
&2�1805�(/�����9HUVLRQ��

23(1�,17(5)$&(�63(&,),&$7,21
180(5,&$/�62/9(56

&$3(�23(1

i

,03257$17�127,&(6

'LVFODLPHU�RI�:DUUDQW\

CAPE-OPEN documents and publications include software in the form of VDPSOH�FRGH��Any
such software described or provided by CAPE-OPEN --- in whatever form --- is provided "as-
is" without warranty of any kind. CAPE-OPEN and its partners and suppliers disclaim any
warranties including without limitation an implied warrant or fitness for a particular purpose.
The entire risk arising out of the use or performance of any sample code --- or any other
software described by the CAPE-OPEN project --- remains with you.

&RS\ULJKW�� �����&$3(�23(1� DQG� SURMHFW� SDUWQHUV� DQG�RU� VXSSOLHUV. All rights are
reserved unless specifically stated otherwise.

CAPE-OPEN is a collaborative research project established under BE 3512 “Industrial and
Materials Technologies” (Brite-EuRam III), reference BRPR-CT96-0293.

7UDGHPDUN�8VDJH

Many of the designations used by manufacturers and seller to distinguish their products are
claimed as trademarks. Where those designations appear in CAPE-OPEN publications, and
the authors are aware of a trademark claim, the designations have been printed in caps or
initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer,
Windows and Windows NT are registered trademarks and ActiveX is a trademark of
Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

Visio is a registered trademark of Visio Corporation.

ii

&$3(�23(1�$UFKLYDO�,QIRUPDWLRQ

5HIHUHQFH CO-NUMR-EL-03 Version 1.08
Coordinated by ELF
Date 30 June 1999
Number of Pages 107
Version Version 1.08
Filename CAPE-OPEN Component Solver.doc
'HYHORSPHQWDO�(GLWRU�V� Costas Pantelides, Imperial College

Ben Keeping, Imperial College
Jacky Bernier, ELF
Christian Gautreau, ELF

&RS\�(GLWRU�V� Michel Pons, ELF

3URRIUHDGLQJ�(GLWRU�V�

&RQWULEXWRU�V� Wolfgang Marquardt, RWTH-LPT
Jean-Marc Le Lann, INPT
Jean-Pierre Belaud, INPT
Alain Sargousse, INPT
Renée Esposito, ELF
Daniel Leineweber, BAYER

iii

6XPPDU\

This document, which was produced by the Numerical work package, describes the
Interface Specifications for the Solver component of the CAPE-OPEN Interface
System. This document is written from the point of view of the software developer
who will be interested in developing CAPE-OPEN compliant software. Thus, the
emphasis in the main body of the document is on the precise definitions of the
concepts and interfaces. In particular, it includes detailed definitions (as well as
prototype code) for the interfaces relating to the solution of linear and nonlinear
algebraic equations, and the core functionality required for solution of differential-
algebraic systems (i.e. dynamic problems��

The document starts with a textual description of the requirements identified for an
open solver component. This is then expressed in Unified Modelling Language and
developed into a specification of the interfaces necessary for a CAPE-OPEN solver
component to plug into a compliant flowsheet simulator. These specifications are
provided in CORBA IDL.

iv

&$3(�23(1�'RFXPHQW�5RDGPDS

This document is intended primarily for software engineers, who are interested in producing
CAPE-OPEN compliant solver components.

All other readers need not go beyond 6HFWLRQ���5HTXLUHPHQWV�

v

$FNQRZOHGJHPHQWV

The authors of this document wish to acknowledge the contribution of the various people
whose names appear in the archival section. Without their help, thoughts and technical
expertise we would not have been able to produce this document. We would also like to
thank the companies involved for supporting this project and providing the significant
resources needed to carry out the work.

vi

&RQWHQWV

� ,1752'8&7,21 �� �

� 5(48,5(0(176��� �

��� 8VHU�UHTXLUHPHQWV�IRU�DQ�2SHQ�6ROYHU�&RPSRQHQW��
2.1.1 Setting the Scene2
2.1.2 Architecture..3
2.1.3 CO Objects Present in a Compliant Simulator ...5
2.1.4 Models..6
2.1.5 Mathematical Problems...6
2.1.6 Solvers...6
2.1.7 Solver Manager7
2.1.8 The Equation Set Object...7
2.1.9 Description of Discontinuous Processes.. .8

2.1.9.1 Origins of discontinuities in physical descriptions ..8
2.1.9.2 Mathematical descriptions of physical discontinuities ..8
2.1.9.3 State-Transition Networks ...10
2.1.9.4 State-Transition Networks in Models ..11

2.1.10 Events and EventInfos ...12
2.1.10.1 Events ..13
2.1.10.2 EventInfos..15

2.1.11 Overview of Typical Usage ...15
2.1.11.1 Modular-Based Dynamic Simulation ..15
2.1.11.2 Equation-Based Dynamic Simulation..16

2.1.12 Linear Algebra ...17
2.1.12.1 The)XOO0DWUL[�Subtype ..17
2.1.12.2 The 8QVWUXFWXUHG0DWUL[Subtype..18
2.1.12.3 The %DQGHG0DWUL[Subtype...19

2.1.13 Desirable Characteristics for the CO Interface...20

��� 8VH�&DVHV��
2.2.1 Use Cases Categories ...21
2.2.2 Actors ...22
2.2.3 Use Cases ...23

2.2.3.1 Solver Selection, Instantiation and Configuration ...23
2.2.3.1.1 Select Numerical Code (ref. UC-41-001)...24
2.2.3.1.2 Unit Selects Numerical Code (ref. UC-41-002) ...25
2.2.3.1.3 Configure Numerical Code (ref. UC-41-003) ..26

2.2.3.2 Solver Initialisation..27
2.2.3.2.1 Unit Defines Linear Equations to be Solved (ref. UC-41-004)28
2.2.3.2.2 Unit Defines Nonlinear Equations to be Solved (ref. UC-41-005)29
2.2.3.2.3 Unit Defines DAEs to be Solved (ref. UC-41-006) ..30
2.2.3.2.4 Identify Global System to Be Solved (ref. UC-41-007)..31
2.2.3.2.5 Eliminate Degrees of Freedom (ref. UC-41-008)..32

2.2.3.3 Solver Execution..33
2.2.3.3.1 Unit Requests Solution of Unit Equations (ref. UC-41-009)34
2.2.3.3.2 Converge Nonlinear Problem (ref. UC-41-010)...35
2.2.3.3.3 Advance DAE Solution (ref. UC-41-011)...36

2.2.3.4 More Complex Use Cases ...37
2.2.3.4.1 Perform EO Steady-State Simulation (ref. UC-41-012)...38
2.2.3.4.2 Perform SM Steady-State Simulation (ref. UC-41-013) ...39
2.2.3.4.3 Perform EO Dynamic Simulation (ref. UC-41-014) ...40
2.2.3.4.4 Perform SM Dynamic Simulation (ref. UC-41-015)...42

vii

� 1/<6,6 ��� ��

��� 2YHUYLHZ ��

��� &RPSRQHQW�'LDJUDP���

)LJXUH�������3DFNDJH�GHSHQGHQFLHV�EHWZHHQ�&RPSRQHQWV��

&ODVV�'LDJUDPV���
3.2.1 Class Diagram of the Unit Package..46
3.2.2 Class Diagram of the Model Package...47
3.2.3 Class Diagram of the ESO Package ...49
3.2.4 Class Diagram of the Solver Package...50

��� 6HTXHQFH�'LDJUDP���

��� &ROODERUDWLRQ�GLDJUDP��

��� ,QWHUIDFH�'LDJUDPV��
3.5.1 Model Interface Diagram ...54
3.5.2 ESO Interface Diagram ..55
3.5.3 Solver Interface Diagram ...56

��� ,QWHUIDFH�'HVFULSWLRQV���
3.6.1 Model Component..59

3.6.1.1 Model Manager : ICapeNumericModelManager...60
3.6.1.2 Simulation Model: ICapeNumericModel ..61
3.6.1.3 Continuous Model: ICapeNumericContinuousModel ...73
3.6.1.4 Hierarchical Model: ICapeNumericHierarchicalModel...73
3.6.1.5 Aggregate Model: ICapeNumericAggregateModel...74
3.6.1.6 State Transition Network: ICapeNumericSTN..76
3.6.1.7 Event : ICapeNumericEvent ..85
3.6.1.8 Basic Event : ICapeNumericBasicEvent ...88
3.6.1.9 Composite Event : ICapeNumericCompositeEvent...91
3.6.1.10 Binary Event : ICapeNumericBinaryEvent ...93
3.6.1.11 Unary Event : ICapeNumericUnaryEvent ...94
3.6.1.12 Event Info : ICapeNumericEventInfo..94
3.6.1.13 External Event Info : ICapeNumericExternalEventInfo ..98
3.6.1.14 Internal Event Info : ICapeNumericInternalEventInfo ..98

3.6.2 ESO Component...100
3.6.2.1 Internal types used by this component...101
3.6.2.2 Matrix interface : ICapeNumericMatrix ..101

3.6.2.2.1 ICapeNumericFullMatrix ...108
3.6.2.2.2 CapeNumericUnstructuredMatrix ..108
3.6.2.2.3 CapeNumericBandedMatrix...109

3.6.2.3 Equation Set Object Manager interface : ICapeNumericESOManager110
3.6.2.4 Equation Set Object (ESO) interface : ICapeNumericESO ...111
3.6.2.5 Linear Analysis ESO interface : ICapeNumericLAESO ...128
3.6.2.6 Non Linear Analysis ESO interface : ICapeNumericNLAESO133
3.6.2.7 Differential Analysis ESO interface : ICapeNumericDAESO.......................................134
3.6.2.8 Global ESO interface : ICapeNumericGlobalESO ..143
3.6.2.9 Global LAESO interface : ICapeNumericGlobalLAESO..145
3.6.2.10 Global NLAESO interface : ICapeNumericGlobalNLAESO..145
3.6.2.11 Global DAESO interface : ICapeNumericGlobalDAESO...145

3.6.3 Solver Component..146
3.6.3.1 Solver Manager interface : ICapeNumericSolverManager..147
3.6.3.2 Numeric Solver interface : ICapeNumericSolver ..148
3.6.3.3 Numeric LA Solver interface : ICapeNumericLASolver ..156
3.6.3.4 Numeric NLA Solver interface : ICapeNumericNLASolver...157

viii

3.6.3.5 Numeric DAE Solver interface : ICapeNumericDAESolver...163

� ,17(5)$&(�63(&,),&$7,216 �� ���

��� &25%$�,'/ ���
4.1.1 Common definitions ...169

4.1.1.1 Utility Definitions..169
4.1.1.2 Utility Component ...170

4.1.2 Model Component..170
4.1.3 ESO Component...176
4.1.4 Solver Component..180

��� &20�,'/��
4.2.1 Common definitions ...182
4.2.2 Model Component..182
4.2.3 ESO Component...182
4.2.4 Solver Component..182

� 127(6�21�1/<6,6�$1'�,17(5)$&(�63(&,),&$7,216����������������� ���

��� 'LIIHUHQFHV�EHWZHHQ�&25%$�DQG�&20��

��� 3XEOLF�3DUDPHWHU�� ������������������

��� 5HSRUWLQJ ��� �����������������������

��� 7KHUPR�DQG�3K\VLFDO�3URSHUW\�3DFNDJHV ��

9(5=(,&+1,66(,7(15()6(,7(15()6(,7(15()SEITENREFSEITENREFSEITENREF
SEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREF

SEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENR
EFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREF6(,7(15()SEITENREFSEITE

NREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITE
NREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFS

EITENREFSEITENREFSEITENREFSEITENREFSEITENREF6(,7(15()6(,7(15()6(,7(
15()6(,7(15()6(,7(15()SEITENREFSEITENREFSEITENREFSEITENREF6(,7(15()6(,7
(15()6(,7(15()SEITENREFSEITENREFSEITENREF6(,7(15()SEITENREFSEITENREFSEIT

ENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFS
EITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENRE
FSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITEN
REFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEITENREFSEIT
ENREFSEITENREFSEITENREF6(,7(15()6(,7(15()SEITENREFSEITENREFSEITENR
EFSEITENREFSEITENREFSEITENREF6(,7(15()SEITENREFSEITENREFSEITENREFSEITE

NREF6(,7(15()6(,7(15()6(,7(15()6(,7(15()6(,7(15()

1

�� ,QWURGXFWLRQ

This document aims at defining CAPE-OPEN standard interfaces for Numerical Solvers. The
document starts with a textual description of the requirements identified for an open solver
component. This is done by introducing the key concepts on which these interfaces are based.
These key concepts are supported by a number of examples drawn from the current usage of
simulators.

The main body of this document describes the interfaces. A Unified Modelling Language (UML)
description is given. It begins with describing the actors and use cases. Indeed, in the UML
process, the first step is to express the user requirements in the form of a Use Case Model. It
identifies the “users” of the system, called Actors, and describes, in the form of Use Cases, what
they wish the system to do. It also identifies the boundaries of the system. Then the interfaces,
their methods and their collaboration process are expressed in a series of diagrams.

The document provides the interfaces necessary for a CAPE-OPEN solver component to plug into
a compliant flowsheet simulator. These specifications are provided in CORBA IDL.

The work process involved in the NUMR work package led to the production first of a Conceptual
Requirements document outlining what is the typical usage of solvers within a process simulator.
From this document, a list of use cases was drawn which then led to a number of Interim Interface
Specification Documents which were progressively modified through several reviewing steps.
Prototyping was developed concurrently and demonstrations took place with the prototypes
issued. The current document is a synthesis of all of these documents and the learning obtained to
date from the prototyping exercise.

2

�� 5HTXLUHPHQWV

This chapter is devoted to a description of the usage made of solvers within process simulators.
After a short reminder of the general goal of setting Open interfaces between the components of a
simulator, a few key concepts are defined that will be central to the interface model developed in
the next chapter. Typical usage of solvers within simulators is then textually described before
listing the main Use Cases considered in our approach.

���� 8VHU�UHTXLUHPHQWV�IRU�DQ�2SHQ�6ROYHU�&RPSRQHQW

������ 6HWWLQJ�WKH�6FHQH

Flowsheet simulators are designed to calculate the behaviour of processes. They take a description
of the flowsheet topology and process requirements and assemble a model of the flowsheet from a
library of unit operations contained in the simulator. For example, the flowsheet below represents
a single stage from an oil and gas separation system:

This would be simulated in a typical commercial simulator from a description of the topology,
probably entered through a GUI and looking much like the above picture, plus a description of the
process requirements. It is a simple flowsheet that would use the flash, compressor, cooler and
junction unit operations, as shown in Figure 2-1.

Although the simulator mimics the plant’s behaviour, it is organised differently. For example, in
the plant the unit operations are connected together directly, e.g. the cooler connects directly to the
separator. In the simulator, the unit operations are not connected to each other, but only to the
executive. Also, in this plant there are 3 distinct flash separators, whereas in the simulator there is
only one flash algorithm, which is reused by the executive as required by the topology.

)LJXUH������6LQJOH�VWDJH�IURP�DQ�RLO�DQG�JDV�VHSDUDWLRQ�V\VWHP

3

This is a straightforward flowsheet that could be adequately simulated by most simulators.
However, if, for instance, the separations were to be done with a membrane unit, it might be
necessary to use an external representation of the membrane unit to capture the specific
performance of a proprietary membrane. Most simulators allow external unit operations to be
added, but, because of the proprietary nature of the interface between the unit operations library
and the executive and the monolithic structure of the simulator, this is a bespoke activity for each
simulator. The result is a non-standard version of the simulator, which can be difficult and
expensive to maintain.

The CAPE-OPEN (CO) project envisages a new situation whereby a solver (and other simulator
software sub-systems, such as thermodynamic or unit packages) can be bought off-the-shelf and
plugged directly into any compliant simulator without modification, compiling or linking and will
continue to work with subsequent versions of the simulator. All that is required is that the solver
and the simulators conform to the CAPE-OPEN Interface System. This System will be defined by
the CO project, which is organised into work packages. Three of these work packages deal with
the main sub-systems of a simulator that are likely to be exchanged: unit operations (UNIT),
thermodynamics (THRM) and numerical solvers (NUMR). This document is produced by the
NUMR work package. It starts by describing the requirements of the part of the CAPE-OPEN
Interface System dealing with solvers. These requirements are further described in Unified
Modelling Language (UML).

������ $UFKLWHFWXUH

The architecture of the CO system is based on an object-orientated technology, which allows
software systems to be constructed from software components. These components are able to talk
to each other via defined interfaces. The software components can come from different vendors
and may reside on the same machine or be on different machines across a network.

Problem
Description

Propietary Interface

Flash

Comp

Etc

Cool

Join

Executive

Unit Operations
Library

)ORZVKHHW�6LPXODWRU

Results

)LJXUH�����)ORZVKHHW�VLPXODWRU�VFKHPD

4

The CAPE-OPEN Interface System is a standard means of connecting an external software
component, which models, for example, a unit operation (UO), to any compliant simulator. The
Interface can be thought of as a “socket” and “plug”, which exchanges information between the
two parts. The simulator and UO do not have to know anything about the internal coding and
standards used by the other. The job of the interface is to translate requests for information or
action by either party into something the other understands. The same has to be true for any solver
component which can be thought as a plug, exchanging information with the socket from a UO or
from the simulator executive.

For example, these diagrams show some of the ways in which external facilities could
communicate with a host simulator through the interface that has been created by the CAPE-
OPEN work packages. Please note that these are purely conceptual representations. 7KH�VHSDUDWH
FRQQHFWLRQV� VKRZQ� UHSUHVHQW� WKH� DUHDV� RI� UHVSRQVLELOLW\� RI� WKH� GLIIHUHQW� ZRUN� SDFNDJHV�
UDWKHU�WKDQ�DQ\�SK\VLFDO�VHJUHJDWLRQ�LQ�WKH�ILQDO�LQWHUIDFH�

Simulator

Executive

Libraries

External UO

NumericsUnit

U: Unit Interfaces
T: Thermo Interfaces
N: Numeric Interfaces

8

7

1

8

7

1

Thermo

)LJXUH�����$UHDV�RI�UHVSRQVLELOLW\�RI�WKH�GLIIHUHQW�ZRUN�SDFNDJHV��DSSURDFK���

5

This shows an external UO using the host simulator’s thermodynamic facilities. The UO is
solving its own equations and so is unlikely to be sending numerical information to the simulator.
This is likely to be the default method of operation in sequential modular simulators.

This shows an external UO using external thermodynamic and numerical facilities directly. It
assumes that the UO requires derivative information from the thermodynamic package, hence the
traffic on the part of the interface defined by the NUMR work package. Alternatively, the external
thermodynamics package could be plugged into the simulator using the CO Interface. It could still
be accessed by the external UO through the CO interface, but would then also be available to all
of the unit operations in the simulator’s standard library.

������ &2�2EMHFWV�3UHVHQW�LQ�D�&RPSOLDQW�6LPXODWRU

In software terms, this architecture requires the following types of objects in a CO system:

q 8QLW: this represents the CO unit and provides methods for initialisation, calculation and
reporting. A CO compliant simulator uses these methods to operate the plug-in unit.

q 6LPXODWRU: this provides services that a unit is likely to need from the simulator, such as
stream information.

q 7KHUPR: this provides physical property services

q 1XPHULFV: this provides numerical services. Numerical components may be of two kinds.
First sequential modular simulators require specific tools to address graph analysis problems.
This is adressed by the SMST component. Then, both types of simulator need solvers of
different set of equations modelling the behaviour of individual unit operations or of the

Simulator

Executive

Libraries

External UO

NumericsUnit

U: Unit Interfaces
T: Thermo Interfaces
N: Numeric Interfaces

8

7

1

8

Thermo

External Numeric
1

External Thermo
7

1

7

1

)LJXUH�����$UHDV�RI�UHVSRQVLELOLW\�RI�WKH�GLIIHUHQW�ZRUN�SDFNDJHV��DSSURDFK���

6

complete process. This is addressed by the SOLVER component. This document is focusing
on the latter component.

The actual location of the services provided by the last two objects may be in separate plug-in
software components or may be provided by the simulator itself. As far as the unit is concerned, it
just sees the objects. A unit does not, of course, have to use the simulator’s thermo and numerics,
if it has them built-in already.

The CO interface system will support the creation and use of these objects. In this way a
compliant simulator can use an external unit operation directly.

������ 0RGHOV

We introduce the 0RGHO� object to embody the general mathematical description of a physical
system. The fundamental building block employed for this purpose is a set of continuous
equations, described by an (TXDWLRQ�6HW�2EMHFW (see section 2.1.8).

However, many physical systems also involve discontinuities (see section 2.1.9.1), and this fact
must be reflected in their mathematical description. Accordingly, a Model may additionally
encompass one or more 6WDWH�7UDQVLWLRQ�1HWZRUNV. These are formal descriptions of discontinuous
phenomena (see section 2.1.9.3).

������ 0DWKHPDWLFDO�3UREOHPV

We are concerned with the solution of three different types of mathematical problems that are
relevant to the operation of flowsheeting packages:

1. The solution of square systems of linear algebraic equations.

2. The solution of square systems of nonlinear algebraic equations.

3. The solution of mixed square systems of ordinary differential and algebraic
equations (DAEs) over time or another independent variable.

All of these problems are relevant to both Sequential/Simultaneous Modular-based and Equation-
based flowsheeting packages.

The solution of systems involving partial differential and/or integral equations, and of
optimisation problems is considered to be outside the scope of the current CAPE-OPEN project.

������ 6ROYHUV

We propose to achieve the above aims by introducing three different classes of object, each
corresponding to one of the problems listed above. In the rest of this document, we will
generically refer to these objects as “6ROYHUV”:

1. The Linear Algebraic Solver (/$6ROYHU) object.

2. The Nonlinear Algebraic Solver (1/$6ROYHU) object.

3. The Differential-Algebraic Equation Solver ('$(6ROYHU) object.

7

Each of these contains both the data that characterise the corresponding mathematical problem
DQG the numerical algorithms that solve this problem.

������ 6ROYHU�0DQDJHU

In addition to the three types of Solvers, we introduce one “manager” class. This is used to create
Solvers using information that defines the mathematical problem to be solved by each such
instance.

������ 7KH�(TXDWLRQ�6HW�2EMHFW

The definition of large sets of nonlinear equations of any kind generally requires a large amount of
relatively complex data. This has led us to introduce the concept of an (TXDWLRQ�6HW�2EMHFW (ESO)
as a means of defining this information in a way that can be accessed and used by instances of
NLASolvers and DAESolvers. The structure of the ESO is, therefore, central to the interface
definitions which are the ultimate goal of this work.

The Equation Set Object is an abstraction representing a square or rectangular set of equations.
These are the equations that define the physical behaviour of the process1 under consideration, and
which must be solved within a flowsheeting problem. The interface to this object is intended to
serve the needs of the various solver objects by allowing them to obtain information about the size
and structure of the system, to adjust the values of variables occurring in it, and to compute the
resulting equation residuals and, potentially, other related information (H�J� partial derivatives).
Hence, this interface requires standardisation as part of CAPE-OPEN. However, the FRQVWUXFWLRQ
of such an object will be a proprietary matter for individual vendors of flowsheeting packages and
will QRW be standardised as part of CAPE-OPEN.

More specifically, an ESO will support a number of operations including the following:

• Obtain the current values of a specified subset of the variables.

• Alter the values of any specified subset of the variables.

• Compute the residuals of any specified subset of the equations at the current variable
values.

• Obtain the partial derivatives of a specified subset of the equations with respect to a
specified subset of the variables (at the current variable values of the object).

The information associated with an ESO differs depending on whether the set of equations being
described is purely algebraic (as is the case with the NLASolver class mentioned above) or mixed
differential and algebraic (as in the case of DAESolver). For this reason, we introduce a hierarchy
of ESOs. At present, this hierarchy comprises three classes:

��� Class $OJHEUDLF(62 defines a linear system of equations.

1 Here, the term “process” may mean the entire plant being modelled, a plant section or, indeed, a single unit
operation or part thereof.

8

��� Class 'LIIHUHQWLDO$OJHEUDLF(62 inherits from class AlgebraicESO and refines it to
define a mixed set of differential and algebraic equations.

An underlying assumption throughout this document is that we are often dealing with large, sparse
mathematical systems. Hence the exploitation of sparsity is an important consideration.

������ 'HVFULSWLRQ�RI�'LVFRQWLQXRXV�3URFHVVHV

The ESO is a purely continuous mathematical description; this means that the equations it
contains have the VDPH�form for all possible values of the variables occurring in them.

However, our best understanding of a number of common process phenomena is based on
GLVFRQWLQXRXV descriptions. As mentioned earlier, the Model concept used to represent nonlinear
algebraic and differential problems contains an ESO of the appropriate type and may also carry
additional discontinuous information in the form of one or more State Transition Networks (the
States of which are defined through further Models). As we will see, this permits complex
hierarchies of discontinuous behaviour to be represented in a natural way.

However, it is worth stating at the outset that it is QRW our intention to require all solvers for these
types of problem to include algorithms for handling discontinuous problems. The design of the
Model object is such that it is a simple matter for codes which lack such facilities to check
whether any STNs are in fact present, and to report a failure if so.

�������� 2ULJLQV�RI�GLVFRQWLQXLWLHV�LQ�SK\VLFDO�GHVFULSWLRQV
There are many examples of process phenomena that are commonly described in a discontinuous
manner. These include:

• appearance and disappearance of thermodynamic phases;

• transitions of flow regimes from laminar to turbulent, and vice-versa;

• changes in the direction of flow, and their consequences;

• changes in flow due to discontinuities in equipment geometry (e.g. position of
overflow pipes);

• equipment breakdown.

Additional discontinuities may arise as a result of discrete control actions and disturbances
imposed on the process by external agents. However, here we are primarily concerned with
discontinuities in the physical behaviour since it is precisely this behaviour that ESOs are
supposed to describe mathematically.

�������� 0DWKHPDWLFDO�GHVFULSWLRQV�RI�SK\VLFDO�GLVFRQWLQXLWLHV
The mathematical descriptions of physical discontinuities is itself discontinuous. Early modelling
tools described such discontinuities via the use of conditional equations typically defined using
IF/THEN/ELSE constructs. Each such conditional equation has one of two different forms
depending on the value (TRUE or FALSE) of a logical condition. The latter is itself expressed in
terms of the values of the system variables.

9

As an example, consider the friction factor I for flow in a pipe. This is a different function of the

Reynolds number Re depending on whether the flow is laminar or turbulent. Mathematically, this
effect is described by the following conditional equation:

IF Re < 2100 THEN

Re

16=I

ELSE











+−=

7.3

/

Re

26.1
log4

1
10

'

II

ε

Albeit by far the simplest mechanism for specifying discontinuous equations, IF/THEN/ELSE
equations are not sufficiently general for the description of the range of phenomena occurring in
chemical processes. For instance, they are unable to describe:

• Asymmetric discontinuities such as the hysteresis phenomena that occur in the
opening and closing of safety relief valves; such valves tend to open at a higher
pressure than the one at which they actually close.

• Irreversible discontinuities such as those occurring when equipment breaks down
when certain operating limits (e.g. pressure) are reached; in most cases, the
breakdown, once it occurs, cannot be reversed even if the operating conditions revert
to their normal ranges.

For this reason, our description of discontinuities is based on a more general formalism, called
6WDWH�7UDQVLWLRQ�1HWZRUNV.

10

�������� 6WDWH�7UDQVLWLRQ�1HWZRUNV

)LJXUH�������([DPSOH�RI�D�6WDWH�7UDQVLWLRQ�1HWZRUN

For the purposes of this document, a State-Transition Network (STN) is simply a description of a
discontinuous equation or set of equations.

An example of an STN is shown in Figure 2-1. Each STN comprises two types of information, a
set of VWDWHV2 and a set of WUDQVLWLRQV from one state to another.

A state in an STN corresponds to one of the operating regimes of a discontinuous phenomenon.
So, for instance, the STN describing the flow regime in a pipe would typically have two states
corresponding to the laminar and turbulent regimes respectively.

In fact, IF/THEN/ELSE conditional equations (see section 2.1.9.2) are special cases of STNs in
which, for any pair of states V and ’V , both transitions ’VV → and VV →’ occur and the logical
condition associated with the former transition is the negation of that associated with the latter.
Thus, the STN describing the friction factor equation discussed in section 2.1.9.2 is shown in :

2 The states in a STN are also sometimes called “modes” in order to avoid confusion with the
term “states” used in control theory.

11

More formally, each state V�in an STN is characterised by:

• A set of equations

• A (possibly empty) set of transitions to other states.

At any particular point in time, H[DFWO\� RQH state in an STN is designated as being DFWLYH. In
physical terms, this implies that the process behaviour satisfies the equations in that state.

Each transition (V�V¶) in an STN is characterised by:

• A start state, V

• An end state, V¶

• A logical condition.

If, at a certain point in time, a state V of the STN is active DQG the logical condition associated with
a transition (V�V¶) becomes TRUE, then the transition (V�V¶) takes place, i.e. state V stops being
active and state V¶ becomes active.

In the interests of simplicity, all STNs used for the purposes of CAPE-OPEN will satisfy the
following assumption:

• All equations and logical conditions are expressed in terms of (subsets of) the VDPH
set of variables.

�������� 6WDWH�7UDQVLWLRQ�1HWZRUNV�LQ�0RGHOV
Each Model contains exactly one ESO, and zero or more STNs. Thus, the complete set of
equations which is applicable at any particular point in time comprises:

• the equations in the top level Model’s own ESO;

• the equations in the active state of each of its constituent STNs.

Conversely, the equations associated with each state in an STN are themselves described by a
Model.











+−=

7.3

/

Re

26.1
log4

1
10

'

II

ε

Re

16=I

2100Re ≥

2100Re <

12

The relation between STNs and Models is, therefore, recursive. This allows for the nesting of
discontinuous equations to an arbitrary number of levels.

An underlying assumption is that a Model’s own ESO of and all the ESOs describing the states of
all STNs contained within it share the VDPH set of variables. Albeit not necessary, this assumption
obviates the need for complex mapping mechanisms between different sets of variables; it also
happens to be satisfied by most typical cases where descriptions of discontinuous phenomena
occur within process models.

�������(YHQWV�DQG�(YHQW,QIRV

As has already been mentioned in section 2.1.9.3, each transition in an STN is characterised by a
logical condition that determines if and when the transition will take place. Such a transition
constitutes an HYHQW.

Another type of event occurs when a dynamic simulation terminates once it has reached a
specified time or when the system fulfils a specified condition.

It is important to provide formal mechanisms for representing such events and, in particular, the
logical conditions that define them.

Moreover, in designing an object to represent these conditions, it is important to identify the
amount and type of information that must be provided to client software regarding them. Clearly,
such decisions depend crucially on the type of usage that is envisaged for these conditions by, for
instance, numerical solvers3.

It is important to understand that the above logical conditions may be quite complex. For instance,
a transition within an STN could be triggered by a logical condition of the form:

[]][][][322
2
1

2
3

2
2

2
1 [[[[[[[≥∧≤¬∨≥+

where 2[, 2[and 3[are real-valued variables, and the symbols ∨ , ∧ and ¬ denote the OR,

AND and NOT logical operators.

Most of the older numerical codes for the simulation and optimisation of processes involving
discontinuities required only the HYDOXDWLRQ of complex logical expressions such as the above for
given values of the variables occurring in them. Consequently, a simple interface that would
return the value (TRUE or FALSE) of a specified logical condition at the current values of the
ESO’s variables would be sufficient in this case.

However, more modern solution methods derive their improved reliability and efficiency from the
availability of more information on each logical condition. For example, if the above logical
condition were to change value (from TRUE to FALSE, or vice-versa) at a particular point in time,
these methods would need to know H[DFWO\�ZKLFK of the three logical subexpressions:

3 Already similar decisions have been made implicitly in the design of the basic ESO. In that case, it was
deemed appropriate that the ESO should provide numerical values for the residuals of its equations and their
partial derivatives, as well as information on the structure of these equations. On the other hand, it was not
thought necessary to provide information on the symbolic form of these equations.

13

2
3

2
2

2
1 [[[≥+ , 2

2
1 [[≤ , 32 [[≥

was the one that changed value, thereby causing the change in the value of the overall logical
expression. The solution method would also need to know other information on this particular
sub-expression, such as the set of variables that appear in it, and its partial derivatives with respect
to these variables.

Our aim is to accommodate the requirements of the modern solution methods without resulting in
an excessively complex interface. This is particularly important as simpler methods are still being
used by many of the currently available tools. As a compromise, the proposed interface supports
arbitrarily complex logical conditions involving any combination of the ∨ , ∧ and ¬ operators
while imposing the following restriction:

• All lowest level logical sub-expressions in a logical expression are of the form:

N[
L

< , N[
L

> , N[
L

≥ or N[
L

≤

where
L
[is any one of the variables occurring in the ESO.

This assumption is not actually as restrictive as might first appear. For instance, the logical
condition shown above could be expressed as:

[]]0[]0[]0[654 ≥∧≥¬∨≥ [[[

where we have introduced three new variables 4[, 5[and 6[defined via the three additional

equations:

2
3

2
2

2
14 [[[[−+≡ , 2

2
15 [[[+−≡ , 326 [[[−≡

��������� (YHQWV
The main advantage of introducing the above restriction is that it permits the representation of any
logical condition by an object known as an (YHQW with a relatively simple interface. The event
class has three subclasses deriving from it:

• %DVLF(YHQW, containing a variable index L , an operator RS and a constant real

value N . This represents the lowest level condition NRS[
L

, where RS must be

either <, >, ≥ or ≤ .

• &RPSRVLWH(YHQW, containing a boolean operator (AND, OR or NOT) and two
subevents (only one of which is meaningful in the case of NOT).

• ,QG9DU(YHQW, containing an independent variable value. This type of event
represents the most common type of termination condition when solving DAE
problems.

Thus, consider the following examples:

• The BasicEvent

(3, ≥, 0)

14

denotes the condition 03 ≥[.

• The CompositeEvent

[OR, BasicEvent(1, ≥ , 0),

 CompositeEvent(NOT, BasicEvent(2, ≥ , 0) , ...)]

denotes the condition)0()0(21 ≥¬∨≥ [[(i.e. “ 1[non-negative or 2[
negative”).

The pseudocode which follows illustrates how these sequences can be evaluated by a simple
recursive routine. We assume that the current variable values are held in the global vector x,and
introduce enumerated types with value sets (BASIC, COMPOSITE, INDVAR), (GEQ, NEQ), and
(AND, OR, NOT) to represent the values of the Event types, the relational operators and the
boolean operators respectively.

Boolean function eval(Event* event)

 If event->type==BASIC THEN

 If event->op==GEQ THEN

 Return (x[event->index]>=event->value)

 Else

Return (x[event->index]<=event->value)

 End

 Else

 Case (event->operator)

AND: Return eval(event->ev1) AND

 eval(event->ev2);

OR: Return eval(event->ev1) OR

 eval(event->ev1);

NOT: Return NOT eval(event->ev1);

 End

 End

End

15

��������� (YHQW,QIRV
The occurrence of events is a very important aspect of (especially dynamic) process simulation. If,
during the solution process, a Solver object detects an Event associated with the termination of the
dynamic simulation, then it naturally has to return control to its client, with some indication of the
value of the independent variable (usually time) at which the Event has occurred. Since there may
be PXOWLSOH termination events, the Solver also has to indicate which event(s) have actually
triggered the termination.

On the other hand, if a Solver detects that an Event associated with an STN transition has taken
place, then it essentially has WZR options: HLWKHU handle the event itself RU return control to its
client so that the latter can take some necessary action. Clearly, for this action to be possible, the
Solver has to return some information on the events that have actually taken place. In addition to
the information associated with termination events, the Solver needs to identify the STN involved
and the new state.

We thus define a new class, (YHQW,QIR, to carry the information associated with the occurrence of
an event. It has two sub-classes ([WHUQDO(YHQW,QIR and ,QWHUQDO(YHQW,QIR deriving from it, because
the type of information to be conveyed is rather different in the two cases.

Specifically, when an LQWHUQDO event occurs, the Solver (either an NLASolver or a DAESolver)
PD\�return control to the client software reporting the event, in which case the client software will
wish to identify the STN concerned, and the new state to which transition is due to occur. At this
point the client software would probably set the STN to the new state, reinitialise the Model in
order to obtain variable values consistent with the new set of equations which are now active, and
make a further call to the Solver. However, advanced solvers which are able to perform all these
actions internally, are not required to return control to the calling routine (although they should
call their ReportingInterface routine before and after the discontinuity).

However, when an external event occurs, the Solver (which will be a DAESolver in this case)
PXVW return control to the client signalling that the event has occured, and in this case the
information desired by the client will be an indication of which of the externally specified
termination conditions has arisen.

�������2YHUYLHZ�RI�7\SLFDO�8VDJH

We will now give a broad outline of the mathematical problems addressed by the two main types
of flowsheeting package, namely Modular and Equation-based, highlighting the deployment of the
various classes of objects that were introduced and their interactions.

We consider dynamic simulation as an example because it incorporates most of the behaviour
relevant to the interface.

��������� 0RGXODU�%DVHG�'\QDPLF�6LPXODWLRQ
Performance of a dynamic simulation in a “typical” modular package may be summarised as
follows:

1. Set time to zero and guess torn streams.

2. Ask each unit to initialise itself, using the sequence implied by the torn streams. As
part of this initialisation, the unit will create a square DifferentialAlgebraicESO
describing its own dynamic behaviour. It will then pass a Model containing this
DifferentialAlgebraicESO to a SolverManager to create a DAESolver.

16

3. Check convergence of torn streams, repeating step 2 if necessary.

4. WHILE not finished DO:

4.1 Predict the inputs X W() for all streams.

4.2 For each unit in the sequence, advance solution from W to W + δ to obtain the
computed stream values \ . This is the main role of each unit’s individual
DAESolver.

4.3 If, for any tear stream N , the predicted input X
N
 differs from the computed

input \
N
 by more than a tolerance ε , reduce δ and repeat from step 4.1.

5. STOP.

��������� (TXDWLRQ�%DVHG�'\QDPLF�6LPXODWLRQ
The performance of a dynamic simulation in a “typical” equation-based package may be
summarised as follows:

1. Form a single square4 DifferentialAlgebraicESO { }I representing the equations and
variables gathered from all the units.

2. Given a set of initial conditions{ }J 5, combine these with the original equations }{ I
to form an augmented square AlgebraicESO }{ JI 6.

3. Using the AlgebraicESO created at step 2 (enclosed in a Model), employ a
SolverManager to create an NLASolver, and solve the initialisation problem.

4. Using the DifferentialAlgebraicESO created at step 1 (enclosed in a Model), employ a
SolverManager to create a DAESolver.

5. Using the DAESolver created at step 4, advance the solution of the dynamic system
{ }I from the point computed at the last step, until a termination condition or
discontinuity occurs7.

6. If a discontinuity has occurred:

4 L�H�� the number of equations equals the number of variables

5 Here we consider the initial conditions }{J to be general equality relations of the form

() 0)0(),0(=[[J & . The number of such initial conditions will QRUPDOO\ be equal to the number of

differential variables [. However, for DAE systems of index exceeding unity, the number will be smaller.

6 This system is square because the time derivatives &[are treated as separate unknowns to the [variables.
The entire system of equations {I��J} is then considered to be a purely algebraic system for the purposes of
the initialisation calculations.

7 The detection of discontinuities will typically require DGGLWLRQDO information to be provided by the Model.

17

6.1 Construct a new augmented square AlgebraicESO { }I 5 incorporating

continuity or other “junction” conditions5 representing the relations between
the two stages of the simulation before and after the discontinuity.

6.2 By employing a SolverManager, create an NLASolver� using the above
AlgebraicESO (enclosed in a Model) and solve the reinitialisation problem.

6.3 Go to step 5.

7 STOP.

�������/LQHDU�$OJHEUD

As can be seen from the algorithm sketches in sections 2.1.11.1 and 2.1.11.2, the solution of linear
systems is QRW normally a GLUHFW requirement in either type of package. However, such systems
will usually arise as sub-problems in the solution of NLASolvers and DAESolvers. Accordingly,
the latter will themselves have responsibility for instantiating and using appropriate LASolvers.
For this reason, the interface of LASolvers has to be standardised as part of the CAPE-OPEN
activity, and this is why these have been considered in section 2.1.6.

More specifically, we will enable NLASolvers and DAESolvers to carry out the linear algebra
operations that they require by making available to them an LASolverManager which they can
then use to create LASolvers as and when this is necessary.

In order to allow the code which uses these solvers to be written with the greatest possible
generality, we have developed a polymorphic approach to matrices. The top level object involved
in this approach is the 0DWUL[, which has various subtypes derived from it,)XOO0DWUL[�
8QVWUXFWXUHG0DWUL[�and�%DQGHG0DWUL[�. The�0DWUL[object itself has a *HW9DOXHV method which
returns an array of real numbers, but the semantics of this array are dependent on the precise type
of the matrix.

The other methods provided by the 0DWUL[�object itself simply provide the type of the matrix and
its dimensions, as well as two Boolean values, “Symmetric” and “ByRow”. The first of these
indicates whether the matrix is understood to be fully symmetric about the leading diagonal, in
which case the repeated values will be omitted in the result of *HW9DOXHV��The second specifies
whether (in the unsymmetric, structured cases) the ordering of values is by row or by column: in
the former, the values in each row are given in turn (in column order), whereas in the latter the
values for each column are given in turn (in row order).

Detailed explanations of the semantics of *HW9DOXHV for each subtype follow.

��������� �7KH�)XOO0DWUL[�6XEW\SH
This subtype contains no further methods. If “Symmetric” is true, GetValues returns only unique
values, thus (in this diagram and those that follow, the index appearing in each cell indicates that
element’s position in the array returned by GetValues).

8 Other subtypes can be added if a need for them becomes apparent.

18

1 2 3

2 4 5

3 5 6

 Otherwise, if “ByRow” is true, the values are ordered by row:

1 2 3 4

5 6 7 8

9 10 11 12

Otherwise, they are ordered by column.

��������� �7KH�8QVWUXFWXUHG0DWUL[�6XEW\SH
This interface adds the following method:

- GetStructure() : row and column indices of nonzeroes.

If “Symmetric” is true, only the lower or up triangular entries should be defined by this
method.

There is no ordering requirement on the row and column indices.

Thus the following structure:

X 0 0 X

X 0 X 0

0 0 0 X

Could be represented by

Row list:(1,1,2,2,3)

Column list:(1,4,1,3,4)

or

Row list(1,2,3,2,1)

Column list(1,1,4,3,4)

Thus “ByRow” has no meaning for this type: the semantics of GetValues are determined
by the ordering of the lists of indices.

19

��������� ��7KH�%DQGHG0DWUL[�6XEW\SH
This matrix type specifies banded matrices, i.e. those where all nonzeroes occur within some
bandwidth of the leading diagonal. The following method is added:

GetBandWidth() – returns an integer N s.t. no nonzero occurs more than N rows/columns from the
leading diagonal. All values in this band must then be returned by the GetValues method.

For example, if a 3 by 4 matrix has bandwidth 1, and “ByRow” is true, the semantics of GetValue
are:

1 2

3 4 5

6 7 8

while if “ByRow” had been false they would be:

1 3

2 4 6

5 7 8

For symmetric matrices, “ByRow” is irrelevant as for the full case, e.g. 5 by 5 matrix with
bandwidth 2:

1 2 3

2 4 5 6

3 5 7 8 9

6 8 10 11

9 11 12

20

�������'HVLUDEOH�&KDUDFWHULVWLFV�IRU�WKH�&2�,QWHUIDFH

q Minimal performance degradation compared to native simulator facilities.

q Minimal impact on the rest of the simulator: other native facilities do not need any change.

q Extendable without reworking existing facilities.

q No limitations on the data that can be transferred.

q The interfaces generated by all work packages should be consistent in design.

q The approach to units of measure conversion should be handled consistently across all work
packages and with the host simulator.

21

���� 8VH�&DVHV

The next sections formalise the description of the user requirements for solver operations
interfacing in the CAPE-OPEN Interface System, described in the previous section. They provide
a Unified Modelling Language (UML) description of the interfaces, which is the basis for the
software design described in later sections.

The first step in the UML process is to express the user requirements in the form of a Use Case
Model, which is described in this section. It identifies the “users” of the system, called Actors, and
describes, in the form of Use Cases, what they wish the system to do. It also identifies the
boundaries of the system.

The rest of this section lists and describes the Actors and Use Cases involving Solvers.

������ 8VH�&DVHV�&DWHJRULHV

q 6ROYHUV�8VH�&DVHV� Contains all the Use Cases listed in this document.

q *HQHUDO�3XUSRVH�8VH�&DVHV� Use Cases that express a software requirement to handle CAPE-
OPEN Solver Components. These Use Cases do not have a direct impact on the CAPE-OPEN
interfaces, and therefore the requirement does not need to be met by the CAPE-OPEN
interfaces.

q 6LPXODWLRQ� &RQWH[W� 8VH� &DVHV� These are Use Cases that list a sequence of actions,
expressed as requirements, so that a CAPE-OPEN Solver is guaranteed to be correctly
handled in the different simulation environments. Many times these Use Cases do not have a
direct impact on the CAPE-OPEN interfaces, but they represent behavioural requirements on
the process simulator side. Many times they also use or extend other more specific Use Cases
that do have a direct impact on one or more Solver Interfaces.

q 6SHFLILF�8QLW�2SHUDWLRQ�8VH�&DVHV� These are Use Cases that represent behaviours of CAPE-
OPEN Flowsheet Unit components that do have a direct impact on one or several interfaces.

q %RXQGDU\�8VH�&DVHV� These are Use Cases in which a Solver is an actor in other CAPE-
OPEN Use Cases different from those corresponding to Solvers (i.e. THRM or UNIT Use
Cases)

22

������ $FWRUV

q)ORZVKHHW�%XLOGHU� The person who sets up the flowsheet, the structure of the flowsheet,
chooses thermo models and the unit operation models that are in the flowsheet. This person
hands over a working flowsheet to the [Flowsheet user] The Flowsheet Builder can act as a
[Flowsheet User]

q)ORZVKHHW�8VHU� The person who uses an existing flowsheet. This person will put new data
into the flowsheet rather than change the structure of the flowsheet.

q)ORZVKHHW� 6ROYHU� A sub system responsible for converging the flowsheet by iterating the
adjustable variables to meet specified convergence criteria.

 In the modular case, this will be done by iterating the adjustable variables.

 In the equation oriented case, this will be done by performing Newton iteration on a sparse set
of nonlinear equations.

 The function of setting sequencing, nesting of solving sequences and relative convergence
limits will be covered in the Use Cases of the NUMR Work Package. The Flowsheet Solver
would at some point make use of the sequence of computation of the Flowsheet Units.

q 2SWLPLVHU�VXE�V\VWHP� Part of the simulation overall system that is responsible for using an
objective function calculated from the flowsheet in order to search for an optimum. What is
optimised could be one Flowsheet Unit or a whole process. The optimiser may use an
infeasible path method, wherein the optimising and the flowsheet converging are carried on
simultaneously.

q)ORZVKHHW�8QLW� A software representation of a physical unit operation or a non-physical unit
such as a controller or optimiser.

q 6LPXODWRU�([HFXWLYH� That part of a simulator whose job it is to create or load a previously
stored flowsheet, solve it and display the results.

q 5HSRUWLQJ�VXE�V\VWHP� This is a part of the Simulator Executive that reports on the outcome
of the calculation of the flowsheet. It reports on the state of the streams and units involved in
the flowsheet. Note: reporting is done in different ways. Some reporting is done directly by
the unit operation on a request from the Simulator Executive. In addition, reporting is done by
passing some values from the unit to the reporting system which has a generalised report
generating capability.

q 6ROYHU� 0DQDJHU� A subsystem that handles the selection and configuration of solver
“factory” components.

q 1/$(� 6ROYHU�� � A solver responsible for converging a system of nonlinear algebraic
equations.

q '$(�6ROYHU��A solver responsible for advancing the solution of a system of DAEs over the
domain of a single independent variable.

23

������ 8VH�&DVHV

This subsection lists all the Use Cases that are relevant for the Solver Interfaces.

�������� 6ROYHU�6HOHFWLRQ��,QVWDQWLDWLRQ�DQG�&RQILJXUDWLRQ

Use Case Diagrams

Flowsheet Builder

Flowsheet Unit

Select Numerical Code

Unit Selects Numerical Code
O

Configure Numerical Code
O O

24

2.2.3.1.1 Select Numerical Code (ref. UC-41-001)
Actors� <Flowsheet Builder>, <Simulator Executive>, <Solver Manager>

Classification: <Solvers Use Cases>, <General Purpose Use Cases>, <Simulation Context Use
Cases>

Status:

Pre-conditions:

q <There must be at least one registered solver of the specified type>

q <A complete flowsheet has been defined>

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Builder requests the Simulator Executive to carry out a simulation or
optimisation.

 If no solver for this type of calculation has yet been configured, the Simulator Executive
asks the Solver Manager for the list of the numerical codes (H�J� DAE solvers) available
on the system which are applicable to this task.

 The Simulator Executive then displays this list to the Flowsheet Builder who selects the
code to be used. The [Configure Numerical Code] Use Case is then applied.

 Post-conditions:

q <selection succeeded>

 <…>

 Exceptions:

q <selection failed>

 Subordinate Use Cases:

 [Configure Numerical Code (ref. UC-41-003)]

25

2.2.3.1.2 Unit Selects Numerical Code (ref. UC-41-002)
Actors� <Flowsheet Unit>, <Simulator Executive>, <Solver Manager>, <Flowsheet Builder>,
<Flowsheet User>

Classification: <Solvers Use Cases>, <General Purpose Use Case>, <Simulation Context Use
Case>

Status:

Pre-conditions:

q <There must be at least one registered solver of the specified type>

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Unit requests from the Solver Manager a list of numerical codes that are
appropriate for its purpose. For example, a steady-state flash unit model will typically
require the solution of a system of nonlinear algebraic equations; it will therefore request
a list of codes for this purpose. On the other hand, a steady-state tubular reactor model
may require the solution of a set of differential and algebraic equations over a spatial
domain, and would therefore request a list of available DAE integration codes.

 The Flowsheet Unit then selects a code from the list itself RU�prompts the Flowsheet
Builder/User for a choice. The Solver Manager creates an instance of this code. The
[Configure Numerical Code] Use Case is then applied.

 Post-conditions:

q <selection succeeded>

 <…>

 Exceptions:

q <selection failed>

 Subordinate Use Cases:

 [Configure Numerical Code (ref. UC-41-003)]

26

2.2.3.1.3 Configure Numerical Code (ref. UC-41-003)
Actors� <Solver Manager>

Classification: <Solvers Use Cases>, <Simulation Context Use Cases>

Status:

Pre-conditions:

q <A solver has been selected>

 Flow of events:

 %DVLF�3DWK�

The Solver Manager asks the Solver for a list of its parameters: each of which will have
a name, a type, a default value and a valid range (for real values).

It PD\� then provide this list to the user to give him/her the opportunity to override the
default values.

 Post-conditions:

q <Parameter list obtained>

 <…>

 Exceptions:

q <Required parameter missing>

 Subordinate Use Cases:

 None

27

�������� 6ROYHU�,QLWLDOLVDWLRQ

Use Case Diagrams

Flowsheet Unit

Unit Defines Linear
Equations to be Solved

Unit Defines Non-Linear
Equations to be Solved

Unit Defines DAEs
to be Solved

Flowsheet Solver

Eliminate Degrees
of Freedom

Identify Global System
To Be Solved

28

2.2.3.2.1 Unit Defines Linear Equations to be Solved (ref. UC-41-004)
Actors� <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q <A Linear Solver has been selected and an instance of it has been created and configured.>

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Unit provides its Linear Solver with the structure of a matrix $ in the
equation E$[= .

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

29

2.2.3.2.2 Unit Defines Nonlinear Equations to be Solved (ref. UC-41-005)
Actors� <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

 < A Nonlinear solver has been selected and an instance of it created and configured. >

 Flow of events:

 %DVLF�3DWK�

 Summary: The Flowsheet Unit identifies a subset of its equations and variables as a
nonlinear problem, and sets up a Nonlinear Solver to handle this problem during
execution.

 The Flowsheet Unit creates a square set of equations based on 1 of its equations and 1
of its variables. It also generates, or otherwise obtains, initial guesses for all unknowns.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

30

2.2.3.2.3 Unit Defines DAEs to be Solved (ref. UC-41-006)
Actors� <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

 < A DAE Solver has been selected and an instance of it created and configured. >

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Unit identifies a subset of its equations and variables as a differential-
algebraic problem, and sets up a DAE Solver to handle this problem during execution. It
also generates or otherwise obtains initial guesses for all unknowns.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

31

2.2.3.2.4 Identify Global System to Be Solved (ref. UC-41-007)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Solver identifies the global lists of variables and equations. It normally
does this by concatenating the sets of equations and variables in the units of the
flowsheet, and adding appropriate connectivity information. At this stage, it may also
request the Flowsheet Units to provide suitable initial guesses for their variables.

 Note: the resulting global set of equations is usually rectangular, involving more
variables than equations.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

32

2.2.3.2.5 Eliminate Degrees of Freedom (ref. UC-41-008)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

 The Flowsheet Solver fixes the values of variables which the Flowsheet Builder wishes
to be regarded as fixed/known for the present calculation. Thereafter these variables are
no longer present in the global variable list. The global variable list should be the same
length as the global equation list should be square when this process is complete.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <Discover inconsistencies in the degrees of freedom specification.>

 Subordinate Use Cases:

 None

33

�������� 6ROYHU�([HFXWLRQ

Use Case Diagrams

Converge
Non Linear Problem

Flowsheet Solver

Unit Requests Solution
of Unit EquationsFlowsheet Unit

Advance
DAE SolutionDAE Solver

34

2.2.3.3.1 Unit Requests Solution of Unit Equations (ref. UC-41-009)
Actors� <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < An appropriate solver has been selected, instantiated, configured and initialised.>

 Flow of events:

 %DVLF�3DWK�

The Flowsheet Unit requests that the numerical method solves the unit equations.

 Post-conditions:

q <Unit equations solved>

 <…>

 Exceptions:

q < Various types of numerical failure may occur. >

 Subordinate Use Cases:

 None

35

2.2.3.3.2 Converge Nonlinear Problem (ref. UC-41-010)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < The global equation and variables sets have been constructed. >

q < An appropriate solver has been selected, instantiated, configured and initialised.>

 Flow of events:

 %DVLF�3DWK�

The Flowsheet Solver requests that the numerical method solves the flowsheet
equations�

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

36

2.2.3.3.3 Advance DAE Solution (ref. UC-41-011)
Actors� <DAE Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

The DAE Solver carries out steps in the independent variable. It interacts with the global
differential-algebraic equation and variable sets as follows :

1) it changes the variable values

2) it requests residual values corresponding to the latest variable values it has supplied

3) it checks for any conditional equations changing their branch.

4) solution must advance exactly to the point where the termination condition is
satisfied or a discontinuity occurs (whichever is first).

The termination condition will be provided by the Simulator Executive. It will consist
either of an explicit target value of the independent variable, or a condition on a
particular variable value.

A discontinuity will result when a conditional equation has changed branch.

The numerical method will involve an iterative procedure. This is likely to make use of a
Sparse LAE Solver. It could instead use a NLAE Solver.

Note : this use case is written only for EO simulators.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 None

37

�������� 0RUH�&RPSOH[�8VH�&DVHV

Note : These use cases have been broken into smaller ones. They should not imply any
new use case.

Use Case Diagrams

Perform SM
Steady-State SimulationFlowsheet

 Solver

Perform EO
Steady-State Simulation

S

Perform EO
Dynamic Simulation

38

2.2.3.4.1 Perform EO Steady-State Simulation (ref. UC-41-012)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

The Flowsheet Solver applies the [Identify Global System To Be Solved] Use Case.

If there are any differential variables in the global system, the Flowsheet Solver adds
equations setting to zero the derivative of each with respect to the independent variable
(time).

The Flowsheet Solver applies the [Eliminate Degrees of Freedom] use case to generate a
Nonlinear Problem from the global system.

The Flowsheet Solver then applies the [Converge Nonlinear Problem] use case.

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 [Identify Global System to Be Solved (ref. UC-41-007)]

 [Eliminate Degrees of Freedom (ref. UC-41-008)]

 [Converge Nonlinear Problem (ref. UC-41-010)]

39

2.2.3.4.2 Perform SM Steady-State Simulation (ref. UC-41-013)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

>7R�%H�&RPSOHWHG@

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 []

40

2.2.3.4.3 Perform EO Dynamic Simulation (ref. UC-41-014)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

< The Flowsheet Builder/User has provided the following information to the Simulator
Executive:

1) initial conditions

2) time varying information (H�J� scheduled changes in input values)

3) a termination condition>

 Flow of events:

 %DVLF�3DWK�

The Flowsheet Solver applies the [Identify Global System To Be Solved] use case to
construct the system of equations }{ I which represents the dynamic system, L�H� those
equations which apply at all values of the independent variable.

The Flowsheet Solver merges this system }{ I with the initial conditions }{J provided

by the Flowsheet Builder to create an augmented global system { }I J for the
initialisation.

The Flowsheet Solver applies the [Eliminate Degrees of Freedom] use case to generate a
Nonlinear Problem from the augmented global system.

The Flowsheet Solver then applies the [Converge Nonlinear Problem] use case.

The Simulator Executive then enters a loop in which :

1) It instructs the DAE Solver to apply the [Advance DAE Solution] use case to
advance to the next discontinuity or to the end of the simulation.

2) If a discontinuity is encountered, it asks the Flowsheet Solver to compute the state of
the system immediately after the discontinuity (“reinitialise”). The Flowsheet Solver
may do this by :

• Merging the dynamic global system }{ I with continuity conditions }{K (which usually
equate the differential variables in their system to their values immediately before the
discontinuity) to represent the reinitialisation problem

• Applying the NonLinear Solver to this problem.

The loop terminates when an error occurs or the termination condition is satisfied.

41

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

[Identify Global System to Be Solved (ref. UC-41-007)]

[Advance DAE Solution (ref. UC-41-011)]

[Eliminate Degrees of Freedom (ref. UC-41-008)]

[Converge Nonlinear Problem (ref. UC-41-010)]

42

2.2.3.4.4 Perform SM Dynamic Simulation (ref. UC-41-015)
Actors� <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

q < >

 Flow of events:

 %DVLF�3DWK�

>7R�%H�&RPSOHWHG@

 Post-conditions:

q <>

 <…>

 Exceptions:

q <>

 Subordinate Use Cases:

 []

43

�� $QDO\VLV

���� 2YHUYLHZ

We have defined three separate components in this specification. In particular we have introduced
a separation between WKH�PRGHO (Model Component), WKH� VHWV�RI� HTXDWLRQV (ESO Component)
and WKH�VROYHU itself (Solver Component).

1. The Model describes the physical problem and models the behaviour of a unit or a
complete flowsheet, including the physical discontinuities using states and
transitions.

2. The ESOs are sets of equations that describes mathematically the continuous part of a
particular model or subparts of that model.

3. The Solver itself is responsible of driving the resolution of the problem using all the
information defined in the model.

Inside the Solver Component we have defined three main types of solvers which
can be further refined in more specific subtypes :

• The Linear Algebraic Solver (LASolver)

• The Nonlinear Algebraic Solver (NLASolver)

• The Differential Algebraic Equation Solver (DAESolver)

Each solver type can of course use some of the other types inside that component in
order to solve some sub-problems. For example a typical use would be a DAESolver
instance creating an instance of a NLASolver for solving some part of the problem
or an NLASolver instance using an LASolver.

44

���� &RPSRQHQW�'LDJUDP

In this diagram we have tried to represent the various dependencies between the different
components used during a simulation. In our case the UO or the Executive Simulator are clients of
both the Model and the Solver, which in turn are making use of the ESO as a common resource.

The interfaces needed between these three components in order for them to communicate and
exchange their information are described further in the chapter "Interface description".

UO Component

Solver
Component

Simulator
Executive

Phys ical Properties
Component

Therm odynamic
Component

Component Dependencies

ESO
Component

Model
Component

SMST
Com ponent

Param eter Service Report Service Identifi cat ion Servi ce

�)LJXUH�������3DFNDJH�GHSHQGHQFLHV�EHWZHHQ�&RPSRQHQWV

45

&ODVV�'LDJUDPV

According to our package decomposition, we have defined three class diagrams, one for each
package. In these class diagrams, you will also find some specific data types or classes that are
implementation dependent and that should not be part of the interface diagram itself. They are
there only as an example to promote a better understanding of each diagram.

On the contrary there is some other types, or classes, that are common to different packages (some
of them could even be shared throughout the whole CapeOpen project).

Among them we have defined the following classes or data types :

1. The class 0DWUL[� which can be further refined if needed into subclasses like FullMatrix,
SparseMatrix, BandedMatrix, etc.

2. The class 3K\VLFDO9DULDEOH which describes the different variables of the Unit Operation
or of the Simulator Executive. These variables are used by a Model.

3. The class (YHQW with its different subclasses (BasicEvent, CompositeEvent, BinaryEvent,
UnaryEvent).

4. The type 3XEOLF3DUDPHWHU which holds information on any parameter in general.

5. The type 1XPHULF9DULDEOH is a type that holds the different values for each variable.

All the classes will be described with the interface description of the component where they are
used, but the types will be defined in a separate chapter because they can be used in different
interfaces.

46

������ &ODVV�'LDJUDP�RI�WKH�8QLW�3DFNDJH

The Unit Operation is not part of this specification, but for a better understanding of the
relationships between the UO and the other components, we have included here a simplified
representation of this class diagram.

8�2���3$&.$*(

Model Component
(f rom Logical View)

Solv er Component

(f rom Logical View)

Material

GetTPComposition()
Material()

UO Factory

0RGH O

Port

Port()
GetConnectedObject()
Connect()
Disconnect()
GetPortTy pe()
GetDirection()

0..1

1

0..1

1

,Q2XW

Public Parame ter

Name
Description
Lower Bound
Upper Bound
Def ault Value
Current Value

(from Log ical View)

Solv er

(from So lver

8QLW�2SHUDWLRQ

1..*1..*

PDQDJHV

1..*1..*2ZQV

1..*1..*

,Q

1..*1..* 2XW

&DOFXO DWHV�ZL WK

)LJXUH�������6LPSOLILHG�GLDJUDP�RI�WKH�8QLW�2SHUDWLRQ

47

������ &ODVV�'LDJUDP�RI�WKH�0RGHO�3DFNDJH

Solver
C(from Logical View)

ESO
C(from Logical View)

Solver
(from Solver

UO Component
(from Logical View)

Simulator
E i(from Logical View)

02'(/�&20321(17

Continuous Model

Binary
E

GetLeftOperand()

Unary Event

Composite
E

GetRightOperand()
GetLogicalOperator()

Event Info

QueryKind()
GetSubEvent()
GetEvent()

Event

Eval()
QueryType()

+1 or 2

1..*1..*

Model Manager

CreateModel()

Unit Operation

Client

Aggregate Model

GetModelList()
SetConnectionEquation(
)

(62

Public Parameter
Name
Description
Lower Bound
Upper Bound
Default Value
Current Value

Numerical Variables Set
(from

Numerical Variables Set
(from

External Evt
I f

Hierarchical Model

GetSTNList()

Transition
Event

GetEvent()
EvalCondition()

+Internal Evt

7ULJJHUHG

0RGHO

GetParameterList()
SetParameter()
SetVariablesIndex()
SetFixedVariables()
SetInitialVariables()
SetIndependentVar()
SetAllDerivatives()
AddExternalEvent(
)GetActiveESO()
GetActiveEvents(
)SetCommonESO()
Destroy()
GetCommonESO()
SetActiveESO()

0..*0..*

PDQDJHV

1..*1..*

2ZQV

11

6SHFLILF�RU�&RPPRQ

1..*1..*

11
$FWLYH�*OREDO�(62

1..*1..*

0\�SDUDPHWHUV

+Global Var Set

'HULYDWLYH�9DU�6HW

1..*1..*

State Transition
N k

SetCurrentState()
GetCurrentState()
GetParentModel()
GetPossibleTransitions()
GetStateTransitions()
GetStateList()
GetStateModel()
MovetoNextState(
)

1..*1..*

State

GetModel()
GetPossibleTransitions()

1..*1..* 6WDUW

1..*1..* (QG

11

6WDWH0RGHO

1..*

+State Chart

1..* 1

1

+Current State

1

1

Internal Evt
I f

GetSTN()
GetToState()

1..*

+STN

1..* &XUUHQW�6WDWH�(YWV�/LVW

+EndState

Uses

Numeric Variable
GeneralIndex
Value
State

1..*1..*

0..*0..*

+Independant
V

Physical Variable

GetName()
GetDescripton()
GetGeneralIndex(
)GetDimension()
GetUnit()
GetLowerBound()
GetUpperBound()
GetDefaultValue()

1..*1..*

Basic Event

GetVariable()
GetValue()
GetLogicalRelation()

)LJXUH�������&ODVV�GLDJUDP�RI�WKH�0RGHO�SDFNDJH

48

M0 : Aggregate
Model

671������6WDWH
7UDQVLWLRQ�1HWZRUN

671������6WDWH
7UDQVLWLRQ�1HWZRUN

39����3K\VLFDO
9DULDEOH

M1.2.m : Continuous
Model

39��������3K\VLFDO
9DULDEOH

M2 : Continuous Model

$FWLYH�(62����*OREDO�'$(�(62

6SHFLILF�(62�0�����
��1�/�$���(62

M1 : Hierarchical
Model

39����3K\VLFDO�9DULDEOH

State M1.1.1 :
Continuous Model

State M1.1.2 :
Continuous Model

6SHFLILF�(62
0��������1�/�$�

NV0 : Numeric
Variable

$FWLYH�6SHFLI�(62
0����[���1/$�6ROYHU

6SHFLILF�0��(62���/�$�
(62

M NV1.1.1 : Numeric
Variable

&RPPRQ�(62����
1�/�$���(62

&RPPRQ�(62���
/�$��(62

196HW����1XPHULFDO
9DULDEOHV�6HW

NV1.1.1 : Numerical
Variables Set

F

F

F

F

F

)LJXUH�������6DPSOH�RI�D�0RGHO�LQVWDQFLDWLRQ

49

������ &ODVV�'LDJUDP�RI�WKH�(62�3DFNDJH

P Equations
N Variables
NxP Jacobian

6ROYHU

(62��&20321(17

Matrix

GetNumCols()
GetNumRows()
GetValues()
QuerySymmetric()
QueryOrdering()
QueryType()

Full MatrixUnstructured Matrix

GetStructure()

Global LA ESO

N.L.A. ESO

Global NLA ESO

L.A. ESO

SetRHS()
SetLHS()
GetRHS()
GetLHS()

Global DAE ESO

Model Component
(from Logical View)

Solver Component
(from Logical View)

ESO Manager

CreateESO()

Global ESO

GetListofESOs()
SetListofESOs()

Public Parameter

Name
Description
Lower Bound
Upper Bound
Default Value
Current Value

(62

SetVariableIndex()
GetNumVars()
GetNumEqns()
GetLowerBounds()
GetUpperBounds()
SetFixedVariables()
SetVariables()
GetVariables()
GetAllResiduals()
GetResiduals()
GetJacobianStruct()
GetJacobianValues()
GetParameterList()
GetAllVariables()
SetParameter()
SetAllVariables()
GetAllJacobianValues()
Destroy()

0..*0..*

PDQDJHV

1..*

+Elementary ESO

1..*

access

1..*1..*

0RGHO
$FWLYH�*OREDO�(62

6SHFLILF�RU�&RPPRQ

Physical Variable

Numerical Variables Set
(from Logical

+Square Var Set

3[3

DA ESO

GetDiffJacobianValues()
GetDiffJacobianStruct()
GetDerivatives()
GetIndependentvar()
SetIndependentVar()
GetAllDerivatives()
SetAllDerivatives()
GetAllDiffJacobianValues()

Numerical Variables Set
(from Logical

+Original Var Set

1[3

Numerical Variables Set

(from Logical

+Derivatives Set

Numeric Variable
GeneralIndex
Value
State

1

1..*

+Var

1

+Values

1..*

1..*1..*

+Independant Var

1..*1..*

Banded Matrix

GetBandWidth()

)LJXUH�������&ODVV�'LDJUDP�RI�WKH�(62�&RPSRQHQW

50

������ &ODVV�'LDJUDP�RI�WKH�6ROYHU�3DFNDJH

P Equations
P Variables

PxP Jacobian

NLA Solver

GetCvgTolerance()

GetMaxIterations()
SetCvgTolerance()

SetMaxIterations()
DoNIterations()

Internal Solver Non Linear ESO

1

1

1

1

&DOFXODWH�RQ

DAE Solver

RelTolerance

ReportingInterface

GetAbsTolerance()

GetRelTolerance()
SetAbsTolerance()

SetRelTolerance()

AdvanceToNextEvent()

Independant Variable

CurrentValue
StartValue

EndValue
StepValue

Internal Solver DA ESO

GetDiffJacobianValues()
GetDiffJacobianStruct()

GetIndependentVar()
SetIndependentVar()

GetAllDerivatives()

SetAllDerivatives()

1

1

1

1

&DOFXODWH�RQ

11

Numeric Variable

GeneralIndex
Value

State
1..*

+Derivatives

1..*

LA Solver

Numeric Variable

GeneralIndex
Value

State

Internal Solver Linear ESO

1

1

1

1

&DOFXODWH�RQ

,QWHUQDO�6ROYHU�(62

GetResiduals()
GetJacobianStruct()

GetJacobianValues()

GetVariables()
SetVariables()

GetNumVars()
GetNumEqns()

1..*

�6TU�9DU�6HW

+P Ordered 1..*

1..*�2ULJLQDO�9DU�6HW

+N>=P Ordered

1..*

Matrix

GetNumCols()

GetNumRows()
GetValues()

QuerySymmetric()

QueryOrdering()
QueryType()

/LQHDU�0DWUL[

-DFRELDQ�6WUXFW

-DFRELDQ�9DOXHV

62/9(5��&20321(17

UO Component

(from Logical View)

Simulator Executive

(from Logical View)

Unit Operation

Client

Model Component

(from Logical View)

0RGHO

Solver Manager

CreateSolver()

Solver

Model

GetParameterList()

SetParameter()
GetSolution()

Solve()
Destroy()

SetReportingInterface()

1..*

1

1..*

1

0DQDJHV

Public Parameter

Name

Description
Lower Bound

Upper Bound

Default Value
Current Value

1..*+My Parameters 1..*

Creates Other Solver

)LJXUH�������&ODVV�'LDJUDP�RI�WKH�6ROYHU�&RPSRQHQW

51

���� 6HTXHQFH�'LDJUDP

This sequence diagram describes as an example the various operations needed to configure a
model using a non linear ESO and to create a solver for its resolution.

• The Client (Unit or the Simulator Executive) creates in some way, or selects a Model (top
model) instance that represent the problem to be solved.

• The Client then initialises this Model. This means that the Client will have to fix some
information like:

n the current state of each STN if it is a Hierarchical Model,

n the value of some variables (in order to get a square ESO) and,

n the initial values of the other variables before starting the solve process.

Doing so, the Model is then able to create a global square ESO which can be used by a solver.

• The Client then creates in some way, or selects an instance of the correct type of Solver
(NLASolver) needed for that problem and passes it the Model to be solved.

• As part of this creation, the NLA Solver will get all the information it needs from the
Model, and his associated ESOs, such as all the initial values of the variables, number of
equations, etc. As part of this creation the Solver Factory can get the list of all the
parameters needed by the Solver and will set some of them to a value different from the
default value.

• Then the Client will ask the Solver to solve the problem.

• In order to do that, the Solver Component (NLA Solver) will get information from the
Model, and the ESO using the standard methods defined in these objects. It can also act as
a client of the Solver component and create some other instances of solvers like a
LASolver to solve some part of the problem.

• Then the Client will be able to get the value of the variables computed by the Solver as a
solution.

 72�%(�&203/(7('

)LJXUH�������6HTXHQFH�'LDJUDP

52

���� &ROODERUDWLRQ�GLDJUDP

This diagram is another representation of the sequence of operations showing collaboration
between the different classes of object. It shows the methods that need to be defined and
standardised if you want to make a component from some class or group of classes.

 72�%(�&203/(7('

)LJXUH�������&ROODERUDWLRQ�'LDJUDP

53

���� ,QWHUIDFH�'LDJUDPV

We have considered that the ESO is a separate component from the Unit Component, but as it
acts as a server of information for the Solver Component we need to define at least its interface
with it. It seems more appropriate to separate the ESO as a component from the Unit itself, since
an ESO can belong to other clients as well, like the Simulator Executive or even the Solver
Component if this component needs to create a specific ESO to solve DAE systems for example.

54

������ 0RGHO�,QWHUIDFH�'LDJUDP

02'(/�,17(5)$&(

Continuous Model

Binary Event

GetLeftOperand()

Unary Event

Aggregate Model

GetModelList()
SetConnectionEquation()

Hierarchical Model

GetSTNList()

State Transition Network

SetCurrentState()
GetCurrentState()
GetParentModel()
GetPossibleTransitions()
GetStateTransitions()
GetStateList()
GetStateModel()
MovetoNextState()

1..*1..*

Physical Variable

GetName()
GetDescripton()
GetGeneralIndex()
GetDimension()
GetUnit()
GetLowerBound()
GetUpperBound()
GetDefaultValue()

Basic Event

GetVariable()
GetValue()
GetLogicalRelation()

Model Manager

CreateModel()

0RGHO

GetParameterList()
SetParameter()
SetVariablesIndex()
SetFixedVariables()
SetInitialVariables()
SetIndependentVar()
SetAllDerivatives()
AddExternalEvent()
GetActiveESO()
GetActiveEvents()
SetCommonESO()
Destroy()
GetCommonESO()
SetActiveESO()

0..*0..*

PDQDJHV

Public Parameter

Name
Description
Lower Bound
Upper Bound
Default Value
Current Value

1..*1..*
0\�SDUDPHWHUV

Composite Event

GetRigthOperand()
GetLogicalOperator()

Event

Eval()
QueryType()

+1 or 2

External Evt Info

Internal Evt Info

GetSTN()
GetToState()

Event Info

QueryKind()
GetSubEvent()
GetEvent()

)LJXUH�������0RGHO�&RPSRQHQW�,QWHUIDFHV

55

������ (62�,QWHUIDFH�'LDJUDP

P Equations
N Variables
NxP Jacobian

(62��,17(5)$&(

Matrix

GetNumCols()
GetNumRows()
GetValues()
QuerySymmetric()
QueryOrdering()
QueryType()

Full MatrixUnstructured Matrix

GetStructure()

Global LA ESO

N.L.A. ESO

Global NLA ESO

L.A. ESO

SetRHS()
SetLHS()
GetRHS()
GetLHS()

Global DAE ESO

DA ESO

GetDiffJacobianValues()
GetDiffJacobianStruct()
GetDerivatives()
GetIndependentVar()
SetIndependentVar()
GetAllDerivatives()
SetAllDerivatives()
GetAllDiffJacobianValues()

ESO Manager

CreateESO()

Global ESO

GetListofESOs()
SetListofESOs()

(62

SetVariableIndex()
GetNumVars()
GetNumEqns()
GetLowerBounds()
GetUpperBounds()
SetFixedVariables()
SetVariables()
GetVariables()
GetAllResiduals()
GetResiduals()
GetJacobianStruct()
GetJacobianValues()
GetParameterList()
GetAllVariables()
SetParameter()
SetAllVariables()
GetAllJacobianValues()
Destroy()

0..*0..*

PDQDJHV

1..*

+Elementary ESO

1..*

Public Parameter

Name
Description
Lower Bound
Upper Bound
Default Value
Current Value

1..*1..*

Banded Matrix

GetBandWidth()

)LJXUH�������(62�&RPSRQHQW�,QWHUIDFHV

56

������ 6ROYHU�,QWHUIDFH�'LDJUDP

DAE Solver

GetAbsTolerance()
GetRelTolerance()
SetAbsTolerance()
SetRelTolerance()
AdvanceToNextEvent()

NLA Solver

GetCvgTolerance()
GetMaxIterations()
SetCvgTolerance()
SetMaxIterations()
DoNIterations()

LA Solver

Solver Manager

CreateSolver()

6ROYHU

Model

GetParameterList()
SetParameter()
GetSolution()
Solve()
Destroy()
SetReportingInterface()

1

1..*

1

1..*

0DQDJHV

Public Parameter

Name
Description
Lower Bound
Upper Bound
Default Value
Current Value

0\�SDUDPHWHUV

62/9(5�,17(5)$&(

)LJXUH�������6ROYHU�&RPSRQHQW�,QWHUIDFHV

57

���� ,QWHUIDFH�'HVFULSWLRQV

This section details the specification of the methods appearing in the interface diagrams for the
following components:

• Model Component

• ESO Component

• Solver Component

Each interface is presented together with its corresponding methods.

It should be noted that:

• Inherited methods are documented only under the parent interface which defines
them.

• All methods should return a CapeError value. One role of this value is to report a
successful execution: the error conditions applicable to each method will have to be
defined as part of the refinement of this interface definition.

• The errors and exceptions mentioned in this specification do not pretend to be
exhaustive.

Remark :

All the system errors defined as CapeError (HRESULT in DCOM or System exceptions in
CORBA) are not used here. The return values described are the usual return (out retval in DCOM)
from the method, and the exceptions described are only some errors that can occur during
execution of the method.

We have defined a standard exception structure CapeException to handle all the possible
exceptions that can be raised by each method. This structure is similar to the one defined by
DCOM.

These errors can be transmitted as an argument out (in DCOM or CORBA) or as an exception (in
CORBA). This is still an issue that needs to be resolved.

In defining the argument lists of the various methods, our general approach has been to use the
simplest possible argument types, namely those used throughout the CAPE-OPEN project:

• CapeLong

• CapeDouble

• CapeArrayLong

• CapeArrayDouble

• CapeString

• CapeInterface

58

However, to provide the functionality that is necessary for our components, we have had to
introduce sometimes new structures. Most of the time these structures are only applicable to one
component and are part of the definition of this component. However one of these structures is
common to all the components and is defined hereafter: &DSH3XEOLF3DUDPHWHU, and its
corresponding array type, &DSH$UUD\3XEOLF3DUDPHWHU.

This structure has the following members:

CapeString Name : an identifying string for this parameter

CapeString Description : a textual description of this parameter, its rôle HWF.

CapeDouble LowerB : the lower bound for valid values of this parameter
(numeric parameters only)

CapeDouble UpperB : the upper bound for valid values of this parameter
(numeric parameters only)

CapeVariant DefaultValue : the default value if there is one

CapeVariant Value : the current value of this parameter

The public parameters handled by the various interfaces presented in this document may be of any
one of the types listed at the start of the section. Thus, it should be noted that the Value member of
the CapePublicParameter structure presented above is a CapeVariant.

It is particularly worth noting that some algorithmic parameters are of type CapeInterface.
Consider, for example, a nonlinear algebraic equation solver based on a Newton or quasi-Newton
iterative scheme. An important parameter in this case would be the linear algebra solver that is
used to solve the set of linear equations arising at each iteration. In our interfaces, such a
parameter would be an interface to a Solver (H�J� ICapeNumericLASolver in the example just
mentioned). Once this interface is made available, the nonlinear solver may use it to create one or
more LASolvers as and when required.

59

������ 0RGHO�&RPSRQHQW

We now proceed to describe the interfaces to Models and their associated Equation Set Objects.
Two other ‘auxiliary’ objects related to the solution of nonlinear and dynamic systems are also
described, namely Event, and STN.

As we have seen, a Model may contain one or more state-transition networks (STNs). The
equations in each state and the logical conditions associated with each transition in these STNs are
all expressed in terms of the Model’s own set of YDULDEOHV��i.e. those contained in its ESO.

Detailed information on the STNs within a Model must be obtained via a different set of methods
provided by interface ICapeNumericSTN.

The Model component interfaces are:

q ICapeNumericModelManager� This is the interface of the Model object, which is used to
represent hierarchical sets of equations, or aggregate sets of equations.

q ICapeNumericModel��The Model object embodies the general mathematical description of a
physical system.

q ICapeNumericContinuousModel��This is the interface of a simple simulation model with only
one ESO associated.

q ICapeNumericHierarchicalModel��This is the interface of a complex simulation model with a
State Transition Network and multiple ESOs to pilot the simulation process.

q ICapeNumericAggregateModel�� ,W�allows to "concatenate" two or more previously defined
models (continuous or hierarchical).

q ICapeNumericSTN�� This is the interface which provides facilities for State Transition
Networks.

q ICapeNumericEvent��This is the interface which provides facilities for handling Events.

q ICapeNumericBasicEvent. This is the interface which provides facilities specific to Basic
Events.

q ICapeNumericCompositeEvent� This is the interface which provides facilities specific to
Composite Events.

q ICapeNumericBinaryEvent� This is the interface which provides facilities specific to Binary
Events.

q ICapeNumericUnaryEvent� This is the interface which provides facilities specific to Unary
Events.

q ICapeNumericEventInfo � This is the interface for handling information on events.

q ICapeNumericExternalEventInfo� This is the interface which provides facilities specific to
external events.

q ICapeNumericInternalEventInfo� This is the interface which provides facilities specific to
internal events.

60

�������� 0RGHO�0DQDJHU���,&DSH1XPHULF0RGHO0DQDJHU
,QKHULWV�IURP��ICapeUtilityComponent

This is the interface of the Model object, which is used to represent hierarchical sets of equations,
or aggregate sets of equations. Only one method has been defined, CreateModel.

• &UHDWH0RGHO

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO0DQDJHU

0HWKRG�1DPH CreateModel

5HWXUQV CapeError

'HVFULSWLRQ

Creates a new simulation model for a specific unit or for a complete flowsheet.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheTypeOfTheModel

CapeModelType the type of the model, can be a
Continuous Model, a Hierarchical
Model, an Aggregate Model or one of
their subtypes.

[out, return]

TheModel

ICapeNumericModel:
CapeInterface

the Interface of the Model which has
been created.

([FHSWLRQV

To be defined (any run time error during the creation)

61

�������� 6LPXODWLRQ�0RGHO��,&DSH1XPHULF0RGHO
,QKHULWV�IURP��ICapeUtilityComponent

This interface supports the following methods:

q GetParameterList

q SetParameter

q SetVariablesIndex

q SetActiveESO

q GetActiveESO

q SetCommonESO

q GetCommonESO

q GetActiveEvents

q AddExternalEvent

q Destroy

62

• *HW3DUDPHWHU/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH GetParameterList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the parameters defined for this class of Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheListOfParameters

CapeArrayNumericPu
blicParameter

the list of all the Public Parameters
available for this class of Model.

([FHSWLRQ

None.

63

• 6HW3DUDPHWHU

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH SetParameter

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the current value of a specific parameter to be used by the constructor of that class to create
an instance of that object.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheParameterName

CapeString the name of the parameter to be set

[in]

TheParameterValue

CapeVariant the value of that particular parameter

([FHSWLRQV

Invalid type of the value.

Invalid parameter name.

5HPDUN

This needs some experimentation, because it can be difficult for the Client to build such objects
automatically and to hand them to the Solver if they are a bit complicated.

64

• 6HW9DULDEOHV,QGH[

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH SetVariablesIndex

5HWXUQV CapeError

'HVFULSWLRQ

Sets the general indices of the variables in this Model to establish the mapping between the list
of variable in the ESO and the list of the Physical Variables. This is one way (a choice) for
establishing the mapping, another way would be to reference the Physical Variables object in the
Model directly.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarIndices

CapeArrayLong the set of general indices for all the
variables

[out, return]

TheNumberOfVars

CapeLong the total number of variables N for this
ESO

([FHSWLRQ

Incorrect number of indices in the list (too few or too many).

65

• 6HW$FWLYH(62

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH SetActiveESO

5HWXUQV CapeError

'HVFULSWLRQ

Sets the global ESO which is the current one depending of all the active states in the STN and all
the common or specific ESOs. This needs to be done for the top level Model only.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheActiveESO

ICapeNumericESO:Ca
peInterface

creates the active ESO for the top level
Model. This will be some kind of
Global ESO.

([FHSWLRQV

To be defined.

66

• *HW$FWLYH(62

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH GetActiveESO

5HWXUQV CapeError

'HVFULSWLRQ

Gets the global active ESO which is the current one.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheActiveGlobalESO

ICapeNumericESO:Ca
peInterface

returns the ActiveGlobal ESO.

([FHSWLRQ

No current active ESO.

67

• 6HW&RPPRQ(62

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH SetCommonESO

5HWXUQV CapeError

'HVFULSWLRQ

Assigns the common or specific ESO to this particular model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

AnESO

ICapeNumericESO:Ca
peInterface

the common ESO associated with this
model.

 ([FHSWLRQ

 None.

68

• *HW&RPPRQ(62

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH GetCommonESO

5HWXUQV CapeError

'HVFULSWLRQ

Gets the common or specific ESO of this particular model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheCommonESO

ICapeNumericESO:IC
apeInterface

the common ESO associated with this
model.

([FHSWLRQ

No common ESO associated with this model.

69

• *HW$FWLYH(YHQWV

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH GetActiveEvents

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of the currently active events associated with all the current states in the model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheEventInfoList

CapeArrayNumericEv
entInfo

the list of the active events.

([FHSWLRQ

 No active state currently defined.

70

• $GG([WHUQDO(YHQW

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH AddExternalEvent

5HWXUQV CapeError

'HVFULSWLRQ

Adds an Event to the list of the already defined External Events for this Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheEvent

ICapeNumericEvent the event to be added to the list.

[out, return]

AnEventInfo

ICapeNumericExterna
lEventInfo:CapeInterf
ace

the External Event Info associated to
that Event.

([FHSWLRQ

None.

71

• 'HVWUR\

,QWHUIDFH�1DPH ,&DSH1XPHULF0RGHO

0HWKRG�1DPH Destroy

5HWXUQV CapeError

'HVFULSWLRQ

Destroys this model.

$UJXPHQWV

None.

([FHSWLRQ

None.

72

• ,PSRUWDQW�5HPDUN��2WKHU�PHWKRGV

Some other methods might be needed there that are already defined in the ESO Component like
(SetFixedVars and SetAllDerivatives) just to hand values from the Client to the ESO Component.

This is needed in our architecture because we have supposed that both ESO Component and
Model Component could be distributed, and only the Model knows about the ESO.

This point can be discussed later.

73

�������� &RQWLQXRXV�0RGHO��,&DSH1XPHULF&RQWLQXRXV0RGHO
,QKHULWV�IURP��ICapeNumericModel

Simple simulation model with only one ESO associated.

�������� +LHUDUFKLFDO�0RGHO��,&DSH1XPHULF+LHUDUFKLFDO0RGHO
,QKHULWV�IURP��ICapeNumericModel

This Model represents a complex simulation model with a State Transition Network and multiple
ESOs to pilot the simulation process (mostly used for dynamic simulation with DAESO).

We have not specified here the methods that would be needed to create such a model (methods to
create STN, create state, assign a model to a state, create transition, etc.), only the method needed
to use such a model is defined here.

• *HW671/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF+LHUDUFKLFDO0RGHO

0HWKRG�1DPH GetSTNList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the state transition networks (STNs) associated to this Hierarchical Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheSTNList

CapeArrayNumericST
N

the list of associated STNs.

([FHSWLRQ

No STN currently associated with this Hierarchical Model.

74

�������� $JJUHJDWH�0RGHO��,&DSH1XPHULF$JJUHJDWH0RGHO
,QKHULWV�IURP��ICapeNumericModel

This model allows to "concatenate" in some sense two or more previously defined
models (continuous or hierarchical). This enable the creation of a complex model representing two
or more units with their own variables and equations. Some equations can be added in the
common ESO to represent the connections equations between these units.

• *HW0RGHO/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF$JJUHJDWH0RGHO

0HWKRG�1DPH GetModelList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the models associated with this Aggregate Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheListOfModels

CapeArrayNumericM
odel

the list of associated models.

([FHSWLRQ

No Model currently associated with this Aggregate Model.

75

• 6HW&RQQHFWLRQ(TXDWLRQ

,QWHUIDFH�1DPH ,&DSH1XPHULF$JJUHJDWH0RGHO

0HWKRG�1DPH SetConnectionEquation

5HWXUQV CapeError

'HVFULSWLRQ

Establish the connection between two variables that are the same in two different models of
this Aggregate Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheInputModel

ICapeNumericModel origin Model

[in]

 TheInputIndex

CapeLong index of the variable

[in]

 TheOutputModel

ICapeNumericModel destination Model

[in]

 TheOutputIndex

CapeLong index of the variable

([FHSWLRQ

Invalid Model or invalid index.

5HPDUN

This notion of connection and its representation will probably need further investigation, there
is no assumption made here on how these connection equations are represented (either by
explicit equations added in the common ESO for this Aggregate Model or by identity between
the two variables).

76

�������� 6WDWH�7UDQVLWLRQ�1HWZRUN��,&DSH1XPHULF671
,QKHULWV�IURP��ICapeUtilityComponent

Eight methods are defined for this interface:

q SetCurrentState

q GetCurrentState

q GetParentModel

q GetPossibleTransitions

q GetStateTransitions

q GetStateList

q GetStateModel

q MoveToNextState

77

• 6HW&XUUHQW6WDWH

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH SetCurrentState

5HWXUQV CapeError

'HVFULSWLRQ

Sets the value of the current state. This method can be used to set the value of the initial state
or internally to switch from one state to another.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 TheStateName

CapeString the name of the current state.

([FHSWLRQ

Invalid state name.

78

• *HW&XUUHQW6WDWH

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetCurrentState

5HWXUQV CapeError

'HVFULSWLRQ

Gets the name of the current state for this STN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheStateName

CapeString the name of the current state

([FHSWLRQ

No current state defined yet.

79

• *HW3DUHQW0RGHO

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetParentModel

5HWXUQV CapeError

'HVFULSWLRQ

Gets the model which owns this specific STN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheParentModel

ICapeNumericModel:
CapeInterface

the name of the model which owns this
STN.

([FHSWLRQ

None

80

• *HW3RVVLEOH7UDQVLWLRQV

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetPossibleTransitions

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the transitions for the current state in this STN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheListOfEventInfo

CapeArrayInternalEve
ntInfo

the list of the current Internal Event
Infos associated with this STN.

([FHSWLRQ

No current state defined.

81

• *HW6WDWH7UDQVLWLRQV

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetStateTransitions

5HWXUQV CapeError

'HVFULSWLRQ

Returns the names of the states which can be reached from a specified state of the network,
together with the EventInfos [Events] which control each transition.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 FromState

CapeString the name of the state.

[out]

 EventList

CapeArrayEventInfo list of the EventInfos associated to
each transition.

[out]

 StateList

CapeArrayString list of the corresponding names of the
states.

[out, return]

 NumberOfTransitions

CapeDouble the number of transitions from that
state.

([FHSWLRQV

No transitions defined for this state.

Invalid state name

82

• *HW6WDWH/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetStateList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the states in the STN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 StateList

CapeArrayString list of the states

([FHSWLRQV

 No state has been defined yet.

83

• *HW6WDWH0RGHO

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH GetStateModel

5HWXUQV CapeError

'HVFULSWLRQ

Gets the model associated with a particular state.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 StateName

CapeString the name of the state

[out, return]

 TheModel

ICapeNumericModel:
CapeInterface

the Model associated with this
particular state

([FHSWLRQ

Invalid state name.

84

• 0RYH7R1H[W6WDWH

,QWHUIDFH�1DPH ,&DSH1XPHULF671

0HWKRG�1DPH MoveToNextState

5HWXUQV CapeError

'HVFULSWLRQ

Changes the current state according to the event that has fired.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 FiredEvent

ICapeNumericEventIn
fo:CapeInterface

 the eventInfo that has triggered the
change to a new state.

[out, return]

 StateName

CapeString the name of the new current state.

([FHSWLRQ

Invalid eventInfo passed as a parameter.

85

�������� (YHQW���,&DSH1XPHULF(YHQW
,QKHULWV�IURP��ICapeUtilityComponent

This object represents a condition on a variable or on a number of variables, with a boolean value.
It serves two distinct roles, although the same definition is appropriate for both:

• Internal events, i.e. the transition conditions of the STNs within a Model.

• External events, i.e. those specified as stopping conditions when advancing the
solution of a DAESystem (see section ICapeNumericDAESolver).

Event itself defines only a method to return its value (True or False): further information is
dependent on its subtypes, and is contained in four distinct subtypes derived from it.

&DSH1XPHULF(YHQW7\SH = {BASIC, COMPOSITE, BINARY, UNARY}

The definitions make use of two other enumerated types, as follows :

&DSH/RJLFDO5HODWLRQ = {GT, LT, GEQ, LEQ}

&DSH/RJLFDO2SHUDWRU = {AND, OR, NOT}

86

• (YDO

,QWHUIDFH�1DPH ,&DSH1XPHULF(YHQW

0HWKRG�1DPH Eval

5HWXUQV CapeError

'HVFULSWLRQ

Evaluates the logical expression represented by this particular event.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheResult

CapeBoolean True or False depending on the
evaluation of the logical condition

([FHSWLRQ

None.

87

• 4XHU\7\SH

,QWHUIDFH�1DPH ,&DSH1XPHULF(YHQW

0HWKRG�1DPH QueryType

5HWXUQV CapeError

'HVFULSWLRQ

Returns the type of event involved (thus allowing the correct interface and behaviour to be
determined directly rather than on a trial-and-error basis).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 AnEventType

CapeNumericEventTy
pe

returns the type of this event.

([FHSWLRQ

None.

88

�������� %DVLF�(YHQW���,&DSH1XPHULF%DVLF(YHQW
,QKHULWV�IURP��ICapeNumericEvent

 A Basic Event is a triplet of the form [variable, operator, value], like for example x5 > 1.5. We
have defined the different numeric operators (>, <, >=, <=) as a CapeLogicalRelation in a typedef.
Three methods are defined for this interface:

q GetVariable

q GetLogicalRelation

q GetValue

• *HW9DULDEOH

,QWHUIDFH�1DPH ,&DSH1XPHULF%DVLF(YHQW

0HWKRG�1DPH GetVariable

5HWXUQV CapeError

'HVFULSWLRQ

Gets the variable used in the representation of this Basic Event.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheVariableIndex

CapeLong the General index representing this
variable

([FHSWLRQ

None.

89

• *HW/RJLFDO5HODWLRQ

,QWHUIDFH�1DPH ,&DSH1XPHULF%DVLF(YHQW

0HWKRG�1DPH GetLogicalRelation

5HWXUQV CapeError

'HVFULSWLRQ

Gets the logical relation used in the expression of this Basic Event. This can be one of a type
definition for all the supported relations (i.e. >, <, >=, <=).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheLogicalRelation

CapeLogicalRelation the logical relation used by this basic
Event.

([FHSWLRQ

None.

90

• *HW9DOXH

,QWHUIDFH�1DPH ,&DSH1XPHULF%DVLF(YHQW

0HWKRG�1DPH GetValue

5HWXUQV CapeError

'HVFULSWLRQ

Gets the value of the real constant used in the expression of that Basic Event.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheValue

CapeDouble the constant value used in the
comparison.

([FHSWLRQ

None.

91

�������� &RPSRVLWH�(YHQW���,&DSH1XPHULF&RPSRVLWH(YHQW
,QKHULWV�IURP��ICapeNumericEvent

A Composite Event is a relation between two events links together by a logical operator (AND,
OR, NOT). In the same way we have defined numeric operators, we also have defined logical
operators (AND, OR, NOT) as a CapeLogicalOperator typedef.

Such a composite event can be unary or binary depending of the number of operands needed by
the logical operator.

• *HW5LJKW2SHUDQG

,QWHUIDFH�1DPH ,&DSH1XPHULF&RPSRVLWH(YHQW

0HWKRG�1DPH GetRightOperand

5HWXUQV CapeError

'HVFULSWLRQ

Gets the right part of the Composite Event.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheRightOperand

ICapeNumericEvent:C
apeInterface

the Basic or Composite Event used on
the right part of the logical expression

([FHSWLRQ

None.

92

• *HW/RJLFDO2SHUDWRU

,QWHUIDFH�1DPH ,&DSH1XPHULF&RPSRVLWH(YHQW

0HWKRG�1DPH GetLogicalOperator

5HWXUQV CapeError

'HVFULSWLRQ

Gets the logical operator used in the logical expression. It must be one of the Logical Operators
(AND, NOT, OR).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheLogicalOperator

CapeNumericLogical
Operator

the logical operator used in this
expression.

([FHSWLRQ

None.

93

��������� %LQDU\�(YHQW���,&DSH1XPHULF%LQDU\(YHQW
,QKHULWV�IURP��ICapeNumericCompositeEvent

A Binary Event is the most common case of a Composite Event where you have a
leftOperand, an Operator, and a rightOperand like in the expression A AND B.

• *HW/HIW2SHUDQG

,QWHUIDFH�1DPH ,&DSH1XPHULF%LQDU\(YHQW

0HWKRG�1DPH GetLeftOperand

5HWXUQV CapeError

'HVFULSWLRQ

Gets the left logical expression in the case of binary operator.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheLeftOperand

ICapeNumericEvent:C
apeInterface

the left operand in the logical
expression.

([FHSWLRQ

None

94

��������� 8QDU\�(YHQW���,&DSH1XPHULF8QDU\(YHQW
,QKHULWV�IURP��ICapeNumericCompositeEvent

A Unary Event is an Event wher you do not have a leftOperand ; an example is the expression
NOT A. No specific methods have been defined for this subclass.

��������� (YHQW�,QIR���,&DSH1XPHULF(YHQW,QIR
,QKHULWV�IURP��ICapeUtilityComponent

This object is designed as a return value from the DAESolver object, and contains information
about the occurence of an Event.

The EventInfo object itself contains only a method to indicate the NLQG� of event information
returned (external or internal), and another to access the «sub Event» object: this is so called
because even when a transition or stopping condition is specified with a composite event, the
Solver is expected to return the most detailed information it can. This is likely to be a component
of the original composite event.

Further detail is dependent on the kind of event information, and is contained in two distinct
subtypes derived from it.

An enumerated type is needed to define the kind, as follows:

&DSH1XPHULF(YHQW,QIR.LQG = {INTERNAL, EXTERNAL}

Three methods are defined for this interface:

q QueryKind

q GetSubEvent

q GetEvent

95

• 4XHU\.LQG

,QWHUIDFH�1DPH ,&DSH1XPHULF(YHQW,QIR

0HWKRG�1DPH QueryKind

5HWXUQV CapeError

'HVFULSWLRQ

Returns the kind of EventInfo.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheKind

CapeNumericEventInf
oKind

the kind of this event: internal or
external.

([FHSWLRQ

None.

96

• *HW6XE(YHQW

,QWHUIDFH�1DPH ,&DSH1XPHULF(YHQW,QIR

0HWKRG�1DPH GetSubEvent

5HWXUQV CapeError

'HVFULSWLRQ

Provides access to the sub-event object.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 AnEvent

ICapeNumericEvent:C
apeInterface

the sub-event that has fired.

([FHSWLRQ

None.

97

• *HW(YHQW

,QWHUIDFH�1DPH ,&DSH1XPHULF(YHQW,QIR

0HWKRG�1DPH GetEvent

5HWXUQV CapeError

'HVFULSWLRQ

Gets the event associated with this Event Info.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 AnEvent

ICapeNumericEvent:C
apeInterface

the event associated with this
EventInfo.

([FHSWLRQ

None.

98

��������� ([WHUQDO�(YHQW�,QIR���,&DSH1XPHULF([WHUQDO(YHQW,QIR
,QKHULWV�IURP��ICapeNumericEventInfo

When an external event occurs, we will need to know which of the stopping conditions we
provided to the System has occured. This object simply adds this piece of information to that in
the general EventInfo class.

��������� ,QWHUQDO�(YHQW�,QIR���,&DSH1XPHULF,QWHUQDO(YHQW,QIR
,QKHULWV�IURP��ICapeNumericEventInfo

When an internal event occurs, we will generally simply have to set the state of the model as
indicated, and continue the solution process. However, in order to do this or carry out some more
complex action, we will require access to the STN object in which the transition «wants» to occur,
as well as the target state (the current state can be obtained from the STN). This object adds these
two items of information to the general EventInfo class.

• *HW671

,QWHUIDFH�1DPH ,&DSH1XPHULF,QWHUQDO(YHQW,QIR

0HWKRG�1DPH GetSTN

5HWXUQV CapeError

'HVFULSWLRQ

Provides access to the ICapeNumericSTN object in which the state transition indicated by the
EventInfo is set to occur.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheSTN

ICapeNumericSTN:Ca
peInterface

the STN associated with this EventInfo.

([FHSWLRQ

None.

99

• *HW7R6WDWH

,QWHUIDFH�1DPH ,&DSH1XPHULF,QWHUQDO(YHQW,QIR

0HWKRG�1DPH GetToState

5HWXUQV CapeError

'HVFULSWLRQ

Provides the name of the state which is indicated as becoming active because of the transition
condition which has became true.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

 TheState

CapeString the name of the next current state
according to that Event.

([FHSWLRQ

None.

100

������ (62�&RPSRQHQW

This component mainly represents a rectangular system of P equations and N variables (P superior
or equal to N). We have build the ESO as an independent component with all the interfaces
needed between the Model Component and the Solver Component.

We have described the methods that standardise the communications with the Solver Component,
and the methods that allow to map the variables used in this ESO with the variables defined by the
Model.

We have defined a "Global" ESO as a subclass of the general ESO. This GlobalESO has some
extra methods to set the list of the ESOs it is composed of and to manage this list.

The interfaces described are the following:

q ICapeNumericMatrix. This interface has three subtypes.

q ICapeNumericESOManager. This interface allows the creation and the management of the
various ESOs.

q ICapeNumericESO. This is the interface of the Algebraic Equation Set Object.

q ICapeNumericLAESO.

q ICapeNumericNLAESO.

q ICapeNumericDAESO.

q ICapeNumericGlobalESO.

q ICapeNumericGlobalLAESO.

q ICapeNumericGlobalNLAESO.

q ICapeNumericGlobalDAESO.

101

�������� ,QWHUQDO�W\SHV�XVHG�E\�WKLV�FRPSRQHQW

ICapeNumericMatrixType is an enumerated type defining the matrix types for which we have so
far defined interfaces. It consists of:

(FULL, UNSTRUCTURED, BANDED)

�������� 0DWUL[�LQWHUIDFH���,&DSH1XPHULF0DWUL[
The ,&DSH1XPHULF0DWUL[interface has the following methods:

- QueryType(): The subtype of the matrix (an ICapeNumericMatrixType value)

- GetNumCols(): number of columns in the matrix (CapeLong)

- GetNumRows(): number of rows in the matrix (CapeLong)

- GetValues(): the values of the matrix – exact semantics depend on the subtype
(CapeArrayDouble)

- QuerySymmetric(): determines whether the matrix is symmetric or not
(CapeBoolean)

- QueryOrdering(): determines whether values are given by row or column, for
structured, unsymmetric matrices (CapeBoolean).

102

• 4XHU\7\SH

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH QueryType

5HWXUQV CapeError

'HVFULSWLRQ

This method indicates which subtype is this Matrix.

The value returned is a CapeOpen enumerated type (CapeNumericMatrixType) with three
values (FULL, UNSTRUCTURED and BANDED). This allows the subtype of the matrix to be
determined without trial and error.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

ASubType

CapeNumericMatrixT
ype

returns the subtype of the matrix.

([FHSWLRQ

None.

103

• *HW1XP&ROV

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH GetNumCols

5HWXUQV CapeError

'HVFULSWLRQ

Gets the number of columns in a matrix.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheNbCols

CapeLong the number of columns.

([FHSWLRQV

None.

104

• *HW1XP5RZV

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH GetNumRows

5HWXUQV CapeError

'HVFULSWLRQ

Gets the number of rows in a matrix.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheNbRows

CapeLong the number of rows.

([FHSWLRQ

None.

105

• *HW9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH GetValues

5HWXUQV CapeError

'HVFULSWLRQ

This method returns an array of double values in all cases. The semantics depend on the
subtype, symmetry and ordering (see QueryType and QueryOrdering).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheValues

CapeArrayLong returns the values.

([FHSWLRQ

None.

106

• 4XHU\6\PPHWULF

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH QuerySymmetric

5HWXUQV CapeError

'HVFULSWLRQ

Returns TRUE if this is a symmetric matrix, FALSE otherwise.

Note that NumRows must equal NumCols if this matrix is symmetric.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

ABoolean

CapeBoolean returns TRUE or FALSE.

([FHSWLRQ

None.

107

• 4XHU\2UGHULQJ

,QWHUIDFH�1DPH ,&DSH1XPHULF0DWUL[

0HWKRG�1DPH QueryOrdering

5HWXUQV CapeError

'HVFULSWLRQ

For unsymmetric matrices, some subtypes can return their values ordered either "by row" or
"by column". This method indicates which type is used.

The value returned is a CapeOpen type (CapeNumericMatrixOrdering) with three values
"BYROW", "BYCOL", "OTHER". ("OTHER" is for symmetric matrices where BYROW or
BYCOL gives the same result, or unstructured matrices where values are returned depending
on the information given by GetStructure).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

AnOrdering

CapeNumericMatrixO
rdering

returns the ordering used to decode the
values returned by GetValues.

([FHSWLRQ

None.

108

3.6.2.2.1 ICapeNumericFullMatrix
,QKHULWV�IURP��ICapeNumericMatrix

See section 2.1.12.1 for the detailed semantics of this subtype. No further methods are defined by
the interface.

3.6.2.2.2 CapeNumericUnstructuredMatrix
,QKHULWV�IURP��ICapeNumericMatrix

See section 2.1.12.2 for the detailed semantics of this subtype.

A single method is added, GetStructure(), which returns two CapeArrayLong values: RowIndices
and ColumnIndices.

• *HW6WUXFWXUH

,QWHUIDFH�1DPH ,&DSH1XPHULF8QVWUXFWXUHG0DWUL[

0HWKRG�1DPH GetStructure

5HWXUQV CapeError

'HVFULSWLRQ

Gets the structure of the matrix (row and column indices of nonzeroes).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

>RXW@

 RowIndices

CapeArrayLong the row list of indices.

>RXW@

 ColIndices

CapeArrayLong the column list of indices.

([FHSWLRQ

None.

109

3.6.2.2.3 CapeNumericBandedMatrix
,QKHULWV�IURP��ICapeNumericMatrix

See section 2.1.12.3 for the detailed semantics of this subtype.

A single method is added, GetBandWidth(), which returns a CapeLong value.

• *HW%DQG:LGWK

,QWHUIDFH�1DPH ,&DSH1XPHULF%DQGHG0DWUL[

0HWKRG�1DPH GetBandWidth

5HWXUQV CapeError

'HVFULSWLRQ

Returns an integer N for banded matrices (no nonzero occurs more than N rows/columns from
the leading diagonal).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

BandWidth

CapeLong returns the bandwidth.

([FHSWLRQ

None.

110

�������� (TXDWLRQ�6HW�2EMHFW�0DQDJHU�LQWHUIDFH���,&DSH1XPHULF(620DQDJHU
,QKHULWV�IURP��ICapeUtilityComponent

This interface allows the creation and the management of the various ESOs.

There is only one instance of the ESOManager, this object knows all the ESO classes and
subclasses that are available in the ESO component and will manage all the instances of ESOs that
are created.

• &UHDWH(62

,QWHUIDFH�1DPH ,&DSH1XPHULF(620DQDJHU

0HWKRG�1DPH CreateESO

5HWXUQV CapeError

'HVFULSWLRQ

Creates a new ESO. This can be done also by instantiating some known subclasses of ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheTypeOfESO

CapeESOType the type of ESO to be created may be
LA, NLA, DAE or Global, or some
other subclasses of these classes.

[out, return]

AnESO

ICapeNumericESO:Ca
peInterface

the Interface of the ESO which has
been created.

([FHSWLRQ

To be defined (any run time error during the creation)

111

�������� (TXDWLRQ�6HW�2EMHFW��(62��LQWHUIDFH���,&DSH1XPHULF(62
,QKHULWV�IURP��ICapeUtilityComponent

This is the interface of the Equation Set Object which in the most general case represents a set of
equations of the form :

I [[(, &) = 0
.

In general, a set described by an ESO can be rectangular, L�H� the number of variables does not
have to be the same as the number of equations9.

The variables in an ESO are characterised by their current values (that can be changed via the
provided interface), and also lower and upper bounds. Usually, these bounds relate to the domain
of definition of the equations10 and/or physical reality11. For this reason, any attempt to set one or
more variables to values outside these bounds is considered to be illegal and will, therefore, be
rejected.

The equations in an ESO are assumed to be VSDUVH, L�H. any given equation will involve only a
subset of the variables in the ESO. Consequently, only a (usually small) subset of the partial
derivatives [I ∂∂ / are going to be nonzero for DQ\ set of values of the variables [. The VSDUVLW\

SDWWHUQ of the ESO refers to the number of such nonzero elements, and the row L (L�H� equation
L
I)

and column M� (L�H. variable
M

[) to which each such nonzero corresponds. The way in which

information on this structure is defined is entirely analogous to that for linear systems.

The interface defined in this section provided mechanisms for obtaining information on the
current values and bounds of the variables [, as well as the sparsity pattern of the ESO. It also
allows the modification of the variable values, and the computation of the values («residuals») of
the equations)([I for the current values of [and of the nonzero elements of the matrix

[I ∂∂ / (the so-called «Jacobian» matrix).

Finally, we note that CAPE-OPEN does QRW define any standard mechanisms or interfaces for the
FRQVWUXFWLRQ of ESOs. These are left at the discretion of implementers.

9 Of course, any ESOs that is to be solved using the nonlinear algebraic solver interfaces described in
section Numerical Solver Component must be VTXDUH, L�H� it must have the same number of equations and
variables.

10 For instance, an equation involving a term [−1 is undefined for any value of variable [exceeding
unity; thus, [is subject to an upper bound of 1.0.

11 For instance, variables representing molar fractions must stay between a lower bound of 0 and an upper
bound of 1.

112

The methods of the ICapeNumericESO interface are:

q GetParameterList

q SetParameter

q GetNumVars

q GetNumEqns

q SetFixedVars

q SetAllVariables

q SetVariables

q GetAllVariables

q GetVariables

q GetAllResiduals

q GetResiduals

q GetJacobianStruct

q GetAllJacobianValues

q GetJacobianValues

q Destroy

113

• *HW3DUDPHWHU/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetParameterList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the parameters defined for this ESO class.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheListOfParameters

CapeArrayNumericPu
blicParameter

the list of all the Public Parameter
available for this class of ESO.

([FHSWLRQ

None.

114

• 6HW3DUDPHWHU

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH SetParameter

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the current value of a specific parameter to be used by the constructor of that class to
create an instance of that object.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheParameterName

CapeString the name of the parameter to be set.

[in]

TheParameterValue

CapeVariant the value of that particular parameter.

([FHSWLRQV

Invalid type of the value.

Invalid parameter name.

115

• *HW1XP9DUV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetNumVars

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the number of variables of this ESO. In the case of a "Global" ESO (built by a complex
model), it will return the total number of variables in the Global ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheNumberOfVars

CapeLong the total number of variables N for this
ESO

([FHSWLRQ

No set of variables associated yet with this ESO.

116

• *HW1XP(TQV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetNumEqns

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the number of equations in this ESO. In the case of a Global ESO, it will return the total
number of equations for this Global ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheNumberOfEqns

CapeLong the total number of equations P for this
ESO.

([FHSWLRQ

 None.

117

• 6HW)L[HG9DUV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH SetFixedVars

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the value of some variables and marks these variables as fixed.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarIndices

CapeArrayLong the indices of the variables we wish to
set.

[in]

VarValues

CapeArrayDouble the values of the variables we wish to
set.

([FHSWLRQV

No set of variables associated yet with this ESO.

Index out of range for some variables.

Not the same length in the two arrays.

118

• 6HW$OO9DULDEOHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH SetAllVariables

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the value of all variables of this ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarValues

CapeArrayDouble the values of all the variables we wish
to set.

([FHSWLRQV

 No set of variables associated yet with this ESO.

 Too many values in the array (extra values can be ignored).

 Not enough values in the array (values missing can be set to 0).

119

• 6HW9DULDEOHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH SetVariables

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the value of some variables.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarIndices

CapeArrayLong the indices of the variables we wish to
set.

[in]

VarValues

CapeArrayDouble the values of all the variables we wish
to set.

([FHSWLRQV

 No set of variables associated yet with this ESO.

 Index out of range for some variables.

 Not the same length in the two arrays.

120

• *HW$OO9DULDEOHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetAllVariables

5HWXUQV CapeError

'HVFULSWLRQ

Gets the value of all variables.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

VarValues

CapeArrayDouble the values of all the variables.

([FHSWLRQ

No set of variables associated yet with this ESO.

121

• *HW9DULDEOHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetVariables

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the value of a subset of the variables.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarIndices

CapeArrayLong the indices of the variables we wish to
get.

[out, return]

VarValues

CapeArrayDouble the values of the subset of variables.

([FHSWLRQV

No set of variables associated yet with this ESO.

Index out of range for some variables.

122

• *HW$OO5HVLGXDOV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetAllResiduals

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the value of all the residuals.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

AllResiduals

CapeArrayDouble the values of all the residuals for all the
equations.

([FHSWLRQ

Variables not initialised.

123

• *HW5HVLGXDOV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetResiduals

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the value of a subset of the residuals.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

Indices

CapeArrayLong the indices of the equations we wish to
get the residuals from.

[out, return]

TheResiduals

CapeArrayDouble the values of the residuals for the
requested equations.

([FHSWLRQ

Invalid indices for the equations.

5HPDUN

All the residuals are evaluated at the current variables values.

124

• *HW-DFRELDQ6WUXFW

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetJacobianStruct

5HWXUQV CapeError

'HVFULSWLRQ

Returns a matrix object which contains information on the structure of the Jacobian matrix.
The GetValues method of this object will provide values encoded as follows :

• -1.0 indicates an entry which cannot be computed by the ESO.

• 0.0 indicates an entry which will DOZD\V be zero.

Any other value indicates a nonzero, computable entry.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheMatrix

ICapeNumericMatrix:
CapeInterface

a matrix or any matrix subclass with
the Jacobian structure.

([FHSWLRQ

None.

125

• *HW$OO-DFRELDQ9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetAllJacobianValues

5HWXUQV CapeError

'HVFULSWLRQ

Returns a matrix object whose GetValues method will provide the Jacobian values at the
ESO’s current variable values each time it is called (the values of entries indicated as
uncomputable in the matrix returned by GetJacobianStruct will be meaningless, but the call to
GetValues�will not cause an error simply because such entries exist).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheMatrix

ICapeNumericMatrix:
CapeInterface

a Matrix object yielding the Jacobian
values.

([FHSWLRQ

None.

126

• *HW-DFRELDQ9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH GetJacobianValues

5HWXUQV CapeError

'HVFULSWLRQ

Gets the values of selected entries of the Jacobian, at the current variable values of the ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 TheElementIndices

CapeArrayLong the indices of selected elements. The
semantics are those of the matrix’s
GetValues method.

[out, return]

TheValues

CapeArrayDouble the values of the requested elements.

([FHSWLRQV

Some of the requested Jacobian values cannot be computed.

Indices out of range.

127

• 'HVWUR\

,QWHUIDFH�1DPH ,&DSH1XPHULF(62

0HWKRG�1DPH Destroy

5HWXUQV CapeError

'HVFULSWLRQ

Deletes the ESO Component and all the objects associated with this particular ESO
Component.

$UJXPHQWV

None.

([FHSWLRQ

 None.

128

�������� /LQHDU�$QDO\VLV�(62�LQWHUIDFH���,&DSH1XPHULF/$(62
,QKHULWV�IURP��ICapeNumericESO

Only a few methods have been defined for this interface, more could be added. Four methods have
been defined so far:

q SetRHS

q SetLHS

q GetRHS

q GetLHS

129

• 6HW5+6

,QWHUIDFH�1DPH ,&DSH1XPHULF/$(62

0HWKRG�1DPH SetRHS

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the values of the right hand side vector.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

Values

CapeArrayDouble the values of the RHS to be set.

([FHSWLRQV

None.

130

• 6HW/+6

,QWHUIDFH�1DPH ,&DSH1XPHULF/$(62

0HWKRG�1DPH SetLHS

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the left hand side values of the linear system, i.e. the matrix values. The input argument is
interpreted with the same semantics as the array returned when the GetValues method is called.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

Matrix

ICapeNumericMatrix the values of the LHS to be set.

([FHSWLRQ

 None.

131

• *HW5+6

,QWHUIDFH�1DPH ,&DSH1XPHULF/$(62

0HWKRG�1DPH GetRHS

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the values most recently set for the right hand side vector of this linear system.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

Values

CapeArrayDouble the values of the RHS.

([FHSWLRQV

 No values have been set.

132

• *HW/+6

,QWHUIDFH�1DPH ,&DSH1XPHULF/$(62

0HWKRG�1DPH GetLHS

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the left hand side values of this linear system.

 1RWH: the result should be the same as what is returned by calling the GetValues method of the
Matrix object returned by GetAllJacobianValues.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

Matrix

ICapeNumericMatrix the current values of the LHS.

([FHSWLRQV

No values have been set..

133

�������� 1RQ�/LQHDU�$QDO\VLV�(62�LQWHUIDFH���,&DSH1XPHULF1/$(62
,QKHULWV�IURP��ICapeNumericESO

 There is no special method right now for this interface.

134

�������� 'LIIHUHQWLDO�$QDO\VLV�(62�LQWHUIDFH���,&DSH1XPHULF'$(62
,QKHULWV�IURP��ICapeNumericESO

This is the interface of the Differential-Algebraic Equation Set Object which represents a
(generally rectangular) set of differential-algebraic equations of the form:

0),,(=W[[I &
.

where W is the independent variable and [�W� is a vector of dependent variables. Also [& denotes the
derivatives GWG[/ . We note that, in general, the quantities [& will appear in the system for only a
subset of the dependent variables [��This subset of [are often referred to as the «GLIIHUHQWLDO
YDULDEOHV» while the rest are the «DOJHEUDLF�YDULDEOHV». Of course, DOO these variables are functions
of the independent variable W.

It is worth clarifying the semantic interpretation of the methods that are inherited by this interface
from ICapeNumericESO:

• GetNumVars must return the length of the vector x

• SetVariables and GetVariables relate only to the vector [.

• All the methods associated with the Jacobian (GetJacobianStruct and
GetJacobianValues) relate to [I ∂∂ / .

• The equation residuals and Jacobian are evaluated at the current values of [[&,
and W.

The methods defined in this section introduce equivalent functionality for accessing and altering

information pertaining to
I [[(, &) = 0

. They also provide mechanisms for accessing and altering
the value of the independent variable W. The defined methods are:

q SetAllDerivatives

q GetAllDerivatives

q GetDerivatives

q GetDiffJacobianStruct

q GetAllDiffJacobianValues

q GetDiffJacobianValues

q SetIndependentVar

q GetIndependentVar

135

• 6HW$OO'HULYDWLYHV

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH SetAllDerivatives

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the numerical value of all the derivatives. The length of the array supplied must equal the
number of variables: values for derivatives which do not appear in any of the equations can be
ignored.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

VarValues

CapeArrayDouble the values of the derivatives.

([FHSWLRQV

No set of variables associated yet with this ESO.

Number of values provided not equal to the number of variables.

Not the same length in the two arrays.

136

• *HW$OO'HULYDWLYHV

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH GetAllDerivatives

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the values of the derivatives for all the variables. The length of the array returned will be
equal to the number of variables, but the values of derivatives which do not appear in the
equation system may be meaningless.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheValues

CapeArrayDouble the values of all the derivatives.

([FHSWLRQ

No set of variables associated yet with this ESO.

137

• *HW'HULYDWLYHV

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH GetDerivatives

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the value of a subset of the derivatives.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheIndices

CapeArrayLong the indices of the variables whose
derivatives we wish to get.

[out, return]

TheValues

CapeArrayDouble the values of the subset of derivatives.

([FHSWLRQV

No set of variables associated yet with this ESO.

Index out of range for some variables.

138

• *HW'LII-DFRELDQ6WUXFW

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH GetDiffJacobianStruct

5HWXUQV CapeError

'HVFULSWLRQ

Returns a matrix object which contains information on the structure of the differential Jacobian
matrix. The GetValues method of this object will provide values encoded as follows:

• -1.0 indicates an entry which cannot be computed by the ESO.

• 0.0 indicates an entry which will DOZD\V be zero.

• Any other value indicates a nonzero, computable entry.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

Matrix

ICapeNumericMatrix full or sparse matrix

([FHSWLRQ

None.

139

• *HW$OO'LII-DFRELDQ9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH GetAllDiffJacobianValues

5HWXUQV CapeError

'HVFULSWLRQ

Returns a matrix object whose GetValues method will provide the differential Jacobian values
at the ESO’s current variable values each time it is called (the values of entries indicated as
uncomputable in the matrix returned by GetDiffJacobianStruct will be meaningless, but the
call to GetValues�will not cause an error simply because such entries exist).

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheMatrix

ICapeNumericMatrix a Matrix object yielding the
differential Jacobian values.

([FHSWLRQ

None.

140

• *HW'LII-DFRELDQ9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(62

0HWKRG�1DPH GetDiffJacobianValues

5HWXUQV CapeError

'HVFULSWLRQ

Gets the values of selected entries of the differential Jacobian, at the current variable values of
the ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

 TheElementIndices

CapeArrayLong the indices of selected elements. The
semantics are those of the matrix’s
GetValues method.

[out, return]

TheValues

CapeArrayDouble the values of the requested elements.

([FHSWLRQ

 None.

141

• 6HW,QGHSHQGHQW9DU

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH SetIndependentVar

5HWXUQV CapeError

'HVFULSWLRQ

Sets the value of the independent variable in the DAESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

IndVarValue

CapeDouble the value of the independent variable

([FHSWLRQV

None.

142

• *HW,QGHSHQGHQW9DU

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH GetIndependentVar

5HWXUQV CapeError

'HVFULSWLRQ

Gets the current value of the independent variable in the DAESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

IndVarValue

CapeDouble the value of the independent variable

([FHSWLRQV

None.

143

�������� *OREDO�(62�LQWHUIDFH���,&DSH1XPHULF*OREDO(62
,QKHULWV�IURP��ICapeUtilityComponent

This interface is there to allow concatenation of multiples ESOs in the case we want to aggregate
multiple ESOs (in the case of a flowsheet) in a single ESO.

It has specific methods for that.

• 6HW/LVW2I(62V

,QWHUIDFH�1DPH ,&DSH1XPHULF*OREDO(62

0HWKRG�1DPH SetListOfESOs

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the list of all the ESOs included in this Global ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

ListOfESOs

CapeArrayNumericES
O

the list of the ESOs the Global ESO is
composed of.

([FHSWLRQ

 Incompatible ESO types.

144

• *HW/LVW2I(62V

,QWHUIDFH�1DPH ,&DSH1XPHULF*OREDO(62

0HWKRG�1DPH GetListOfESOs

5HWXUQV CapeError

'HVFULSWLRQ

 Gets the list of all the ESOs included in this Global ESO.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

ListOfESOs

CapeArrayNumericES
O

the list of the ESOs the Global ESO is
composed of.

([FHSWLRQ

None.

145

�������� *OREDO�/$(62�LQWHUIDFH���,&DSH1XPHULF*OREDO/$(62
,QKHULWV�IURP��ICapeNumericGlobalESO and ICapeNumericLAESO

This GlobalESO is a list of LAESOs and inherits from LAESO and GlobalESO.

��������� *OREDO�1/$(62�LQWHUIDFH���,&DSH1XPHULF*OREDO1/$(62
,QKHULWV�IURP��ICapeNumericGlobalESO and ICapeNumericNLAESO

This GlobalESO is a list of NLAESOs and inherits from NLAESO and GlobalESO.

��������� *OREDO�'$(62�LQWHUIDFH���,&DSH1XPHULF*OREDO'$(62
,QKHULWV�IURP��ICapeNumericGlobalESO and ICapeNumericDAESO

This GlobalESO is a list of DAESOs and inherits from DAESO and GlobalESO.

146

������ 6ROYHU�&RPSRQHQW

 This part describes all the interfaces and their associated methods for the Solver Component itself.
The different interfaces are:

• ICapeNumericSolverManager. This interface creates an instance of the Solver Component.

• ICapeNumericSolver. This interface provides facilities that are common to the different kinds
of solvers.

• ICapeNumericLASolver. This interface provides facilities which are specific to Solvers of
Linear Algebraic equation systems.

• ICapeNumericNLASolver. This interface provides facilities which are specific to Solvers of
Non Linear Algebraic equation systems.

• ICapeNumericDAESolver. This interface provides facilities which are specific to Solvers of
Differential Algebraic equation systems.

147

�������� 6ROYHU�0DQDJHU�LQWHUIDFH���,&DSH1XPHULF6ROYHU0DQDJHU
,QKHULWV�IURP��ICapeUtilityComponent

We first need to have a factory to create an instance of the Solver Component for a specific ESO
from a specific type, either linear, non linear or differential.

• &UHDWH6ROYHU

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU0DQDJHU

0HWKRG�1DPH CreateSolver

5HWXUQV CapeError

'HVFULSWLRQ

 Creates a specific Solver Component of the type appropriate to the input argument.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheModel

ICapeNumericModel :
CapeInterface

the reference of the Model to be
solved.

[in]

theSolverType

CapeSolverType the type of the Solver to be created.

[out, return]

theSolver

ICapeNumericSolver:C
apeInterface

the reference of the Solver Component
created.

([FHSWLRQV

The total number of equations in the Model differs from the number of variables.

Other possible errors.

148

�������� 1XPHULF�6ROYHU�LQWHUIDFH���,&DSH1XPHULF6ROYHU
,QKHULWV�IURP��ICapeUtilityComponent

This interface exists to provide facilities for identifying the various algorithmic parameters (H�J�
convergence accuracy, integration error tolerances HWF.) that are recognised by a numerical solver,
and for altering their values if necessary.

We have also grouped here all the methods that are common to the different kinds of solvers. Six
methods have been defined:

q

149

GetParameterList

q SetParameter

q Solve

q GetSolution

q Destroy

q SetReportingInterface

150

• *HW3DUDPHWHU/LVW

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH GetParameterList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the parameters defined for this Solver class.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheListOfParameters

CapeArrayNumericPu
blicParameter

the list of all the Public Parameter
available for this class of Solver.

([FHSWLRQ

None.

151

• 6HW3DUDPHWHU

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH SetParameter

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the current value of a specific parameter to be used by the constructor of that class to
create an instance of that object.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheParameterName

CapeString the name of the parameter to be set.

[in]

TheParameterValue

CapeVariant the value of that particular parameter.

([FHSWLRQV

Invalid type of the value.

Invalid parameter name.

.

152

• 6ROYH

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH Solve

5HWXUQV CapeError

'HVFULSWLRQ

Attempts to solve the system of equations defined within the Model associated with this solver
instance. Return will occur in different circumstances:

• The attempt succeeds.

• The solver gives up.

• An unexpected problem («exception») arises.

If the underlying Model contains one or more STNs, the Solver may consider a switch to a
different set of active states necessary to finding a solution. In this case, it may use the
MoveToNextState method of one or more of the Model’s STNs during the computation. The
numerical values held in the model on return should be consistent with the set of states which
are active on return.

Distinction between the first three types of return will be made by examining the return
argument (one component of this will be a general OK/Error flag, where Error indicates an
exception, while another will be a Success/Failure flag).

1RWHV : The initial guesses for this solution will be the current variable values of the Model.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheStatus

CapeLong a code indicating if a solution has been
found and under which conditions
(Ex : MaxIterations reached or some
more complex conditions especially in
the case of a DAE Solver). This will
need further investigations.

([FHSWLRQV

 Various exceptions could appear in this method, like LA Solver not solvable, or initials values
not set, etc.

153

• *HW6ROXWLRQ

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH GetSolution

5HWXUQV CapeError

'HVFULSWLRQ

 Gets all the values of the variables that solve this System.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheValues

CapeArrayDouble the array of the P free variables in the
system.

([FHSWLRQ

No solution is available: either the Solve method has not been called, or it has ended with an
error.

154

• 'HVWUR\

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH Destroy

5HWXUQV CapeError

'HVFULSWLRQ

Deletes the Solver Component and all the objects associated to this particular Solver
Component.

$UJXPHQWV

None.

([FHSWLRQ

 None.

155

• 6HW5HSRUWLQJ,QWHUIDFH

,QWHUIDFH�1DPH ,&DSH1XPHULF6ROYHU

0HWKRG�1DPH SetReportingInterface

5HWXUQV CapeError

'HVFULSWLRQ

Sets the reference to an object in charge of managing some reporting at each step of the
process.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

ReportingInterface

CapeInterface the object reference of the reporting
object.

([FHSWLRQ

None.

5HPDUN

The reporting interface will be called by the Solver:

• Immediately on entry to AdvanceToNextEvent.

• When the independent variable reaches a value specified by it (see interface).

• Before and after all discontinuities handled internally be the Solver.

• Immediately before return from AdvanceToNextEvent.

 It is its own responsibility to decide what to do and which information needs to be displayed.

156

�������� 1XPHULF�/$�6ROYHU�LQWHUIDFH���,&DSH1XPHULF/$6ROYHU
,QKHULWV�IURP��ICapeNumericSolver

No specific methods have been defined for this kind of solver and no assumption has been made
either for the representation of the vector and matrix of the system. It is left open to the
implementation.

We have assumed that the Solve method get the [A] matrix and the [B] vector of the [A][X]=[B]
system using the already defined methods.

The [A] matrix is given by the GetJacobianValues method of the ESO and the [B] vector is equal
to minus the GetResiduals method with all the variables set to zero. The [X] vector result is given
by the GetSolution method.

157

�������� 1XPHULF�1/$�6ROYHU�LQWHUIDFH���,&DSH1XPHULF1/$6ROYHU
,QKHULWV�IURP��ICapeNumericSolver

In this section we define the interfaces related to the solution of sets of nonlinear algebraic
equations.

This interface defines methods for the identification and setting of parameters that will occur in DOO
CAPE-OPEN compliant nonlinear algebra components. A small number of such generic
parameters have been identified; separate methods are defined for obtaining information on, and
changing the value of each such parameter. Five methods have been defined:

q SetCvgTolerance

q GetCvgTolerance

q SetMaxIterations

q GetMaxIterations

q DoNIterations

158

• 6HW&YJ7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF1/$6ROYHU

0HWKRG�1DPH SetCvgTolerance

5HWXUQV CapeError

'HVFULSWLRQ

Sets the convergence tolerance to be used in solving a nonlinear system. The precise
interpretation of this parameter will depend on individual implementations; the nature of the
convergence criterion used by nonlinear solvers is not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

CTolValue

CapeDouble the convergence tolerance value.

([FHSWLRQ

None.

159

• *HW&YJ7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF1/$6ROYHU

0HWKRG�1DPH GetCvgTolerance

5HWXUQV CapeError

'HVFULSWLRQ

Gets information on the convergence tolerance to be used in solving a nonlinear system, as
well as its current value. The precise interpretation of this parameter will depend on individual
implementations; the nature of the convergence criterion used by nonlinear solvers is not
defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

CTolValue

CapeDouble the convergence tolerance value.

([FHSWLRQ

 No value set for the convergence tolerance.

160

• 6HW0D[,WHUDWLRQV

,QWHUIDFH�1DPH ,&DSH1XPHULF1/$6ROYHU

0HWKRG�1DPH SetMaxIterations

5HWXUQV CapeError

'HVFULSWLRQ

Sets the maximum number of iterations to be used in solving a nonlinear system. The precise
interpretation of this parameter will depend on individual implementations; the nature of what
constitutes an «iteration» used by nonlinear solvers is not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

MaxItsValue

CapeLong the maximum number of iterations.

([FHSWLRQ

None.

.

161

• *HW0D[,WHUDWLRQV

,QWHUIDFH�1DPH ,&DSH1XPHULF1/$6ROYHU

0HWKRG�1DPH GetMaxIterations

5HWXUQV CapeError

'HVFULSWLRQ

Gets information on the maximum number of iterations to be used in solving a nonlinear
system, as well as its current value. The precise interpretation of this parameter will depend on
individual implementations; the nature of what constitutes an «iteration» used by nonlinear
solvers is not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

MaxItsValue

CapeLong the maximum number of iterations.

([FHSWLRQ

 No value set for the maximum number of iterations.

162

• 'R1,WHUDWLRQV

,QWHUIDFH�1DPH ,&DSH1XPHULF1/$6ROYHU

0HWKRG�1DPH DoNIterations

5HWXUQV CapeError

'HVFULSWLRQ

Perform N iterations on the nonlinear algebra problem. The possible returns are the same as for
Solve, except that in this case «OK+Failure» may merely indicate that more iterations are
needed.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

NbIteration

CapeLong the number of iterations to be
performed.

[out, return]

ReturnCode

CapeLong depends of the conditions reached
(0=normal return, or 1=convergence
tolerance, 2=max iterations reached
before N iterations).

([FHSWLRQV

Same exceptions as in the Solve method. Various exceptions could appear in this method, like
LA Solver not solvable, or initials values not set, etc.

163

�������� 1XPHULF�'$(�6ROYHU�LQWHUIDFH���,&DSH1XPHULF'$(6ROYHU
,QKHULWV�IURP��ICapeNumericSolver

 In this section, we describe the interfaces related to the solution of differential-algebraic equation
systems.

 This interface defines methods for the identification and setting of parameters that will occur in DOO
CAPE-OPEN compliant differential-algebraic components. A small number of such generic
parameters have been identified; separate methods are defined for obtaining information on, and
changing the value of each such parameter. The defined methods are:

q SetRelTolerance

q GetRelTolerance

q SetAbsTolerance

q GetAbsTolerance

q AdvanceToNextEvent

164

• 6HW5HO7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH SetRelTolerance

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the relative tolerance values to be used in performing local error tests while solving a
DAE system. The precise interpretation of this parameter will depend on individual
implementations; the exact nature of the error measure used (H�J� local truncation error, local
error HWF�) and the way in which this is estimated are not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

RelTolValues

CapeArrayDouble the relative tolerance values.

([FHSWLRQ

Incorrect size of the array.

165

• *HW5HO7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH GetRelTolerance

5HWXUQV CapeError

'HVFULSWLRQ

 Gets information on the relative tolerance to be used in performing local error tests while
solving a DAE system, as well as its current value. The precise interpretation of this parameter
will depend on individual implementations; the exact nature of the error measure used (H�J�
local truncation error, local error HWF�), and the way in which this is estimated, are not defined
by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheRelTolValues

CapeArrayDouble the relative tolerance values.

([FHSWLRQ

Tolerance not set.

166

• 6HW$EV7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH SetAbsTolerance

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the absolute tolerance to be used in performing local error tests while solving the DAE
system. The precise interpretation of this parameter will depend on individual
implementations; the exact nature of the error measure used (H�J� local truncation error, local
error HWF�), and the way in which this is estimated, are not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

AbsTolValues

CapeArrayDouble the absolute tolerance values.

([FHSWLRQ

Incorrect size of the array.

167

• *HW$EV7ROHUDQFH

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH GetAbsTolerance

5HWXUQV CapeError

'HVFULSWLRQ

 Gets information on the absolute tolerance to be used in performing local error tests while
solving a DAE system, as well as the current value of this parameter. The precise interpretation
of this parameter will depend on individual implementations; the exact nature of the error
measure used (H�J� local truncation error, local error HWF�) and the way in which this is
estimated are not defined by CAPE-OPEN.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheAbsTolValues

CapeArrayDouble the absolute tolerance values.

([FHSWLRQ

 Tolerance not set.

168

• $GYDQFH7R1H[W(YHQW

,QWHUIDFH�1DPH ,&DSH1XPHULF'$(6ROYHU

0HWKRG�1DPH AdvanceToNextEvent

5HWXUQV CapeError

'HVFULSWLRQ

Advances the solution of the DAESO with respect to its independent variable until some
Event(s) occurs, or an error occurs in the solution process.

1RWH� ��For dynamic problems, we cannot be certain that the Solver will be able to identify
precisely the single Event which causes termination. Thus we allow it to provide a list of Event
objects, together with independent variable values which «bracket» the termination point.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

EndConditions

CapeArrayNumericEv
entInfo

the list of stopping conditions for this
call.

[out]

TimeBefore

CapeDouble the independent variable value at the
beginning of the internal step.

[out]

TimeAfter

CapeDouble the independent variable value at the
end of the internal step.

[out, return]

ListOfEvents

CapeArrayNumericEv
entInfo

a list indicating the cause(s) of
termination.

([FHSWLRQV

To be defined later.

169

�� ,QWHUIDFH�VSHFLILFDWLRQV

This section contains the CORBA IDL instructions. They are compilable files that you
can directly use for producing CAPE-OPEN compliant components for Solvers. No
COM IDL was developed so far.

���� &25%$�,'/

������ &RPPRQ�GHILQLWLRQV

�������� 8WLOLW\�'HILQLWLRQV
//
// CORBA CapeUtilityDefinitions.idl
//

#ifndef CapeUtilityDefinitions_idl
#define CapeUtilityDefinitions_idl

//#include corba.h //only for C++

// Primitive common data types

typedef boolean CapeBoolean;
typedef sequence<CapeBoolean> CapeArrayBoolean;

typedef char CapeChar;
typedef sequence<CapeChar> CapeArrayChar;

typedef short CapeShort;
typedef sequence<CapeShort> CapeArrayShort;

typedef long CapeLong;
typedef sequence<CapeLong> CapeArrayLong;

typedef float CapeFloat;
typedef sequence<CapeFloat> CapeArrayFloat;

typedef double CapeDouble;
typedef sequence<CapeDouble> CapeArrayDouble;

typedef string CapeString;
typedef sequence<CapeString> CapeArrayString;

typedef any CapeVariant;
typedef sequence<CapeVariant> CapeArrayVariant;

typedef Object CapeInterface;
typedef sequence<CapeInterface> CapeArrayInterface;

// Exceptions

exception CapeException {
CapeLong type;
CapeLong minus;

170

CapeLong completed;
CapeString idlmethod;
CapeString explanation;

};

#endif

�������� 8WLOLW\�&RPSRQHQW
//
// CORBA CapeUtilityComponent.idl
//

#include "CapeUtilityDefinitions.idl"

#ifndef CapeUtilityComponent_idl
#define CapeUtilityComponent_idl

module CapeUtilityComponent {

// CORBA Utility Component interface : ICapeUtilityComponent

interface ICapeUtilityComponent {

CapeString GetVersionNumber() raises(CapeException);

CapeString GetComponentName() raises(CapeException);

CapeString GetComponentDescription() raises(CapeException);

};
typedef sequence<ICapeUtilityComponent> CapeArrayUtilityComponent;

// Definition of Numeric structures that should be in Common

struct CapePublicParameter {
CapeString name;
CapeString description;
CapeLong lowerBound;
CapeLong upperBound;
CapeVariant defaultValue;
CapeVariant currentValue;

};
typedef sequence<CapePublicParameter> CapeArrayPublicParameter;

}; // end of CapeUtilityComponent module

#endif

������ 0RGHO�&RPSRQHQW

//
// CORBA CapeNumericModelComponent.idl
//

171

#include "CapeUtilityComponent.idl"
#include "CapeNumericESOComponent.idl"

#ifndef CapeNumericModelComponent_idl
#define CapeNumericModelComponent_idl

module CapeNumericModelComponent {

// Some enumerated types

typedef enum ModelTypes {
CONTINUOUS,
HIERARCHICAL,
AGGREGATE

} CapeModelType;

typedef enum EventTypes {
BASIC,
COMPOSITE,
BINARY,
UNARY

} CapeEventType;

typedef enum EventInfoKinds {
EXTERNAL,
INTERNAL

} CapeEventInfoKind;

typedef enum LogicalRelations {
GEQ,
LEQ,
GT,
LT

} CapeLogicalRelation;

typedef enum LogicalOperators {
AND,
OR,
NOT

} CapeLogicalOperator;

interface ICapeNumericModelManager;
typedef sequence<ICapeNumericModelManager> CapeArrayNumericModelManager;
interface ICapeNumericModel;
typedef sequence<ICapeNumericModel> CapeArrayNumericModel;
interface ICapeNumericContinuousModel;
typedef sequence<ICapeNumericContinuousModel>
CapeArrayNumericContinuousModel;
interface ICapeNumericHierarchicalModel;
typedef sequence<ICapeNumericHierarchicalModel>
CapeArrayNumericHierarchicalModel;
interface ICapeNumericAggregateModel;
typedef sequence<ICapeNumericAggregateModel>
CapeArrayNumericAggregateModel;
interface ICapeNumericSTN;
typedef sequence<ICapeNumericSTN> CapeArrayNumericSTN;
interface ICapeNumericEvent;
typedef sequence<ICapeNumericEvent> CapeArrayNumericEvent;

172

interface ICapeNumericBasicEvent;
typedef sequence<ICapeNumericBasicEvent> CapeArrayNumericBasicEvent;
interface ICapeNumericCompositeEvent;
typedef sequence<ICapeNumericCompositeEvent>
CapeArrayNumericCompositeEvent;
interface ICapeNumericBinaryEvent;
typedef sequence<ICapeNumericBinaryEvent> CapeArrayNumericBinaryEvent;
interface ICapeNumericUnaryEvent;
typedef sequence<ICapeNumericUnaryEvent> CapeArrayNumericUnaryEvent;
interface ICapeNumericEventInfo;
typedef sequence<ICapeNumericEventInfo> CapeArrayNumericEventInfo;
interface ICapeNumericExternalEventInfo;
typedef sequence<ICapeNumericExternalEventInfo>
CapeArrayNumericExternalEventInfo;
interface ICapeNumericInternalEventInfo;
typedef sequence<ICapeNumericInternalEventInfo>
CapeArrayNumericInternalEventInfo;

// ***** CORBA Model Manager interface : ICapeNumericModelManager

interface ICapeNumericModelManager :
CapeUtilityComponent::ICapeUtilityComponent {

ICapeNumericModel CreateModel(in CapeModelType typeOfTheModel)
raises (CapeException);

};

// ***** CORBA Simulation Model interface : ICapeNumericModel

interface ICapeNumericModel :
CapeUtilityComponent::ICapeUtilityComponent {

CapeUtilityComponent::CapeArrayPublicParameter GetParameterList()
raises (CapeException);

void SetParameter(in CapeString parameterName, in CapeVariant
parameterValue)

raises (CapeException);
CapeLong SetVariableIndex(in CapeArrayLong varIndices)

raises (CapeException);
CapeNumericESOComponent::ICapeNumericESO SetActiveESO()

raises (CapeException);
CapeNumericESOComponent::ICapeNumericESO GetActiveESO()

raises (CapeException);
void SetCommonESO(in CapeNumericESOComponent::ICapeNumericESO

anESO)
raises (CapeException);

CapeNumericESOComponent::ICapeNumericESO GetCommonESO()
raises (CapeException);

CapeArrayNumericEventInfo GetActiveEvents()
raises (CapeException);

ICapeNumericExternalEventInfo AddExternalEvent(in
ICapeNumericEvent anEvent)

raises (CapeException);
void Destroy();

};

173

// ***** CORBA Continuous Simulation Model interface :
ICapeNumericContinuousModel

interface ICapeNumericContinuousModel : ICapeNumericModel {

};

// ***** CORBA Hierarchical Simulation Model :
ICapeNumericHierarchicalModel

interface ICapeNumericHierarchicalModel : ICapeNumericModel {

CapeArrayNumericSTN GetSTNList() raises (CapeException);
};

// ***** CORBA Aggregate Simulation Model : ICapeNumericAggregateModel

interface ICapeNumericAggregateModel : ICapeNumericModel {

CapeArrayNumericModel GetModelList() raises (CapeException);
void SetConnectionEquation(in ICapeNumericModel inputModel,

 in CapeLong inputIndex,
 in ICapeNumericModel

outputModel,
 in CapeLong outputIndex)

raises (CapeException);
};

// ***** CORBA State Transition Network : ICapeNumericSTN

interface ICapeNumericSTN : CapeUtilityComponent::ICapeUtilityComponent
{

void SetCurrentState(in CapeString theStateName) raises
(CapeException);

CapeString GetCurrentState() raises (CapeException);
ICapeNumericModel GetParentModel() raises (CapeException);
CapeArrayNumericInternalEventInfo GetPossiblesTransitions()

 raises (CapeException);
CapeDouble GetStateTransitions(in CapeString fromState,

 out
CapeArrayNumericEventInfo eventList,

 out CapeArrayString
stateList)
 raises (CapeException);

CapeArrayString GetStateList() raises (CapeException);
ICapeNumericModel GetStateModel(in CapeString stateName)

raises (CapeException);
CapeString MoveToNextState(in ICapeNumericEventInfo firedEvent)

raises (CapeException);
};

// ***** CORBA Event : ICapeNumericEvent

interface ICapeNumericEvent :
CapeUtilityComponent::ICapeUtilityComponent {

174

CapeBoolean eval() raises (CapeException);
CapeEventType QueryType() raises (CapeException);

};

// ***** CORBA Basic Event : ICapeNumericBasicEvent

interface ICapeNumericBasicEvent : ICapeNumericEvent {

CapeLOng GetVariable() raises (CapeException);
CapeLogicalRelation GetLogicalRelation() raises (CapeException);
CapeDouble GetValue() raises (CapeException);

};

// ***** CORBA Composite Event : ICapeNumericCompositeEvent

interface ICapeNumericCompositeEvent :ICapeNumericEvent {

ICapeNumericEvent GetRightOperand() raises (CapeException);
CapeLogicalOperator GetLogicalOperator()

raises (CapeException);
};

// CORBA Binary Event : ICapeNumericBinaryEvent

interface ICapeNumericBinaryEvent : ICapeNumericCompositeEvent {

ICapeNumericEvent GetLeftOperand() raises (CapeException);
};

// ***** CORBA Unary Event : ICapeNumericUnaryEvent

interface ICapeNumericUnaryEvent : ICapeNumericCompositeEvent {

};

// ***** CORBA Event Info : ICapeNumericEventInfo

interface ICapeNumericEventInfo :
CapeUtilityComponent::ICapeUtilityComponent {

CapeEventInfoKind QueryKind() raises (CapeException);
ICapeNumericEvent GetSubEvent() raises (CapeException);
ICapeNumericEvent GetEvent() raises (CapeException);

};

// ***** CORBA External Event Info : ICapeNumericEventInfo

interface ICapeNumericExternalEventInfo : ICapeNumericEventInfo {

};

// ***** CORBA Internal Event Info : ICapeNumericEventInfo

interface ICapeNumericInternalEventInfo : ICapeNumericEventInfo {

175

ICapeNumericSTN GetSTN() raises (CapeException);
CapeString GetToState() raises (CapeException);

};

#endif

}; // end CapeNumericModelComponent module

176

������ (62�&RPSRQHQW

//
// CORBA CapeNumericESOComponent.idl
//

#include "CapeUtilityComponent.idl"

#ifndef CapeNumericESOComponent_idl
#define CapeNumericESOComponent_idl

module CapeNumericESOComponent {

typedef enum ESOtypes {
LA,
NLA,
DAE,
GLOBAL

} CapeESOType;

typedef enum MatrixTypes {
FULL,
UNSTRUCTURED,
BANDED

} CapeMatrixType;

typedef enum QueryOrderings {
ROW,
COLUMN,
OTHER

} CapeMatrixOrdering;

interface ICapeNumericMatrix;
typedef sequence<ICapeNumericMatrix> CapeArrayNumericMatrix;
interface ICapeNumericFullMatrix;
typedef sequence<ICapeNumericFullMatrix> CapeArrayNumericFullMatrix;
interface ICapeNumericUnstructuredMatrix;
typedef sequence<ICapeNumericUnstructuredMatrix>
CapeArrayNumericUnstructuredMatrix;
interface ICapeNumericBandedMatrix;
typedef sequence<ICapeNumericBandedMatrix> CapeArrayNumericBandedMatrix;
interface ICapeNumericESOManager;
typedef sequence<ICapeNumericESOManager> CapeArrayNumericESOManager;
interface ICapeNumericESO;
typedef sequence<ICapeNumericESO> CapeArrayNumericESO;
interface ICapeNumericLAESO;
typedef sequence<ICapeNumericLAESO> CapeArrayNumericLAESO;
interface ICapeNumericNLAESO;
typedef sequence<ICapeNumericNLAESO> CapeArrayNumericNLAESO;
interface ICapeNumericDAESO;
typedef sequence<ICapeNumericDAESO> CapeArrayNumericDAESO;
interface ICapeNumericGlobalESO;
typedef sequence<ICapeNumericGlobalESO> CapeArrayNumericGlobalESO;
interface ICapeNumericGlobalLAESO;
typedef sequence<ICapeNumericGlobalLAESO> CapeArrayNumericGlobalLAESO;
interface ICapeNumericGlobalNLAESO;
typedef sequence<ICapeNumericGlobalNLAESO> CapeArrayNumericGlobalNLAESO;
interface ICapeNumericGlobalDAESO;

177

typedef sequence<ICapeNumericGlobalDAESO> CapeArrayNumericGlobalDAESO;

// ***** CORBA Matrix interface : ICapeNumericMatrix

interface ICapeNumericMatrix :
CapeUtilityComponent::ICapeUtilityComponent {

CapeLong GetNumRows() raises(CapeException);
CapeLong GetNumCols() raises(CapeException);
CapeBoolean QuerySymmetric() raises(CapeException);
CapeMatrixOrdering QueryOrdering() raises(CapeException);
CapeMatrixType QueryType() raises(CapeException);
CapeArrayDouble GetValues() raises(CapeException);

};

// ***** CORBA FullMatrix interface : ICapeNumericFullMatrix

interface ICapeNumericFullMatrix : ICapeNumericMatrix {

};

// ***** CORBA Unstructured Matrix interface :
ICapeNumericUnstructuredMatrix

interface ICapeNumericUnstructuredMatrix : ICapeNumericMatrix {

void GetStructure(out CapeArrayDouble rowIndices,
 out CapeArrayDouble colIndices)

 raises(CapeException);

};

// ***** CORBA Banded Matrix interface : ICapeNumericBandedMatrix

interface ICapeNumericBandedMatrix : ICapeNumericMatrix {

CapeLong GetBandWidth() raises(CapeException);

};

// ***** CORBA ESO Manager interface : ICapeNumericESOManager

interface ICapeNumericESOManager :
CapeUtilityComponent::ICapeUtilityComponent {

ICapeNumericESO CreateESO(in CapeESOType typeOfESO)
raises (CapeException);

};

// ***** CORBA Equation Set Object (ESO) interface : ICapeNumericESO

interface ICapeNumericESO : CapeUtilityComponent::ICapeUtilityComponent
{

178

CapeUtilityComponent::CapeArrayPublicParameter GetParameterList()
raises (CapeException);

void SetParameter(in CapeString parameterName, in CapeVariant
parameterValue)

raises (CapeException);
CapeLong GetNumVars() raises(CapeException);
CapeLong GetNumEqns() raises(CapeException);
void SetFixedVariables(in CapeArrayLong varIndices,

 in CapeArrayDouble varValues)
raises(CapeException);

void SetAllVariables(in CapeArrayDouble varValues)
 raises(CapeException);

void SetVariables(in CapeArrayLong varIndices,
 in CapeArrayDouble varValues)

 raises(CapeException);
CapeArrayDouble GetAllVariables() raises(CapeException);
CapeArrayDouble GetVariables(in CapeArrayLong varIndices)

raises(CapeException);
CapeArrayDouble GetAllResiduals() raises(CapeException);
CapeArrayDouble GetResiduals(in CapeArrayLong eqnIndices)

raises(CapeException);
ICapeNumericMatrix GetJacobianStruct() raises(CapeException);
ICapeNumericMatrix GetAllJacobianValues()

raises(CapeException);
CapeArrayDouble GetJacobianValues(in CapeArrayLong indices)

 raises(CapeException);
void SetVariablesIndex(in CapeArrayLong varIndices);
CapeArrayDouble GetLowerBounds() raises(CapeException);
CapeArrayDouble GetUpperBounds() raises(CapeException);
void Destroy();

};

// ***** CORBA Linear Algebraic ESO (LA ESO) interface :
ICapeNumericESO

interface ICapeNumericLAESO : ICapeNumericESO {

void SetLHS(in ICapeNumericMatrix values) raises (CapeException);
void SetRHS(in CapeArrayDouble values) raises (CapeException);
ICapeNumericMatrix GetLHS() raises (CapeException);
CapeArrayDouble GetRHS() raises (CapeException);

};

// ***** CORBA Non Linear Algebraic ESO (NLA ESO) interface :
ICapeNumericESO

interface ICapeNumericNLAESO : ICapeNumericESO {

};

// ***** CORBA Differential Algebraic ESO (DAESO) interface :
ICapeNumericDAESO

interface ICapeNumericDAESO : ICapeNumericESO {

179

void SetAllDerivatives(in CapeArrayDouble varValues)
 raises(CapeException);

CapeArrayDouble GetAllDerivatives() raises(CapeException);
CapeArrayDouble GetDerivatives(in CapeArrayLong varIndices)

raises(CapeException);
ICapeNumericMatrix GetDiffJacobianStruct() raises(CapeException);
ICapeNumericMatrix GetAllDiffJacobianValues()

 raises(CapeException);
CapeArrayDouble GetDiffJacobianValues(in CapeArrayLong indices)

 raises(CapeException);
void SetIndependentVar(in CapeDouble indVar)

raises(CapeException);
CapeDouble GetIndependentVar() raises(CapeException);

};

// ***** CORBA Global ESO (GlobalESO) interface : ICapeNumericGlobalESO

interface ICapeNumericGlobalESO : ICapeNumericESO {

void SetListOfESOs(in CapeArrayNumericESO listOfESOs);
CapeArrayNumericESO GetListOfESOs();

};

// ***** CORBA Global LAESO (GlobalLAESO) interface :
ICapeNumericGlobalLAESO

interface ICapeNumericGlobalLAESO : ICapeNumericLAESO,
ICapeNumericGlobalESO {

};

// ***** CORBA Global NLAESO (GlobalNLAESO) interface :
ICapeNumericGlobalNLAESO

interface ICapeNumericGlobalNLAESO : ICapeNumericNLAESO,
ICapeNumericGlobalESO {

};

// ***** CORBA Global DAESO (GlobalDAESO) interface :
ICapeNumericGlobalDAESO

interface ICapeNumericGlobalDAESO : ICapeNumericDAESO,
ICapeNumericGlobalESO {

};

#endif

}; // end CapeNumericESOComponent module

180

������ 6ROYHU�&RPSRQHQW

//
// CORBA CapeNumericSolverComponent.idl
//

#include "CapeNumericModelComponent.idl"

#ifndef ICapeNumericSolverComponent_idl
#define ICapeNumericSolverComponent_idl

module CapeNumericSolverComponent {

typedef enum Solvertypes {
LA,
NLA,
DAE

} CapeSolverType;

interface ICapeNumericSolverManager;
typedef sequence<ICapeNumericSolverManager>
CapeArrayNumericSolverManager;
interface ICapeNumericSolver;
typedef sequence<ICapeNumericSolver> CapeArrayNumericSolverComponent;
interface ICapeNumericLASolver;
typedef sequence<ICapeNumericLASolver> CapeArrayNumericLASolver;
interface ICapeNumericNLASolver;
typedef sequence<ICapeNumericNLASolver> CapeArrayNumericNLASolver;
interface ICapeNumericDAESolver;
typedef sequence<ICapeNumericDAESolver> CapeArrayNumericDAESolver;

// ***** CORBA Solver interface : ICapeNumericSolverManager

interface ICapeNumericSolverManager :
CapeUtilityComponent::ICapeUtilityComponent {

ICapeNumericSolver CreateSolver(
in CapeSolverType type,
in

CapeNumericModelComponent::ICapeNumericModel theModel)
raises (CapeException);

};

//***** CORBA Solver interface : ICapeNumericSolver

interface ICapeNumericSolver :
CapeUtilityComponent::ICapeUtilityComponent {

CapeUtilityComponent::CapeArrayPublicParameter GetParameterList()
raises (CapeException);

void SetParameter(in CapeString parameterName, in CapeVariant
parameterValue)

raises (CapeException);
CapeLong Solve() raises (CapeException);
CapeArrayDouble GetSolution() raises (CapeException);
CapeInterface SetReportingInterface() raises (CapeException);
void Destroy();

181

};

// ***** CORBA LA Solver interface : ICapeNumericLASolver

interface ICapeNumericLASolver : ICapeNumericSolver {

};

// ***** CORBA NLASolver interface : ICapeNumericNLASolver

interface ICapeNumericNLASolver : ICapeNumericSolver {

void SetCvgTolerance(in CapeDouble cvgValue)
raises (CapeException);

CapeDouble GetCvgTolerance() raises (CapeException);
void SetMaxIterations(in CapeLong maxIteration)

 raises (CapeException);
CapeLong GetMaxIterations() raises (CapeException);
CapeLong DoNIteration(in CapeLong nbIterations)

raises (CapeException);
};

// ***** CORBA DAESolver interface : ICapeNumericSolverDAESolver

interface ICapeNumericDAESolver : ICapeNumericSolver {

void SetRelTolerance(in CapeArrayDouble relTolValue)
raises (CapeException);

CapeArrayDouble GetRelTolerance()
raises (CapeException);

void SetAbsTolerance(in CapeArrayDouble absTolValues)
 raises (CapeException);

CapeArrayDouble GetAbsTolerance()
raises (CapeException);

CapeNumericModelComponent::CapeArrayNumericEventInfo
AdvanceToNextEvent(

in
CapeNumericModelComponent::CapeArrayNumericEventInfo endConditions,

out CapeDouble timeBefore,
out CapeDouble timeAfter)

 raises (CapeException);

};

#endif

}; // End of CapeNumericSolverSolver

182

���� &20�,'/

This section needs to be completed.

������ &RPPRQ�GHILQLWLRQV

������ 0RGHO�&RPSRQHQW

������ (62�&RPSRQHQW

������ 6ROYHU�&RPSRQHQW

183

�� 1RWHV�RQ�DQDO\VLV�DQG�LQWHUIDFH�VSHFLILFDWLRQV

We tried to summarise in this part of the document some of the remaining issues and problems
that need further investigations and discussions.

���� 'LIIHUHQFHV�EHWZHHQ�&25%$�DQG�&20

As already mentioned before in this document there is some important differences between COM
and CORBA. One of them is the way exceptions are handled in CORBA and in COM.

This could lead to different interfaces.

���� 3XEOLF�3DUDPHWHU

In order to allow some customisation of each component when an instance of this component is
created we have defined a Public Parameter structure which can be used either by a Solver, a
Model or an ESO. Each parameter value can be any object instance.

This could be difficult to implement, and will need some communication with the user (through a
user interface or some language specification) to get the correct values for each of these
parameters.

184

• *HW3DUDPHWHU/LVW

,QWHUIDFH�1DPH

0HWKRG�1DPH GetParameterList

5HWXUQV CapeError

'HVFULSWLRQ

Gets the list of all the public parameters defined for a given class (ESO, Model, Solver, etc.).
This is a Class method that allows to customise the objects that will be created by the constructor
of that Class.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[out, return]

TheListOfParameters

CapeArrayNumericPu
blicParameter

the list of all the Public Parameters
available for this class.

([FHSWLRQV

None.

185

• 6HW3DUDPHWHU

,QWHUIDFH�1DPH

0HWKRG�1DPH SetParameter

5HWXUQV CapeError

'HVFULSWLRQ

 Sets the current value of a parameter in the parameter list.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheParameterName

CapeString the name of the parameter to be set.

[in]

TheParameterValue

CapeVariant the value of that particular parameter.

([FHSWLRQV

Invalid type of the value.

Invalid parameter name.

186

���� 5HSRUWLQJ

We have supposed that there is somewhere an object capable of displaying the information we
want to display during the process of solving the DAE System. It is the responsibility of the solver
component to inform this object each time new pieces of information have been calculated, but no
communication scheme has been defined yet. Here is a proposal for an IcapeNumericReport
Interface. It has not been integrated in the main body of the interface definitions since it remains a
general issue within the CAPE-OPEN project.

This interface requires the following enumerated type :

CapeNumericReportReason = (INITIAL, INDVARREACHED, BEFOREDISC,
AFTERDISC, FINAL)

187

• 5HSRUW0RGHO9DOXHV

,QWHUIDFH�1DPH ,&DSH1XPHULF5HSRUW

0HWKRG�1DPH ReportModelValues

5HWXUQV CapeError

'HVFULSWLRQ

Gives a reporting routine an opportunity to extract and display values from the Model, and
specify the next call.

$UJXPHQWV

1DPH 7\SH 'HVFULSWLRQ

[in]

TheModel

CapeInterface handle to the model which the Solver
is solving

[in]

ReasonForCall

CapeNumericReportRe
ason

why the reporting routine has been
called (see list under the
SetReportingInterface method).

[out]

NextTime

CapeDouble the value of the independent variable at
which the Solver should next be called
(unless an Event occurs)

([FHSWLRQV

None.

188

���� 7KHUPR�DQG�3K\VLFDO�3URSHUW\�3DFNDJHV

In order to do some calculation, the ESO package may need to access the thermodynamic
package. This has not been modelled yet. It means that the ESO should know in some way how to
access to the THRM package.

The problem is the same as for the reporting.

