

be taken into account).

HOW TO REQUEST INFORMATION OF NON EXISTING ENTITIES (SUCH AS COMPOUNDS OR PHASES)

Although the CAPE-OPEN standard allows setting a property for a particular phase with the

ICapeThermoMaterialObject SetProp method, the Unit Operation developers must be aware that some PMEs

may not support this functionality. It can also happen that a CAPE-OPEN compliant Process Modelling

Environment (PME) allows setting a property for a particular phase, but only after flashing the stream. It is

however highly recommended for a PME to support this calling pattern, as shown in Example 1 (3.8.1).

If any GetProp is called for a particular phase where the phase has not been created, the method call will

always fail. To check whether a phase exists or not, it is not safe to use the properties totalFlow and

phaseFraction. That is because, at bubble point condition, phaseFraction (with phase=vapor), will be exactly

- 18 -

zero, although the phase exists. One should use ICapeThermoMaterialObject:: PhaseIds to check for phase

existence.

There is another similar case where a GetProp call will fail. For example, imagine a particular stream, where

only the molar/mass fractions for some (but not all) of the compounds of the stream have been set. If the

molar fractions are then requested for all the compounds, the call will fail. That is because, even if the values

for some compounds are available, not all of them can be returned. Therefore, it is recommended to always

set the molar/mass fractions for all the compounds at the same time, assigning a zero value for the non-

existing compounds.

FRACTION AND FLOW

The original specification was ambiguous, since it mentioned properties fraction, flow, molFraction,

molFlow. To solve that, the following scheme was agreed.

The thermodynamic standard specification mentions “fraction”, but the list of official properties does not.

We have agreed to remove molFraction, molFlow & massFlow from the list of property identifiers, leaving

only “flow” and “fraction” and forcing the use of the basis argument. This means that now mass fraction can

be requested. Since it was not clear how to specify properties such as the total flow or the vapor fraction, two

new properties have been added: totalFlow and phaseFractions.

Property Calc Type Comp ID Phase Return Value

Fraction UNDEFINED UNDEFINED PH Vector (all compounds)

Flow Filled PH Vector (specified compounds)

totalFlow UNDEFINED UNDEFINED PH Vector (one value)

phaseFraction UNDEFINED UNDEFINED PH Vector (one value)

Note: PH means that phase is defined.

Examples:

� The call to make in order to get a vector with the mole fraction of each compound within the

liquid phase (the sum of all values returned will be equal to 1):

matObj.GetProp(“fraction”, “liquid”, UNDEFINED, UNDEFINED, "mole")

� The call to make to get a vector with the mole fraction of some compounds within the vapor

phase (the sum of all values returned will be the fraction that the set of specified compounds

represent with respect to the whole vapor phase):

matObj.GetProp(“fraction”, “vapor”, (vector of compounds), UNDEFINED,

"mole")

� The call to make to get a scalar with the fraction of the fluid that is in the specified phase:

matObj.GetProp(“phaseFraction”, “vapor”, UNDEFINED, UNDEFINED, "mole")

� The call to make to get a vector with the molar flows of each compound within the liquid

phase (the sum of all values should be equal to the total molar flow of the fluid):

matObj.GetProp(“flow”, “liquid”, UNDEFINED, UNDEFINED, "mole")

- 19 -

� The call to make to get a vector with the molar flow of some compounds within the vapor

phase:

matObj.GetProp(“flow”, “vapor”, (vector of compounds), UNDEFINED, "mole")

� The call to make to get a scalar with the flow (e.g. molar flow) of the fluid that is in the

specified phase.

matObj.GetProp(“totalFlow”, “vapor”, UNDEFINED, UNDEFINED, "mole")

GET/SETINDEPENDENTVAR

In the ICapeThermoMaterialObject interface, since the advantage of using the methods

Get/SetIndependentVar instead of GetProp and SetProp is not clear, they should be not be used. Moreover,

since they lack the basis argument, the units could be ambiguous for state variables such as enthalpy and

flow (molflow & massflow have been removed from the standard).

Without Get/SetIndependentVar, the properties listed in "names of state variables/global variables" (p86 of

original specification), namely:

Temperature gibbsFreeEnergy

Pressure helmholtzFreeEnergy

Volume MolFraction (deleted)

Density moles

Enthalpy mass

Entropy Molflow (deleted)

Energy Massflow (deleted)

have been moved to the Non-constant Properties list, so that all of them can be used in Calc/Set/GetProp

Since in COM it's not feasible to remove a method from an interface and retain binary compatibility, the

methods will remain, but must not be used.

SPECIFIC PROPERTIES

The following property identifiers:

 enthalpy, enthalpyNF, enthalpyF, entropy, entropyNF, entropyF, energy, gibbsFreeEnergy,

helmholtzFreeEnergy, volume

mean intensive properties (which require a specifying “mole” or “mass” for the basis qualifier).

To represent the non-intensive property, such as the energy contained in a given amount of mass, the basis

qualifier must have UNDEFINED value. To obtain a non-intensive property however, it is advised to obtain

the intensive property and multiply with the amount. For example, to get enthalpy flow, J/s, one can obtain

enthalpy using basis “mole” (J/mol) and multiple with totalFlow using basis “mole” (mol/s) to obtain

enthalpy flow (J/s).

BASIS CONVERSION

A software component accessing a Material Object may get or set any basis-dependent Physical Property of

a Material Object using any basis. It is the Material Object’s responsibility to ensure that the software

component sees consistent values whatever basis is used. This means that for properties that can have molar

or mass basis, the Material Object must:

- 20 -

• Allow a software component to set any basis-dependent Physical Property on either basis.

• Allow a client to get any basis-dependent Physical Property using the basis with which it was stored.

• Perform basis conversions, or delegate basis conversion as necessary. If basis conversion is not

meaningful (e.g. in the case of cement), the Material Object must be able to return the quantity in its

original basis and to return an error should the quantity be requested in a different basis.

• Ensure that quantities set in one basis are consistent with quantities set in another basis, or delegate

that function as necessary. Where the basis conversion on a quantity is not feasible, the Material

Object must only store the quantity in the basis with which it was set most recently

Basis needs to be specified to GetProp / SetProp for the properties fraction, flow, phaseFraction, totalFlow,

density, the intensive properties (see 3.10.3) and any custom properties that are basis dependent.

3.4 CAPE-OPEN Calling Pattern Description

The component interfaces of the thermo system are implemented with The CAPE-OPEN Calling Pattern.

The CAPE-OPEN calling pattern provides extensibility by contract between the Process Modelling

Environment, the Unit Operations, and the Thermo Systems in a clear and concise way. Open interfaces

accessing these components need to be maintained and extended in the context of the CAPE-OPEN project.

All existing thermo properties can be supported through this calling pattern. With this approach, new and

user defined properties can be added to thermo / unit contract without changing any code.

In the case of the CAPE-OPEN Calling Pattern the contracts between the Process Modelling Environment,

Unit Operations, and Thermo Systems are separated from the software calling mechanism. This allows the

following advantages:

• Standard Properties and Calculations can be added without software changes.

• Properties are easily bundled for performance (single calculations can still be supported).

• Pattern is consistent for all Thermo System Components. This eases the understanding and usage of

the CAPE-OPEN standard.

• Contract is maintained consistently between Unit & Thermo System.

• Complexity is reduced.
1

• Standard Maintainability & Extensibility is provided.

• Network issues are more easily managed (calculations can be bundled and passed to a server).

• User Defined Properties and Constants are easily supported, maintained and extended.

1
 Brown, Malveau, McCormick, Mowbray; Anti Patterns Refactoring Software, Architectures, and Projects in Crisis,

John Wiley & Sons, 1998

- 21 -

3.5 CAPE-OPEN Calling Pattern & Material Object

The following pattern details the way in which the Material Object is used to execute calls on the

corresponding Thermo System. This means that the way in which values are set, calculated and retrieved is

consistent for all Thermo System components. This pattern is documented below and detailed in code

examples later in the document.

1. Step 1: Declare Material Object and set Independent Variables

Independent variables are set on the Material Object for Flash calculations, using the SetProp method.

In most cases, two state variables of the material object will be set, for example temperature or pressure.

2. Step 2: Set Values

The client of the Material Object adds properties and corresponding values.

3. Step 3: Calculate

The appropriate calculations are set as strings on the parameter list and the appropriate generic

calculation routine is called.

CalcEquilibrium

CalcProp

4. Step 4: Get Results

After results are calculated, the values are then retrieved from the Material Object using the generic

Material Object GetProp method. Results are further qualified for phase, compounds, calculation type,

and basis. Property results are in SI units (detailed information available at

http://www.bipm.fr/enus/3_SI/si.html).

Specific code examples of this pattern are included in this document and are provided by Werner Drewitz of

BASF.

The CAPE-OPEN calling pattern significantly reduces the complexity of the integration with existing native

Thermo Systems by reducing the number of calls. It also allows for the interfaces and contracts between

these systems to be modified without addressing software issues.

- 22 -

3.6 CAPE-OPEN Use Case Driven Component Model

The actual creation and management of the Material Templates is the responsibility of the Simulation

Executive/Environment. The Material Template acts as a class factory for the Material Object. The Material

Object represents an instance of a Material and provides access to both the state of the Material and the

behavior of the Material. The Unit uses the Material Object in the simulation environment in order to

calculate properties for a given Material.

CAPE-OPEN Component Model – Use Case Driven

CAPE-OPEN Compliant Property Package

Calculation Routine

ThermoSystem

Simulation Exec/ Environment

ICAPEThermoPropertyPackageICAPEThermoMaterialObject

ICapeThermoCalculationRoutine

ICAPEThermoMaterialTemplate

Equilibrium Server

ICapeThermoEquilibriumServer

UNIT

Property Package

Creation &

Management

Flowsheet Definition &

Material Management

ICAPEThermoSystemUnitSystem

The attached model depicts the CAPE-OPEN components and interfaces in the context of CAPE-OPEN

defined workflow. Property Package Creation & Management is the process by which existing Property

Packages are made CAPE-OPEN compliant and properly registered. Flowsheet Definition requires that

materials be properly defined using CAPE-OPEN Property Packages. These Materials are then assigned to

units in the Flowsheet Definition stage. Further details to the functional flow and the actors of this

functionality can be found in the Thermo Use Case document. The simulation executive, or CAPE-OPEN

Simulation Executive (COSE), is responsible for implementing the interfaces of the MaterialTemplate and

MaterialObject. In addition, the COSE provides functionality for defining the Material Template and handles

the delegation of the MaterialObject to the appropriate Thermo System and Property Package interfaces.

It is important to point out that the CAPE-OPEN compliant Calculation Routines and Equilibrium Servers

(Flash Calculations) are typically only a small portion of the full property package. The majority of the

property package is comprised of the native routines, data, parameters and flash calculations of existing and

native Property Systems/Packages. A more accurate portrayal of the actual property package follows. The

combination of Equilibrium Servers and Calculation Routines, along with the proprietary structure of the

property package provide the structure for a CAPE-OPEN compliant property package.

- 23 -

3.6.1 Native Property Package Diagram

It is important to note that making a property package CAPE-OPEN compliant does not upset the native

structure of a property package. The full capabilities of a commercial property system are still available in a

CAPE-OPEN property package.

C O C a lc u la tio n

R o u tin e

P r o p e r ty P a c k a g e /S y s te m

C O E q u ilib r iu m S e rv e r

N a tiv e F la sh

C a lc u la tio n s

N a tiv e C a lc u la tio n s

R o u tin e s

- 24 -

3.7 CAPE-OPEN Thermo Interface Diagram

This diagram does not describe how or when these interfaces are executed in the context of a working

CAPE-OPEN Environment. The mechanisms by which these underlying associations are executed are

proprietary to the simulation environments. This diagram represents a general abstract view of the interfaces.

The full overview of the interfaces is described in both the Component Diagram and the Interface Diagram.

+CreateMaterialObject()

+SetProp()

ICAPEThermoMaterialTemplate

+CalcProp()
+CalcEquilibrium()
+ComponentIds()
+PhaseIds()
+GetProp()
+SetProp()
+GetIndependentVar()
+SetIndependentVar()
+PropCheck()
+AvailableProps()
+RemoveResults()
+ValidityCheck()
+GetComponentConstant()
+GetUniversalConstant()

+GetPropList()

+GetNumComponents()

+CreateMaterialObject()

+Duplicate()

ICAPEThermoMaterialObject

<<CAPE-OPEN Interface>>

+CalcProp()
+CalcEquilibrium()
+GetPhaseList()
+GetComponentList()
+PropCheck()
+ValidityCheck()
+GetUniversalConstant()
+GetComponentConstant()

+GetPropList()

ICAPEThermoPropertyPackage

<<CAPE-OPEN Interface>>

+CalcEquilibrium()
+ValidityCheck()
+PropCheck()

ICAPEThermoEquilibriumServer

<<CAPE-OPEN Interface>>

+PropCheck()
+ValidityCheck()
+CalcProp()

+PropList()

ICAPEThermoCalculationRoutine

<<CAPE-OPEN Interface>>

*

ClassFactory

*

*

*

<<CAPE-OPEN Interface>>

+GetPropertyPackages()

+ResolvePropertyPackage()

ICAPEThermoSystem

<<CAPE-OPEN Interface>>

+PropList()

- 25 -

A more detailed view can be found in the corresponding IDL and code samples. It is very important to note

that the interface diagrams expose the necessary interfaces for using plug and play components. These

diagrams do not imply the internal traversal path for how these interfaces are executed.

- 26 -

3.8 Code Sample of CAPE-OPEN Calling Pattern & Material Object

The following pseudo code example is detailed for the Material Object.

Example 1: Calling of liquid enthalpy property of a mixture

3.8.1 Declare Material Object

//create a material object

Set Imo = MaterialTemplate.CreateMaterialObject();

5. Step 1: Set Values

CapeArrayDouble T[1], P[1], F[100];

CapeArrayString phaseQualifiers[1];

T[0] = 373; // initialize temperature

P[0] = 101325; // initialize pressure

F[0] = 0.1; // initialize liquid composition

F[1] = 0.7; // initialize liquid composition

F[2] = 0.2; // initialize liquid composition

Strcpy(phaseQualifiers[0], ”Liquid”); // set phase qualifier

// set temperature and pressure on the material object

Imo.SetProp(”temperature”, ”Overall”, UNDEFINED, UNDEFINED, UNDEFINED, T);

Imo.SetProp(”pressure”, ”Overall”, UNDEFINED, UNDEFINED, UNDEFINED, P);

// set liquid composition on the material object

Imo.SetProp(”fraction”, phaseQualifiers, UNDEFINED, UNDEFINED, ”mole”, F);

6. Step 2: Calculate Mixture Property

CapeArrayString properties[2]; //create array for properties.

CapeString calculationType;

Strcpy(calculationType, ”Mixture”); // set calculation type

Strcpy(properties[0], ”Enthalpy”); // set property identifier

//calculate properties

Imo.CalcProp(properties, phaseQualifiers, calculationType);

7. Step 3: Get Results

CapeArrayDouble val[2]; //double array created.

CapeString basisQualifier;

Strcpy(basisQualifier, ”mole”); // set basis qualifier

Imo.GetProp(”Enthalpy”, phaseQualifiers, UNDEFINED, calculationType,

basisQualifier, val); //get property enthalpy in the liquid phase

- 27 -

3.8.2 Example 2: Calling a flash and then calculating a viscosity:

//Create Material Object

Set Imo = MaterialTemplate.CreateMaterialObject();

8. Step 1: Set Values

CapeString phaseQualifiers[1];

T[0] = 373; // initialize temperature

P[0] = 101325; // initialize pressure

F[0] = 0.1; // initialize overall composition

F[1] = 0.7; // initialize overall composition

F[2] = 0.2; // initialize overall composition

Strcpy(phaseQualifiers[0], ”Overall”); // set phase qualifier

// set temperature, pressure and composition on the material object

Imo.SetProp(”temperature”, phaseQualifier, UNDEFINED, UNDEFINED, UNDEFINED, T);

Imo.SetProp(”pressure”, phaseQualifier, UNDEFINED, UNDEFINED, UNDEFINED, P);

Imo.SetProp(”fraction”, phaseQualifiers, UNDEFINED, UNDEFINED, ”mole”, F);

9. Step 2 : Calculate Flash

CapeString flashTypeQualifier;

// set flash type qualifier

Strcpy(flashTypeQualifier, ”TP”);

// call equilibrium server, no addtitional calculation of further

// properties (UNDEFINED)

Imo.CalcEquilibrium(FlashType, UNDEFINED);

10. Step 3: Calculate Viscosity

CapeString calculationType;

// set calculation type

Strcpy(calculationType, ”Mixture”);

// set phase qualifier

Strcpy(phaseQualifier, ”Liquid”);

//calculate viscosity

Imo.CalcProp("viscosity", phaseQualifier, calculationType);

- 28 -

11. Step 4: Get Results

CapeDoubleArray val; //double created.

//get property viscosity for the liquid phase from the

//Material Object.

Imo.GetProp(”viscosity”, phaseQualifier, UNDEFINED, calculationType,

basisQualifier, val);

- 29 -

3.9 Interface Descriptions

3.9.1 ICapeThermoMaterialTemplate

Interface Name ICapeThermoMaterialTemplate

Method Name CreateMaterialObject

Returns CapeInterface

Description

Allows a Material Object to be created from the Material Template interface.

Arguments

Name Type Description

[out, retval]

*ICapeInterface

CapeInterface

The created and initialized Material Object.

Errors

Notes

The returned Material Object is initialized to have the same compounds and phases as the Material Template

that it was created from.

- 30 -

Interface Name ICapeThermoMaterialTemplate

Method Name SetProp

Returns -

Description

Allows properties and values to be set on the Material Template.

Arguments

Name Type Description

[in]

property

CapeString

The custom property to set.

[in]

values

CapeArrayDouble The actual values of the property.

Errors

- 31 -

3.9.2 ICapeThermoMaterialObject

Interface Name ICapeThermoMaterialObject

Method Name ComponentIds

Returns CapeArrayString

Description

Returns the list of compound IDs of a given Material Object.

Arguments

Name Type Description

[out, retval]

*compIds

CapeArrayString

Compound IDs

Errors

Notes

Compound IDs are used throughout the communication with the Material Object to identify chemical

compounds. Each compound should have a unique ID.

- 32 -

Interface Name ICapeThermoMaterialObject

Method Name PhaseIds

Returns CapeArrayString

Description

It returns the phases existing in the Material Object at that moment.

Arguments

Name Type Description

[out, retval]

*phaseIds

CapeArrayString

List of phases

Errors

Notes

The list may be empty/UNDEFINED if the Material Object has not been flashed yet. The list can change as a

result of flash calculations or SetProp calculations.

For a list of valid phaseIds, see 3.11.1; however the Overall phase and multiphase (i.e. VaporLiquid)

identifiers must not be returned by this method. This point is very important because otherwise the

communication between a PME and a PropertyPackage may fail, should “Overall” be returned and this

phaseId be used for e.g. a CalcProp call. See 5.6.3 for more information.

- 33 -

Interface Name ICapeThermoMaterialObject

Method Name GetUniversalConstant

Returns CapeArrayVariant

Description

Retrieves values of universal constants from the Property Package.

Arguments

Name Type Description

[in]

props

CapeArrayString List of universal constants to be retrieved

[out, retval]

*propvals

CapeArrayVariant

Values of universal constants

Errors

Notes

See 3.10.2 for a list of authorized universal constant identifiers.

The Material Object may or may not delegate this call to a Property Package.

- 34 -

Interface Name ICapeThermoMaterialObject

Method Name GetComponentConstant

Returns CapeArrayVariant

Description

Retrieve pure compound constants from the Property Package.

Arguments

Name Type Description

[in]

props

CapeArrayString

List of pure compound constants

[in]

compIds

CapeArrayString

List of compound IDs for which constants are to be retrieved.

UNDEFINED is to be used when the call applied to all compounds in

the Material Object.

[out,retval]

*propvals

CapeArrayVariant

Compound Constant values returned from the Property Package for the

specified compounds.

Errors

Notes

The list of available identifiers for pure compound constants is given in section 3.10.1.

The return value is a variant containing a one-dimensional array of variants. If P is the number of requested

properties and C the number of requested compounds, the array will contain C*P Variants. The C first ones

(from position 0 to C-1) will be the values for the first requested property (one variant for each compound).

After this first set of values and from position C to 2*C-1, there will be the values of constants for the second

requested property, and so on.

The Material Object may or may not delegate this call to a Property Package.

- 35 -

Interface Name ICapeThermoMaterialObject

Method Name CalcProp

Returns -

Description

This method is responsible for doing all property calculations or delegating these calculations to the

associated Property Package.

Arguments

Name Type Description

[in]

props

CapeArrayString

The List of Properties to be calculated.

[in]

phases

CapeArrayString List of phases for which the Properties are to be calculated.

[in]

calcType

CapeString Type of calculation: Mixture Property or Pure Compound Property. For

partial property, such as fugacity coefficients of compounds in a

mixture, use “Mixture” CalcType. For pure compound fugacity

coefficients, use “Pure” CalcType.

Errors

Notes

See also sections 3.5, 3.8 and 5.2.

The Material Object may or may not delegate this call to a Property Package.

- 36 -

Interface Name ICapeThermoMaterialObject

Method Name GetProp

Returns CapeArrayDouble

Description

This method is responsible for retrieving the results from calculations from the Material Object.

Arguments

Name Type Description

[in]

property

CapeString

The Property for which results are requested from the Material Object.

[in]

phase

CapeString The qualified phase for the results.

[in]

compIds

CapeArrayString The qualified compounds for the results. UNDEFINED to specify all

compounds in the Material Object. For scalar mixture properties such

as liquid enthalpy, this qualifier must not be specified. Use

UNDEFINED as place holder.

[in]

calcType

CapeString The qualified type of calculation for the results. (valid Calculation

Types: Pure and Mixture)

[in]

basis

CapeString Qualifies the basis of the result (i.e., mass /mole). Use UNDEFINED

for default or as place holder for property for which basis does not

apply (see also 3.3.1).

[out, retval]

*results

CapeArrayDouble Results vector containing property values in SI units arranged by the

defined qualifiers.

Errors

Notes

See 5.1 for a more detailed explanation of the arguments.

- 37 -

Interface Name ICapeThermoMaterialObject

Method Name SetProp

Returns -

Description

This method is responsible for setting the values for properties of the Material Object.

Arguments

Name Type Description

[in]

property

CapeString

The property for which the values need to be set.

[in]

phase

CapeString

Phase for which the property is to be set.

[in]

compIds

CapeArrayString Compounds for which values are to be set. UNDEFINED to specify all

compounds in the Material Object. For scalar mixture properties such

as liquid enthalpy, this qualifier should not be specified. Use

UNDEFINED as place holder.

[in]

calcType

CapeString The calculation type. (valid Calculation Types: Pure and Mixture)

[in]

basis

CapeString Qualifies the basis (mole / mass). See also 3.3.2.

[in]

values

CapeArrayDouble Values to set for the property.

Errors

Notes

See 5.1 for a more detailed explanation of the arguments.

- 38 -

Interface Name ICapeThermoMaterialObject

Method Name CalcEquilibrium

Returns -

Description

This method is responsible for calculating a flash or delegating flash calculations to the associated Property

Package or Equilibrium Server.

Arguments

Name Type Description

[in]

flashType

CapeString Flash calculation type.

[in]

props

CapeArrayString

Properties to be calculated at equilibrium. UNDEFINED for no

properties. If a list, then the property values should be set for each phase

present at equilibrium (not including the overall phase).

Errors

Notes

The CalcEquilibrium method must set on the Material Object the amounts (phaseFraction) and compositions

(fraction) for all phases present at equilibrium, as well as the temperature and pressure for the overall

mixture, if not set as part of the calculation specifications. The CalcEquilibrium method must not set on the

Material Object any other value - in particular it must not set any values for phases that do not exist. See

 5.2.1 for more information.

The available list of flashes is given in section 5.6.1.

It is advised not to combine a flash calculation with a property calculation. Although by the returned error

one cannot see which has failed, plus the additional arguments to CalcProp (such as calculation type) cannot

be specified. Advice is to perform a CalcEquilibrium, get the phaseIDs and perform a CalcProp on the

existing phases.

The Material Object may or may not delegate this call to a Property Package.

- 39 -

Interface Name ICapeThermoMaterialObject

Method Name SetIndependentVar

Returns -

Description

Sets the independent variable for a given Material Object. This method is deprecated.

Arguments

Name Type Description

[in]

indVars

CapeArrayString Independent variables to be set

[in]

values

CapeArrayDouble

Values of independent variables.

Errors

Notes

This method should not be used, see 3.3.2.

- 40 -

Interface Name ICapeThermoMaterialObject

Method Name GetIndependentVar

Returns CapeArrayDouble

Description

Returns the independent variables of a Material Object. This method is deprecated.

Arguments

Name Type Description

[in]

indVars

CapeArrayString Independent variables to be set

[out, retval]

*values

CapeArrayDouble

Values of independent variables.

Errors

Notes

This method should not be used, see 3.3.2.

- 41 -

Interface Name ICapeThermoMaterialObject

Method Name PropCheck

Returns CapeArrayBoolean

Description

Checks to see if a list of given properties can be calculated.

Arguments

Name Type Description

[in]

props

CapeArrayString Properties to check.

[out, retval]

*valid

CapeArrayBoolean

Returns Boolean List associated to list of properties to be checked.

Errors

Notes

As it was unclear from the original specification what PropCheck should exactly be checking, and as the

argument list does not include a phase specification, implementations vary. It is generally expected that

PropCheck at least verifies that the Property is available for calculation in the Material Object. However, this

can also be verified with PropList. It is advised not to use PropCheck.

The Material Object may or may not delegate this call to a Property Package.

- 42 -

Interface Name ICapeThermoMaterialObject

Method Name AvailableProps

Returns CapeArrayString

Description

Gets a list of properties that have been calculated.

Arguments

Name Type Description

[out,retval]

*props

CapeArrayString Properties for which results are available.

Errors

Notes

This function should return a list of properties that are available on any of the phases; if a property is present

in at least one phase, it should be included in the list. A Material Object may choose not to support this

functionality. In this case it should not return an empty list, but rather return error ECapeNotImpl.

- 43 -

Interface Name ICapeThermoMaterialObject

Method Name RemoveResults

Returns -

Description

Remove all or specified property results in the Material Object.

Arguments

Name Type Description

[in]

props

CapeArrayString Properties to be removed. UNDEFINED to remove all properties.

Errors

Notes

- 44 -

Interface Name ICapeThermoMaterialObject

Method Name CreateMaterialObject

Returns CapeInterface

Description

Create a Material Object from the parent Material Template of the current Material Object.

Arguments

Name Type Description

[out, retval]

*MaterialObject

CapeInterface

The created and initialized Material Object.

Errors

Notes

This method has the same purpose as the CreateMaterialObject method on the parent Material Template.

The created Material Object will have the same configuration (e.g. compound and phase definitions) as the

Material Object that created it. As opposed to Duplicate, actual property values may not be available; one

must not assume presence of any valid values on the created Material Object.

- 45 -

Interface Name ICapeThermoMaterialObject

Method Name Duplicate

Returns CapeInterface

Description

Creates a duplicate of the current Material Object.

Arguments

Name Type Description

[out, retval]

*clone

CapeInterface

The duplicated Material Object.

Errors

Notes

This method does the same as CreateMaterialObject, but in addition should copy all values stored on the

original Material Object to the duplicated Material Object, including existing phases. If the Material Object

supports the petroleum fractions interface, and if the Material Object contains petroleum properties, the

petroleum properties are also to be copied to the duplicated Material Object.

- 46 -

Interface Name ICapeThermoMaterialObject

Method Name ValidityCheck

Returns CapeArrayThermoReliability

Description

Checks the validity of the calculation. This method is deprecated.

Arguments

Name Type Description

[in]

Props

CapeArrayString

The properties for which reliability is checked.

[out, retval]

*relist

CapeArrayThermoReliability

Returns the reliability scale of the calculation.

Errors

Notes

The ValidityCheck method must not be used, since the ICapeThermoReliability interface is not yet defined.

- 47 -

Interface Name ICapeThermoMaterialObject

Method Name GetPropList

Returns CapeArrayString

Description

Returns list of properties that can be calculated by the Material Object.

Arguments

Name Type Description

[out, retval]

*props

CapeArrayString

List of all supported properties of the Material Object.

Notes

GetPropList should return identifiers for the non-constant properties calculated by CalcProp. Standard

identifiers are listed in 3.10.1. Other non-standard properties that are supported by the Material Object can

also be returned. GetPropList must not return identifiers for compound constant properties returned by

GetComponentConstant.

The properties Temperature, Pressure, Fraction, Flow, phaseFraction, totalFlow cannot be returned by

GetPropList, since all components must support them. Although the property identifier of derivative

properties is formed from the identifier of another property, the GetPropList method will return the

identifiers of all supported derivative and non-derivative properties. For instance, a Material Object could

return the following list:

enthalpy, enthalpy.Dtemperature, entropy, entropy.Dpressure

The Material Object may or may not delegate this call to a Property Package.

- 48 -

Interface Name ICapeThermoMaterialObject

Method Name GetNumComponents

Returns CapeLong

Description

Returns number of chemical compounds in Material Object.

Arguments

Name Type Description

[out, retval]

*num

CapeLong

Number of compounds in the Material Object.

Errors

Notes

This method returns the current number of compounds in the Material Object. The number may vary

between calls to the method. The number corresponds to the length of the list returned by ComponentIds.

The Material Object may or may not delegate this call to a Property Package.

- 49 -

3.9.3 ICapeThermoSystem

Interface Name ICapeThermoSystem

Method Name GetPropertyPackages

Returns CapeArrayString

Description

Returns list of Property Package names supported by the Thermo System.

Arguments

Name Type Description

[out, retval]

*propertyPackageList

CapeArrayString

The returned set of supported Property Packages.

Errors

Notes

- 50 -

Interface Name ICapeThermoSystem

Method Name ResolvePropertyPackage

Returns CapeInterface

Description

Resolves referenced Property Package to a Property Package interface.

Arguments

Name Type Description

[in]

propertyPackage

CapeString

The Property Package to be resolved.

[out, retval]

*propPackObject

CapeInterface The Property Package Interface.

Errors

Notes

- 51 -

3.9.4 ICapeThermoPropertyPackage

Interface Name ICapeThermoPropertyPackage

Method Name GetComponentList

Returns -

Description

Returns the list of compounds of a given Property Package.

Arguments

Name Type Description

[in,out]

*compsIds

CapeArrayString

List of compound IDs

[in,out]

*formulae

CapeArrayString

List of compound formulae

[in,out]

*name

CapeArrayString List of compound names.

[in,out]

*boilTemps

CapeArrayDouble

List of boiling point temperatures.

[in,out]

*molwt

CapeArrayDouble

List of molecular weights.

[in,out]

*casno

CapeArrayString

List of CAS numbers .

Notes

Compound identification could be necessary if the PME has internal knowledge of chemical compounds, or in case of

use of multiple Property Packages. In order to identify the compounds of a Property Package, the PME will use the

‘casno’ argument instead of the compIds. The reason is that different PMEs may give different names to the same

chemical compounds, whereas CAS Numbers are universal. Therefore, it is recommended to provide a value for the

casno argument wherever available.

- 52 -

See 5.5 for more information.

The same information can also be extracted using the ICapeThermoPropertyPackage GetComponentConstant method,

using the casRegistryNumber property identifier.

- 53 -

Interface Name ICapeThermoPropertyPackage

Method Name GetUniversalConstant

Returns CapeArrayVariant

Description

Returns the values of the Universal Constants.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object.

[in]

props

CapeArrayString List of requested Universal Constants;

[out,retval]

*propvals

CapeArrayVariant Values of Universal Constants.

Errors

Notes

See 3.10.2 for a list of authorized universal constant identifiers.

- 54 -

Interface Name ICapeThermoPropertyPackage

Method Name GetComponentConstant

Returns CapeArrayVariant

Description

Returns the values of the Constant properties of the compounds contained in the passed Material Object.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object.

[in]

props

CapeArrayString The list of properties.

[out,retval]

*propvals

CapeArrayVariant Compound Constant values.

Errors

Notes

The return value is a variant containing a one-dimensional array of variants. If P is the number of requested

properties and C the number requested compounds, the array will contain C*P variants. The C first ones

(from position 0 to C-1) will be the values for the first requested property (one variant for each compound).

After this first set of values and from position C to 2*C-1, there will be the values of constants for the second

requested property, and so on.

- 55 -

Interface Name ICapeThermoPropertyPackage

Method Name CalcProp

Returns -

Description

This method is responsible for doing property calculations.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the Calculation.

[in]

props

CapeArrayString The List of Properties to be calculated.

[in]

phases

CapeArrayString List of phases for which the properties are to be calculated.

[in]

calcType

CapeString Type of calculation: Mixture Property or Pure Compound Property. For

partial property, such as fugacity coefficients of compounds in a

mixture, use “Mixture” CalcType. For pure compound fugacity

coefficients, use “Pure” CalcType.

Notes

See also section 5.2.

- 56 -

Interface Name ICapeThermoPropertyPackage

Method Name CalcEquilibrium

Returns -

Description

Method responsible for calculating/delegating phase equilibria.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface

The Material Object

[in]

flashType

CapeString Flash calculation type.

[in]

Props

CapeArrayString Properties to be calculated at equilibrium. UNDEFINED for no

properties. If a list, then the property values should be set for each

phase present at equilibrium. (not including the overall phase).

Errors

Notes

On the Material Object the CalcEquilibrium method must set the amounts (phaseFraction) and compositions

(fraction) for all phases present at equilibrium, as well as the temperature and pressure for the overall

mixture, if these are not set as part of the calculation specifications. The CalcEquilibrium method must not

set on the Material Object any other value - in particular it must not set any values for phases that do not

exist. See 5.2.1 for more information.

The available list of flashes is given in section 5.6.1.

When calling this method, it is advised not to combine a flash calculation with a property calculation.

Through the returned error one cannot see which has failed, plus the additional arguments available in a

CalcProp call (such as calculation type) cannot be specified in a CalcEquilibrium call. Advice is to perform a

CalcEquilibrium, get the phaseIDs and perform a CalcProp for the existing phases.

- 57 -

Interface Name ICapeThermoPropertyPackage

Method Name PropCheck

Returns CapeArrayBoolean

Description

Check to see if properties can be calculated.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

Props

CapeArrayString List of Properties to check.

[out, retval]

*valid

CapeArrayBoolean The array of booleans for each property.

Errors

Notes

As it was unclear from the original specification what PropCheck should exactly be checking, and as the

argument list does not include a phase specification, implementations vary. It is generally expected that

PropCheck at least verifies that the Property is available for calculation in the property Package. However,

this can also be verified with PropList. It is advised not to use PropCheck.

- 58 -

Interface Name ICapeThermoPropertyPackage

Method Name ValidityCheck

Returns CapeArrayThermoReliability

Description

Checks the validity of the calculation. This method is deprecated.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

Props

CapeArrayString The list of properties to check.

[out, retval]

*relist

CapeArrayThermoReliability

The properties for which reliability is checked.

Errors

Notes

The ValidityCheck method must not be used, since the ICapeThermoReliability interface is not yet defined.

- 59 -

Interface Name ICapeThermoPropertyPackage

Method Name GetPropList

Returns CapeArrayString

Description

Returns list of properties supported by the Property Package.

Arguments

Name Type Description

[out, retval]

*props

CapeArrayString List of all supported Properties.

Errors

Notes

GetPropList should return identifiers for the non-constant properties calculated by CalcProp. Standard

identifiers are listed in 3.10.1. Other non-standard properties that are supported by the Property Package can

also be returned. GetPropList must not return identifiers for compound constant properties returned by

GetComponentConstant.

The properties temperature, pressure, fraction, flow, phaseFraction, totalFlow cannot be returned by

GetPropList, since all thermodynamic software components must support them. Although the property

identifier of derivative properties is formed from the identifier of another property, the GetPropList method

must return the identifiers of all supported derivative and non-derivative properties. For instance, a Property

Package could return the following list:

enthalpy, enthalpy.Dtemperature, entropy, entropy.Dpressure.

- 60 -

Interface Name ICapeThermoPropertyPackage

Method Name GetPhaseList

Returns CapeArrayString

Description

Provides the list of the supported phases. When supported for one or more property calculations, the Overall

phase and multiphase identifiers must be returned by this method.

Arguments

Name Type Description

[out, retval]

*phases

CapeArrayString The list of phases supported by the Property Package.

Notes

- 61 -

3.9.5 ICapeThermoCalculationRoutine

Interface Name ICapeThermoCalculationRoutine

Method Name CalcProp

Returns -

Description

This method is responsible for doing all calculations on behalf of the Calculation Routine component.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object of the calculation.

[in]

props

CapeArrayString The list of properties to be calculated.

[in]

phases

CapeArrayString List of phases for which the properties are to be calculated.

[in]

calcType

CapeString Type of calculation: Mixture Property or Pure Compound Property. For

partial property, such as fugacity coefficients of compounds in a

mixture, use “Mixture” CalcType. For pure compound fugacity

coefficients, use “Pure” CalcType.

Errors

Notes

See also, section 5.2.

- 62 -

Interface Name ICapeThermoCalculationRoutine

Method Name PropCheck

Returns CapeArrayBoolean

Description

Checks to see if a given property can be calculated.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

Props

CapeArrayString List of properties to check.

[out, retval]

*valid

CapeArrayBoolean The array of booleans for each property.

Errors

Notes

As it was unclear from the original specification what PropCheck should exactly be checking, and as the

argument list does not include a phase specification, implementations vary. It is generally expected that

PropCheck at least verifies that the Property is available for calculation in the Calculation Routine. However,

this can also be verified with PropList. It is advised not to use PropCheck.

- 63 -

Interface Name ICapeThermoCalculationRoutine

Method Name PropList

Returns -

Description

Returns the set of Properties, Phases, and Calculation Types that are supported by a given Calculation

Routine.

Arguments

Name Type Description

[in,out]

*props

CapeArrayString List of supported properties.

[in,out]

*phases

CapeArrayString List of supported phases.

[in,out]

*calcType

CapeArrayString List of supported calculation types. (Pure & Mixture)

Notes

The property list should contain all properties that can be calculated by the component. If the component is

restricted to certain phases, these phases should be in the phase list. If UNDEFINED is returned, it will be

assumed that the supported properties can be calculated for any phase.

- 64 -

Interface Name ICapeThermoCalculationRoutine

Method Name ValidityCheck

Returns CapeArrayThermoReliability

Description

Checks the validity of the calculation. The method is deprecated.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

props

CapeArrayString The list of properties to check.

[out, retval]

*rellist

CapeArrayThermoReliability

The properties for which reliability is checked.

Notes

The ValidityCheck method must not be used, since the ICapeThermoReliability interface is not yet defined.

- 65 -

3.9.6 ICapeThermoEquilibriumServer

Interface Name ICapeThermoEquilibriumServer

Method Name CalcEquilibrium

Returns -

Description

 Method responsible for calculating phase equilibria.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface

Material Object of the calculation

[in]

flashType

CapeString Flash calculation type.

[in]

props

CapeArrayString

Properties to be calculated at equilibrium. UNDEFINED for no

properties. If a list, then the property values should be set for each

phase present at equilibrium. (not including the overall phase).

Notes

The CalcEquilibrium method must set on the Material Object the amounts (phaseFraction) and compositions

(fraction) for all phases present at equilibrium, as well as the temperature and pressure for the overall

mixture, if not set as part of the calculation specifications. The CalcEquilibrium method must not set on the

Material Object any other value - in particular it must not set any values for phases that do not exist. See

 5.2.1 for more information.

The available list of flashes is given in section 5.6.1.

It is advised not to combine a flash calculation with a property calculation. By the returned error one cannot

see which has failed, plus the additional arguments to CalcProp (such as calculation type) cannot be

specified. Advice is to perform a CalcEquilibrium, get the phaseIDs and perform a CalcProp for those

phases.

- 66 -

Interface Name ICapeThermoEquilibriumServer

Method Name PropCheck

Returns CapeArrayBoolean

Description

Checks to see if a given type of flash calculations can be performed and whether the properties can be

calculated after the flash calculation.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

flashType

CapeString Type of flash calculation to check

[in]

Props

CapeArrayString List of Properties to check. UNDEFINED for none.

[out, retval]

*valid

CapeArrayBoolean The array of booleans for flash and property. First element is reserved

for flashType.

Notes

As it was unclear from the original specification what PropCheck should exactly be checking, and as the

argument list does not include a phase specification, implementations vary. It is generally expected that

PropCheck at least verifies that the Property is available for calculation in the Material Object. However, this

can also be verified with PropList. It is advised not to use PropCheck.

- 67 -

Interface Name ICapeThermoEquilibriumServer

Method Name ValidityCheck

Returns CapeArrayThermoReliability

Description

Checks the reliability of the calculation.

Arguments

Name Type Description

[in]

*materialObject

CapeInterface The Material Object for the calculations.

[in]

props

CapeArrayString The list of properties to check. UNDEFINED for none.

[out, retval]

*rellist

CapeArrayThermo

Reliability

The properties for which reliability is checked. First element reserved

for reliability of flash calculations.

Notes

This method should not be used since the ICapeReliability interface is not yet defined.

- 68 -

Interface Name ICapeThermoEquilibriumServer

Method Name PropList

Returns -

Description

Returns the flash types, properties, phases, and calculation types that are supported by a given Equilibrium

Server Routine.

Arguments

Name Type Description

[in,out]

*flashType

CapeArrayString Type of flash calculations supported.

[in,out]

*props

CapeArrayString List of supported properties.

[in,out]

*phases

CapeArrayString List of supported phases.

[in,out]

*calcType

CapeArrayString List of supported calculation types. (Pure & Mixture)

Errors

Notes

- 69 -

3.10 CAPE-OPEN Properties List

3.10.1 Constant Properties Identifiers

See section 5 for more explanation on the table and section 2 for naming conventions. Units of measure can

be found in the section 4.

To identify a pure compound there are some attributes, which are not really 'properties', but are nevertheless

needed:

Identifier Character string for identification e.g. in a flowsheet or PPS

iupacName Complete IUPAC Name

casRegistryNumber Chemical Abstract Sequencing Number

chemicalFormula Chemical formula (nomenclature according to Hill, Hill, J. Am. Chem. Soc. 22(8),

478-494 (1900).)

structureFormula Chemical structure formula

The ID of a compound should be the same in the whole flowsheet. There is a need in every flowsheet

calculation for a global compound list. If one uses different Property Packages, it is very probable that there

are different names used for the same compound. So a translation list may help in which, for each name of

the global compound list, there are the names for the correspondent compounds in the Property Packages

being used.

Identifiers Meaning SI Units

molecularWeight Relative molecular mass

criticalTemperature Critical Temperature K

criticalPressure Critical Pressure Pa

criticalVolume Critical Volume m
3
/mol

criticalCompressibilityFactor Critical Compressibility Factor

criticalDensity Critical Density mol/m
3

acentricFactor Pitzer Acentric Factor

dipoleMoment Dipole Moment Cm

parachor Parachor m
3
 kg

0.25
/(s

0.5
 mol)

gyrationRadius Radius of Gyration m

associationParameter Association-Parameter (Hayden-

O’Connell)

diffusionVolume Diffusion volume m
3

vanderwaalsVolume Van der Waals Volume m
3
/mol

vanderwaalsArea Van der Waals Area m
2
/mol

energyLennardJones Lennard-Jones energy parameter

divided by Boltzmann constant

K

lengthLennardJones Lennard-Jones length parameter m

- 70 -

normalBoilingPoint Temperature at boiling point

(1.01325 bar)

K

heatOfVaporizationAtNormalBoilingPoint Heat of Vaporization at boiling point

(1.01325 bar)

J/mol

normalFreezingPoint Temperature of normal melting point

(1.01325 bar)

K

heatOfFusionAtNormalFreezingPoint Heat of Melting at melting point

 (1.01325 bar)

J/mol

liquidDensityAt25C Liquid Density at 25 C mol/m
3

liquidVolumeAt25C Liquid Volume at 25 C m
3
/mol

idealGasGibbsFreeEnergyOfFormationAt25C J/mol

idealGasEnthalpyOfFormationAt25C J/mol

standardFormationEnthalpySolid Standard Formation Enthalpy of Solid J/mol

standardFormationEnthalpyLiquid Standard Formation Enthalpy of Liquid J/mol

standardFormationEnthalpyGas Standard Formation Enthalpy of Gas J/mol

standardFreeFormationEnthalpySolid Standard Free Formation Enthalpy of

Solid

J/mol

standardFreeFormationEnthalpyLiquid Standard Formation Enthalpy of Liquid J/mol

standardFreeFormationEnthalpyGas Standard Formation Enthalpy of Gas J/mol

standardEntropySolid Standard Entropy of Solid J/mol

standardEntropyLiquid Standard Entropy of Liquid J/mol

standardEntropyGas Standard Entropy of Gas J/mol

triplePointTemperature Triple Point Temperature K

triplePointPressure Triple Point Pressure Pa

BornRadius m

charge

StandardEnthalpyAqueousDilution Standard aqueous infinite dilution

enthalpy

J/mol

StandardGibbsAqueousDilution Standard aqueous infinite Gibbs energy J/mol

Standard is at 25 C and 1.01325 bar (= 1 atm).

3.10.2 Universal constant properties

standardAccelerationOfGravity 9.806 65 m/s
2

avogadroConstant 6.022 141 99(47) 10
23

 mol
-1

boltzmannConstant 1.380 6503(24) 10
-23

 J K
-1

molarGasConstant 8.314 472(15) J mol
-1

 K
-1

Note: Only the units of measure and the identifiers of the universal constants are specified in the standard,

not the values.

- 71 -

3.10.3 Non-constant Properties (or Model Dependent Properties)

See section 6 for more explanation of the revised table and section 2 for general naming conventions. Units

of measure can be found in the section. Mole based units have been listed in this table. For any property in

this table that mol in the unit of measure in this table, the unit of measure is affected by the basis argument to

SetProp and GetProp. The mol in this table would be replaced by kg for mass basis (with the exception of

properties moles and mass, that are basis independent).

Identifiers Meaning SI Units

vaporPressure Vapor Pressure. Only for Pure calcType Pa

sublimationPressure Sublimation Pressure Pa

meltingPressure Melting Pressure Pa

glassTransitionTemperature Glass Transition Temperature K

glassTransitionPressure Glass Transition Pressure Pa

solidSolidPhaseTransitionTemperature SolidSolidPhaseTransitionPressure Pa

virialCoefficient Second Virial Coefficient m
3
/mol

surfaceTension Surface Tension N/m

Expansivity coefficient of linear expansion

(Expansivity)
T

L

L ∂

∂1

1/K

Compressibility 1

V

V

P
T

∂

∂

1/Pa

compressibilityFactor
Compressibility Factor

RT

PV
Z =

diffusionCoefficient*** Binary diffusion coefficient for all

species in

mixture relative to all other species.

m
2
/s

jouleThomsonCoefficient

HP

T

∂

∂

K/Pa

heatOfVaporization ** J/mol

heatOfSublimation ** J/mol

heatOfFusion ** J/mol

heatOfSolidSolidPhaseTransition ** J/mol

volumeChangeUponVaporization ** m
3
/mol

volumeChangeUponSublimation ** m
3
/mol

volumeChangeUponMelting ** m
3
/mol

volumeChangeUponSolidSolidPhaseTr ** m
3
/mol

- 72 -

ansition

heatCapacity Heat Capacity (Cp)** J/(mol K)

heatCapacityCv Heat Capacity (Cv)** J/(mol K)

idealGasHeatCapacity Heat Capacity of ideal Gas** J/(mol K)

idealGasEnthalpy Enthalpy of ideal Gas* J/mol

excessEnthalpy Excess enthalpy* J/mol

excessEnergy Excess energy* J/mol

excessGibbsFreeEnergy Excess Gibbs Free Energy* J/mol

excessHelmholtzFreeEnergy Excess Helmholtz Free Energy* J/mol

excessEntropy Excess entropy* J/(mol K)

excessVolume Excess volume* m
3
/mol

partialMolarEnthalpy J/mol

partialMolarEnergy Partial molar internal energy J/mol

partialGibbsFreeEnergy Partial molar Gibbs energy J/mol

partialHelmholtzFreeEnergy Partial molar Helmholtz energy J/mol

partialMolarVolume m
3
/mol

viscosity Viscosity Pa s

thermalConductivity Thermal Conductivity W/(m K)

fugacity Fugacity Pa

fugacityCoefficient Fugacity Coefficient

activity Activity

activityCoefficient Activity Coefficient

bubblePointPressure Pa

bubblePointTemperature K

dewPointPressure Pa

dewPointTemperature K

kvalues Ratio of fugacity coefficients for a pair

of phases defined as follows:

12 / iiiK φφ= where 1iφ is the fugacity

coefficient of compound i in phase 1 and

2iφ is the fugacity coefficient in phase 2.

The VaporLiquid kvalues are defined as

VLVLK φφ /=

logFugacityCoefficient Logarithm of fugacity coefficients

logkvalues Logarithm of kvalues

temperature K

pressure Pa

volume Volume* m
3
/mol

density Density ** mol/m
3

- 73 -

enthalpy Enthalpy* (may or may not include heat

of formation)

J/mol

enthalpyNF Enthalpy which is guaranteed not to

include the heat of formation*

J/mol

enthalpyF Enthalpy which is guaranteed to include

the heat of formation*

J/mol

Entropy Entropy* (may or may not include

entropy of formation)

J/(mol K)

EntropyNF Entropy which is guaranteed not to

include the entropy of formation*

J/(mol K)

EntropyF Entropy which is guaranteed to include

the entropy of formation*

J/(mol K)

energy Internal energy* J/mol

gibbsFreeEnergy Gibbs Free Energy* J/mol

helmholtzFreeEnergy Helmholtz Free Energy* J/mol

moles Number of moles of a given amount of

matter

Mol

mass Total mass of a given amount of matter kg

flow List of the partial molar (or mass) flows

of each compound within a given phase

(or the whole mixture)**

mol/s

fraction List of the partial molar (or mass)

fractions of each compound within a

given phase (or the whole mixture)

phaseFraction The fraction of the fluid that is in the

specified phase.

totalFlow Matter flow of a phase or the whole

mixture**

mol/s

molecularWeight It is recommended to be used only with

CalcType=”mixture”. For pure,

GetComponentConstant is preferred. It

is up to the package to calculate it by

whatever means it chooses

boilingPointTemperature Only supported for “pure” CalcType K

dielectricConstant The ratio of the capacity of a condenser

with a particular substance as dielectric

to the capacity of the same condenser

with a vacuum for dielectric

cpAqueousInfiniteDilution Heat capacity of a solute in an infinitely

dilute aqueous solution

J/(mol K)

DissociationConstant Chemical equilibrium cinstant

corresponding to a dissociation reaction

- 74 -

OsmoticCoefficient A measure of water activities, defined

as,

φ = - nW ln (xW fW)/(nS ∑νi)

where,

nW is the moles of water; nS is the moles

of solute; xW is the mole fraction of

water; fW is the symmetric activity

coefficient of water; νI is the

stoichiometric coefficient of compound

i.

PH

POH

MeanActivityCoefficient The geometrical mean of the activity

coefficients of the ions in an electrolyte

solution

SolubilityIndex

SolubilityProduct

Notes: * per mole, or kg, or total depending on basis.

 ** per mole, or kg depending on basis.

 *** value has the dimension of a matrix

Derivatives:

Derivatives are built from the property identifier: a point with a D meaning ”Derivative” and the name for

the independent variable. The only independent variables that may be specified are temperature, pressure,

and mole numbers or mole fractions, as shown in the table below.

Derivative identifier meaning units

property.Dtemperature derivative of property with respect to temperature with

pressure and composition fixed

[property]/K

property.Dpressure derivative of property with respect to pressure with

temperature and composition fixed

[property]/Pa

property.Dmoles derivatives of property with respect to mole number

keeping pressure and temperature and other mole

numbers fixed for a mixture containing a total of one

mole of material. For some property H the ith element

of derivative is

ijnTpi

i
n

H
h

≠










∂

∂
==

,,

iH.Dmoles

[property]/mol

- 75 -

Property.DmolFraction derivatives of property with respect to mole fraction,

keeping pressure and temperature and other mole

fractions fixed. The mole fractions are therefore treated

as independent variables. These derivatives are a

mathematical construction and do not necessarily have

a physical meaning. The derivatives depend on the

specific implementation of the property in the property

package and may therefore not be unique. So mole

fraction derivatives from different Property Packages

can’t be expected to coincide in general. However they

should coincide as directional derivatives with

directions d that lie in the plane

 1
1

=∑
=

N

i

ix , i.e. 0
1

=∑
=

N

i

id .

The directional derivative is the scalar product of
the derivative (“gradient”) and the direction d:

∑∇
=

⋅
∂

∂
=⋅

N

i

i

i

N

x
d

x

PTxxH
dPTxH

1

1),,,,(
),,(

Krr

For some property H, the i

th
 element of the

derivative is

i

N

PT
ij

xi x

PTxxH

x

H

∂

∂
=









∂

∂
=

≠

),,,,(
tionH.DmolFrac 1

,,

K

[property]

BASIS AND UNITS:

The units for a derivative property depend on the units of the property itself, the basis specified and the type

of derivative, as shown in the table above. For example, enthalpy.Dtemperature on a molar basis has units of

J/(K mol) and on a mass basis it has units of J/(K kg).

For mole number derivatives the combination of basis and property type leads to a number of possible

combinations. The table below gives examples of all the possibilities.

Property type Basis Example of property Units of .Dmoles derivative

Intensive UNDEFINED logFugacityCoefficient 1/mol

 mole density (mol/m3)/mol

 mass density (kg/m3)/mol

Extensive mole enthalpy J/mol

For extensive properties only the molar basis is allowed. This should be interpreted as the mole number

derivative of the extensive property for one mole of substance and it corresponds to a partial molar property.

- 76 -

NUMBER OF VALUES RETURNED AND ORDER:

The following rules apply:

� Dtemperature and Dpressure derivatives return the same number of values and in the same

order as the corresponding property. For example, enthalpy.Dtemperature will return a single

value, whereas fugacityCoefficient.Dtemperature will return a vector of values.

� Dmoles derivatives of scalar properties return a vector of values with the same number of

elements as there are compounds in the mixture. For example, enthalpy.Dmoles with a basis

of Mole will return a vector of the partial molar enthalpies containing as many values as

there are compounds.

� Dmoles derivatives of vector-valued mixture properties are, conceptually, a sequence of

vectors. The first vector returns the derivatives of all properties with respect to the mole

number of the first compound. The second vector returns the derivative with respect to the

mole number of the second compound, and so on. The actual representation of these values

will be a single sequence that contains all the values of these vectors as a one-dimensional

array.

� For example, activity.Dmoles with respect to all compounds will return the following values:

 { },,,,,,,,,,,,, 321333231323222121312111 nnnnnnnn aaaaaaaaaaaaaaaa KLKKK

� where the derivative of the activity of compound i with respect to the mole number of

compound j is

jknTpj

i

ij
n

a
a

≠















∂

∂
=

,,

� In general, Dmoles derivatives of a rank-m quantity are returned as a sequence of values

containing the compounds of a rank-m+1 quantity.

� The remarks for Dmoles derivatives in this section also apply to DmoleFraction derivatives.

- 77 -

3.11 CAPE-OPEN Phase List

3.11.1 Phase Details

Permitted phases have been restricted to the following:

Phase Description

Vapor Vapor phase

Liquid Liquid phase

LiquidX Liquid phase X

Solid Solid phase

SolidX Solid phase X

Overall All phases

Multiple liquid phases can be achieved by using different names for a liquid. All liquid-phase names must

start with “Liquid” so that they can be identified as a liquid. Multiple solid phases can be achieved by using

different names for a solid. All solid-phase names must start with “Solid” so that they can be identified as a

solid. It is advised to use the name “Liquid” for the first liquid phase, and the name “Solid” for the first solid

phase. In the above table, X is a place holder for any name, so “LiquidX” could be for example

“LiquidWater”, “Liquid2”, …

See section 5.6.2 for more information and section 5.6.3 for information on phase checking.

- 78 -

4. SI Units

We have added the units used in the interoperability demonstration implementations to the CAPE-OPEN

Properties List in this document. We suggest referring to the Bureau International des Poids et Mesures

website (http://www.bipm.fr/enus/3_SI/si.html) for more information.

- 79 -

5. Notes

5.1 Notes on Argument interpretation of Get/Set/CalcProp Standard Methods)

5.1.1 Non-constant properties

If vapor fraction is part of a flash specification (e.g. PVF flash), it must be set on the Material Object for

phase “vapor” before performing a flash calculation, using basis “mole”. All other properties that can be part

of flash specification must be set on the Overall phase prior to the equilibrium calculation (in addition to

overall composition).

5.2 Notes on CalcProp description

5.2.1 CalcProp and CalcEquilibrium

There is no interaction between CalcProp and CalcEquilibrium, so CalcProp should never invoke

CalcEquilibrium.

CalcProp is used to calculate properties in the specified phase at the current values of T, P and x; it does not

perform phase equilibrium calculations.

CalcEquilibrium is used to calculate state variables from others, such as enthalpy, entropy or phase fraction.

5.2.2 Multiple calculations

If a client uses multiple properties in a call and one of them fails, then the whole call should be considered to

have failed. Therefore, no value should be written back to the material object by the Property Package until it

is known that the whole request can be satisfied. For this reason, to simplify error handling or debugging, it

is recommended that clients only request one property at a time to make error handling simpler. For

performance however, calculation of as many properties at the same time is recommended. Especially if the

properties are related (e.g. all resulting from the evaluation of an equation of state), combined property

calculations will perform much better than individual property calculations.

5.2.3 Side-effects during calculation

It is important to note that Property Packages are NOT allowed to calculate and (more important) to store the

values of properties that have not been specifically requested.

5.3 Notes on Constant Properties Identifiers

An important role of the Compound Constants is to identify the compounds supported by a Property

Package. The ICapeThermoPropertyPackage GetComponentList method was designed for this purpose.

- 80 -

5.3.1 Compounds supported by a Property Package

Use GetComponentList for a list of the compounds supported by a Physical Properties Package. It is a

specific entity tailored to a specific application, rather than a general Physical Properties System.

5.4 Notes on GetComponentConstant

Equivalences between GetComponentList arguments and Compound Constant properties:

GetComponentList Arguments Compound Constant

Property Idenfifier

Comments

Casno casRegistryNumber

compIds -- This string has to be used in all the

arguments of the materialObject

and Property Package methods

which are named compIds.

Formulae chemicalFormula

Name iupacName

BoilTemps normalBoilingPoint

Molwt molecularWeight

The problem was that “casRegistryNumber” and other properties have values, which are not numbers but

strings, whereas the specification states that getComponentConstants returns a list of numbers. As stated in

the section 2.14.1 of the 1999 Thermodynamic and Physical Properties Specification, the following constant

properties are not supported by the current specification of GetComponentConstant:

� iupacName complete IUPAC Name

� casRegistryNumber Chemical Abstract Sequencing Number

� chemicalFormula Chemical formula (nomenclature according to Hill)

� structureFormula Chemical structure formula

For the same reasons, GetUniversalConstant should also return a CapeArrayVariant.

5.5 Description of Compound Constants

5.5.1 CasRegistryNumber

The value of this constant is a variable-length character string that contains a sequence of 3 numbers

separated by hyphens. There must be no leading zeros and no leading spaces. The intention is that it should

be possible to compare two CAS numbers with a simple string comparison

CAS numbers and other properties are accessible at

http://webbook.nist.gov/chemistry

- 81 -

Compounds can be accessed directly with

http://webbook.nist.gov/cgi/cbook.cgi?Formula=ch4&NoIon=on&Units=SI

or

http://webbook.nist.gov/cgi/cbook.cgi?Name=water&Units=SI

CAS numbers can be undefined, for example for petroleum fractions, in which case compound comparison

has to be done by looking at constant properties.

5.6 Notes on Phases

The list of phases in 2.15.1 of the original specification assumes that 2 liquid fractions are supported, since,

for instance, there is a LiquidLiquid phase detail. However, at present there is no way to refer to each one of

the liquid phases separately. For this reason, it is advised to use version 1.1 of the Thermodynamic and

Physical Properties standard.

5.6.1 Equilibrium calculation types

The following list of flash types is defined. Each flash type may or may not be supported, depending on the

component that provides the equilibrium calculations.

The most commonly supported flash types are:

Flash Type Descriptions

TP Temperature-Pressure

PH Pressure-Enthalpy

TH Temperature-Enthalpy

TVF Temperature-Vapor Fraction (mole basis)

PVF Pressure-Vapor Fraction (mole basis)

Other flash types for which support may or may not be present:

Flash Type Descriptions

PS Pressure-Entropy

TS Temperature-Entropy

HS Enthalpy-Entropy

UV Energy-Volume

SV Entropy-Volume

PV Pressure-Volume

- 82 -

TV Temperature-Volume

HVF Enthalpy-Vapor fraction

SVF Entropy-Vapor fraction

Additional flash types that may or may not be supported use EnthalpyF rather than Enthalpy and EntropyF

rather than Entropy:

Flash Type Descriptions

PSF Pressure-EntropyF

PHF Pressure-EnthalpyF

THF Temperature-EnthalpyF

TSF Temperature-EntropyF

HFSF EnthalpyF-EntropyF

SFV EntropyF-Volume

HFVF EnthalpyF-Vapor fraction

SFVF EntropyF-Vapor fraction

5.6.2 Notes on two-phase properties

A two-phase property can – in principle – be accessed by concatenation of the single phase names.

Therefore, to calculate a vapor-liquid property, the appropriate phase name would be ‘VaporLiquid’.

Similarly, phases ‘VaporSolid’, ‘LiquidSolid’, ‘LiquidLiquid1’ could be used to identify two-phase

combinations.

As multiple liquid phases are an extension to the original version 1.0 standard documentation, it is advised to

avoid using it where possible. For example, calcprop("kvalues","LiquidLiquid1") may not be supported.

However, in the particular case of "kvalues", if "fugacityCoefficient" is used instead, it works around the

problem, since the phases can be calculated independently:

mo.SetProp("fraction","liquid", ...,liquid1FractionValue)

mo.calcProp("fugacityCoefficient","liquid")

mo.GetProp("fraction","liquid", ...,liquid1fugacityCoefficient)

mo.SetProp("fraction","liquid", ...,liquid2FractionValue)

mo.calcProp("fugacityCoefficient","liquid")

mo.GetProp("fraction","liquid", ...,liquid2fugacityCoefficient)

- 83 -

kvalues = liquid2fugacityCoefficient/liquid1fugacityCoefficient

SurfaceTension is in principle a two-phase property, so phase descriptor VaporLiquid is to be used. However,

SurfaceTension can also be considered a liquid property, so Liquid is also acceptable as phase descriptor.

5.6.3 Existence of a phase

As already described, that phaseFraction or totalFlow cannot be used for checking existence of a phase, since

for instance in the case of a bubble point both properties would return a 0 value for the vapor phase.

Instead, materialObject.PhaseIDs() must be used, since it returns only the phases existing in the MO at that

moment. Note that materialObject.PhaseIDs() does not return the list of phases supported by the Property

Package relating to the MO. The latter information is provided by the PropPack.getPhaseList() method.

This approach has the limitation that, currently, the Property Packages don’t have any mechanism to change

the list phases existing in a material object during the calculation of an equilibrium. Only the COSE could do

it. The next version of the standard will add new methods to solve this shortcoming.

It is recommended that a material object sets all phase fractions to UNDEFINED

(CapeDoubleUNDEFINED) before the equilibrium calculation (with the exception of phaseFraction of the

vapor phase in case of a flash that includes a vapor fraction specification). During the equilibrium calculation

a property package should only set the phase fractions and compositions for phases that exist. After the

equilibrium calculation a material object can determine the list of phases that are present by inspecting the

phase fractions. It should be noted that phase fractions for liquid and vapor phases can be zero at equilibrium

for dew- and bubble point calculations.

5.7 Notes on enumeration of Property Packages and Thermo Systems

Thermo Systems and Stand-alone Property Packages on Windows systems are registered as a COM object in

the Windows registry, each having their own category ID. The HKEY_CURRENT_USER\Software\Classes

key stores the COM classes that have been installed for the current user. The

HKEY_LOCAL_MACHINE\Software\Classes key stores system wide COM classes. To modify the

HKEY_LOCAL_MACHINE\Software\Classes, one may require administration rights. Generally one does

not require administration rights to modify HKEY_CURRENT_USER\Software\Classes. It is therefore up to

the installer of the software component to choose whether it is installed for the user only, or for all users.

Property Packages and Thermo Systems should be listed from both the

HKEY_CURRENT_USER\Software\Classes and HKEY_LOCAL_MACHINE\Software\Classes keys, with

the keys in the former taking precedence over the same keys in the latter.

The COM classes root key (HKEY_CLASSES_ROOT) provides exactly that union. It is therefore generally

sufficient for a CAPE-OPEN simulation environment to list components that appear in

HKEY_CLASSES_ROOT. For more information, see http://msdn2.microsoft.com/en-

us/library/ms724475.aspx.

5.8 Notes on recommended error codes

The version 1.0 thermodynamic standard specification does not provide recommended error codes for

common error scenarios.

- 84 -

5.9 Implementation of the Persistence Interface

It is expected that simulation environments will allow the possibility to store the current state of a simulation

case in order to be able to restore it at any time in the future. Thermodynamic software components such as

Property Packages are a part of the simulation case being saved. In addition to storing the information

required to recreate the thermodynamic software components (such as CLSID and Property Package name),

the information specific to the software component (such as the content of the Property Package) should be

stored along with the simulation case. This is important to ensure consistency between simulation sessions in

case the content of the Property Package has been changed, but also to allow transfer of the simulation case

from one computer system to another.

Persistence may also help to preserve consistency of the simulation case over time. For example, when

thermodynamic software component versions change, a stored state of a previous version may allow the

thermodynamic software component to function in a manner consistent with the saved version or,

alternatively, it may issue an appropriate warning.

Therefore, it is recommended for thermodynamic software components (such as Property Packages) to

implement the Persistence Common Interfaces.

The following methods should be implemented: Load, Save, GetClassID, IsDirty, GetSizeMax and,

optionally, InitNew. Implementation of persistence also allows modification of the thermodynamic software

component’s configuration while it is part of the simulation case, e.g. via the Edit method of ICapeUtilities.

Note that Property Packages should implement ICapeUtilities; as such, it is possible for a Property Package

to have Edit functionality as well as to expose parameters (see Utility Common Interface Specification). For

Property Packages allowing Edit functionality or modification by means of changing parameter values,

persistence is a prerequisite, as otherwise the modifications will be lost between simulation sessions.

Implementation tips:

• The Load or (if Implemented) InitNew methods should be called before ICapeUtitilities::Initialize.

• The GetSizeMax method must be properly implemented as it is called by PMEs to allocate space for

storing the content of a PMC . If GetSizeMax returns too small a value, this may lead to allocation

failure.

5.10 Initialization and termination

A Thermo System software component is a top-level CAPE-OPEN object (or PMC primary object as

outlined in the Methods & Tools integrated Guidelines documentation) and should therefore implement the

ICapeUtilities interface. For a stand-alone Property Package, this also holds. The simulation environment is

expected to call Initialize and Terminate on such objects.

A Property Package that is created from a Thermo System is, in accordance with the definition of PMC

primary objects and PMC secondary object in the also a top-level CAPE-OPEN object. Therefore, it is

expected of the Property Package to implement ICapeUtilities, and it is expected from the simulation

environment that initialization and termination (and possibly persistence) are performed for such Property

Packages as if it were a stand-alone Property Package.

- 85 -

6. Glossary of Terms Used

Chemical Compound (Compound) refers to a chemical species as defined by a particular set of physical

properties calculation methods and data. In a sense, we are using the term Chemical Compound to refer to a

mathematical model of the properties of a particular chemical species.

Chemical Species refers to a unique chemical substance, for example, “water”.

Material. (sometimes referred to as Material Object). “Material” refers to a unique material with a

specific composition, state, and set of physical properties. It may be a mixture or a pure compound, and be in

one or multiple phases. It may be in any state of division (for example particulate material). Materials occur

both in streams and within units (for example the liquid on a particular stage of a distillation column). We

will generally be referring to a mathematical model of a material, when every material will be associated

with a specific physical properties package. A material can be derived from a material template (see below).

Specifically, the information defining a material will be the information in its associated Material Template

plus, for a uniform molecular fluid, its temperature, pressure and the mole fraction of each compound. For

multiple fluid phases, the same information will suffice if the Template defines that the phases are in

equilibrium, otherwise a separate composition etc may be required for each phase. For dispersed phases, the

Template will include the equations defining the general form of the size and shape distribution, the Material

will include the parameters that define a specific material with a given mean particle size etc. (Such template

distribution equations may be continuous, or be defined piece-wise over size ranges). It should be

emphasized that the definition is only as complete as required by the user. Thus, where flow rate is required,

Material will include flow rate, where (for transport properties) it requires scale and intensity of turbulence,

it will contain this information. Where properties are not required, they will (or may) not be held. For

example, heat transfer calculations may not require detailed composition information. Similarly, a mass

balance only calculation may not include temperature or thermodynamic properties.

Material Template. A material template defines a complete set of chemical compounds and the associated

properties package. Thus, for a single-phase molecular mixture, it normally only requires a definition of the

composition, temperature and pressure to define a material completely. In many cases, the material template

may define the permitted phase, or phases, of the material. Restriction on phases may be applied for several

reasons. For example, the user may be confident that, at convergence, the material will be a vapor. It will

make the computation faster and more reliable if the simulation avoids complex phase equilibrium

computations for the intermediate iterations when spurious multiphase conditions might arise. As a further

example, a user may be interested in computing a transfer rate between a vapor and a liquid. To compute any

finite rate of transfer, there must be a lack of equilibrium, so that the liquid phase must be superheated and

the vapor super-cooled. These non-equilibrium conditions can only be computed by performing separate

property computations for the 2 phases, and restricting each calculation to a single phase calculation.

(Although, of course, it will often be appropriate to compute the composition of the vapor that would be in

equilibrium with the liquid and/or vice-versa). Computationally, there is likely to be a material class

corresponding to a template, a material (object) will then inherit its interfaces from the material class.

Mixtures. The term “Mixture” is only used informally in this document.

Neutral Format. A data format that can be read and recognised by software other than the one that created

it. There may be several neutral format standards defined under CAPE-OPEN (it is not restricted to

properties packages).

Physical Property. In this document “physical property” includes all relevant properties. It thus includes

both transport and thermodynamic properties of pure compounds and mixtures. If relevant, it would include

other properties, such as colour.

Physical Property Calculation Method. An equation or algorithm, which can be used to calculate one or

more physical properties. It should be emphasised that, except in the very limited number of cases defined in

- 86 -

(Ref), CAPE-OPEN will not define standard methods. In referring to calculation methods, this document

includes both any standard methods to be defined and all proprietary methods that may be included in

commercially available, or other, packages.

Physical Property Calculation Routine. A particular implementation of a physical property calculation

method.

Physical Properties Executive. The physical properties executive is a component of a physical properties

system that provides the user interface by which the methods, data and compounds can be selected. It also

organizes the computation so that, in calculating material properties, the correct methods are employed for

the specific material conditions. The executive provides access to additional services, such as the ability to

correlate raw data to generate parameters for selected methods.

Physical Properties Package. A Properties Package (PP) is a complete, consistent, reusable, ready-to-use

collection of methods, compounds and model parameters for calculating any of a set of known properties for

the phases of a multiphase system. It includes all the pure compound methods and data, together with the

relevant mixing rules and interaction parameters. A package normally covers only a small subset of the

chemical compounds and methods accessible through a Properties System. It is thus established by selecting

methods etc from within a larger system, possibly adding to or replacing these methods by third party

compounds. These additional methods will normally be CAPE-OPEN compliant methods which may have

been specially written, or may come from another properties system. (They can only come from another

system where that system provides them as CAPE-OPEN compliant components).

Physical Properties Parameters. Numerical values, which either give physical properties directly (for

example, molecular, or formula, weight), or permit properties to be computed by defined methods. For

example, the coefficients of the Antoine equation for a particular chemical compound.

Physical Properties System. A software system that includes a physical properties executive, a set of

physical properties routines and access to data for a number of chemical compounds. A Physical Properties

System exposes one or more Physical Properties Packages. It will often access a large properties data bank.

The system is likely to include text information, which the user can access to help select the most appropriate

properties, methods and data for the particular application.

Software Component. A compiled piece of software which presents its services through well-specified

interfaces, and is capable of being used and re-used in different software applications. In this context, a

simulator could be a component, which itself makes use of other components such as physical properties

systems, and calculation routines.

Stream. In this document, “stream” usually refers to “material stream”, namely a material and its flow rate.

It may contain one or more compounds, and be made up of one or several phases. The material stream used

here refers to the steam conditions at a particular point. For example, we may be referring to the material fed

to or delivered from a process unit at a particular point in time. We are not referring to the whole of a stream

in a length of pipe which may differ in condition from point to point. “Stream” is also used in describing the

topology of a process, namely a connection between two unit models. Thus, where physico-chemical

changes take place in a connecting pipe, the pipe itself will be represented by a unit model and the

topological connections at the 2 ends of the pipe will be separate streams.

