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Summary

This document, which was produced by the Numerical work package, describes the
Interface Specifications for the Solver component of the CAPE-OPEN Interface
System. This document is written from the point of view of the software developer
who will be interested in developing CAPE-OPEN compliant software. Thus, the
emphasis in the main body of the document is on the precise definitions of the
concepts and interfaces. In particular, it includes detailed definitions (as well as
prototype code) for the interfaces relating to the solution of linear and nonlinear
algebraic equations, and the core functionality required for solution of differential-
algebraic systems (i.e. dynamic problems).

The document starts with a textual description of the requirements identified for an
open solver component. This is then expressed in Unified Modelling Language and
developed into a specification of the interfaces necessary for a CAPE-OPEN solver
component to plug into a compliant flowsheet simulator. These specifications are
provided in CORBA IDL.
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This document is intended primarily for software engineers, who are interested in producing
CAPE-OPEN compliant solver components.

All other readers need not go beyond Section 2 Requirements.
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1 Introduction

This document aims at defining CAPE-OPEN standard interfaces for Numerical Solvers. The
document starts with a textual description of the requirements identified for an open solver
component. This is done by introducing the key concepts on which these interfaces are based.
These key concepts are supported by a number of examples drawn from the current usage of
simulators.

The main body of this document describes the interfaces. A Unified Modelling Language (UML)
description is given. It begins with describing the actors and use cases. Indeed, in the UML

process, the first step is to express the user requirements in the form of a Use Case Moddl. It
identifies the “users” of the system, called Actors, and describes, in the form of Use Cases, what
they wish the system to do. It also identifies the boundaries of the system. Then the interfaces,
their methods and their collaboration process are expressed in a series of diagrams.

The document provides the interfaces necessary for a CAPE-OPEN solver component to plug into
a compliant flowsheet simulator. These specifications are provided in CORBA IDL.

The work process involved in the NUMR work package led to the production first of a Conceptual
Requirements document outlining what is the typical usage of solvers within a process simulator.
From this document, a list of use cases was drawn which then led to a number of Interim Interface
Specification Documents which were progressively modified through several reviewing steps.
Prototyping was developed concurrently and demonstrations took place with the prototypes
issued. The current document is a synthesis of all of these documents and the learning obtained to
date from the prototyping exercise.




2 Requirements

This chapter is devoted to a description of the usage made of solvers within process simulators.
After a short reminder of the general goal of setting Open interfaces between the components of a
simulator, afew key concepts are defined that will be centra to the interface model developed in
the next chapter. Typical usage of solvers within simulators is then textually described before
listing the main Use Cases considered in our approach.

2.1 User requirements for an Open Solver Component

2.1.1 Setting the Scene

Flowsheet simulators are designed to cal culate the behaviour of processes. They take a description
of the flowsheet topology and process requirements and assemble a model of the flowsheet from a
library of unit operations contained in the simulator. For example, the flowsheet below represents
asingle stage from an oil and gas separation system:

A 4

7
o] |

A\ 4

Figure 2-1 Single stage from an oil and gas separation system

This would be simulated in a typical commercial simulator from a description of the topology,
probably entered through a GUI and looking much like the above picture, plus a description of the
process requirements. It is a simple flowsheet that would use the flash, compressor, cooler and
junction unit operations, as shown in Figure 2-1.

Although the simulator mimics the plant’s behaviour, it is organised differently. For example, in
the plant the unit operations are connected together directly, e.g. the cooler connects directly to the
separator. In the simulator, the unit operations are not connected to each other, but only to the
executive. Also, in this plant there are 3 distinct flash separators, whereas in the simulator there is
only one flash algorithm, which is reused by the executive as required by the topology.




This is a straightforward flowsheet that could be adequately simulated by most simulators.
However, if, for instance, the separations were to be done with a membrane unit, it might be
necessary to use an externa representation of the membrane unit to capture the specific
performance of a proprietary membrane. Most simulators allow external unit operations to be
added, but, because of the proprietary nature of the interface between the unit operations library
and the executive and the monoalithic structure of the simulator, this is a bespoke activity for each
simulator. The result is a non-standard version of the simulator, which can be difficult and
expensive to maintain.

Flowsheet Simulator

Problem _
o Execut
Description |: xecutive Results

Propietary Interface

Join

Unit Operations
Library

Figure 2-2 Flowsheet simulator schema

The CAPE-OPEN (CO) project envisages a new situation whereby a solver (and other simulator
software sub-systems, such as thermodynamic or unit packages) can be bought off-the-shelf and
plugged directly into any compliant simulator without modification, compiling or linking and will
continue to work with subsequent versions of the simulator. All that is required is that the solver
and the simulators conform to the CAPE-OPEN Interface System. This System will be defined by
the CO project, which is organised into work packages. Three of these work packages deal with
the main sub-systems of a simulator that are likely to be exchanged: unit operations (UNIT),
thermodynamics (THRM) and numerical solvers (NUMR). This document is produced by the
NUMR work package. It starts by describing the requirements of the part of the CAPE-OPEN
Interface System dealing with solvers. These requirements are further described in Unified
Modédling Language (UML).

2.1.2 Architecture

The architecture of the CO system is based on an object-orientated technology, which alows
software systems to be constructed from software components. These components are able to talk
to each other via defined interfaces. The software components can come from different vendors
and may reside on the same machine or be on different machines across a network.




The CAPE-OPEN Interface System is a standard means of connecting an external software
component, which models, for example, a unit operation (UO), to any compliant simulator. The

Interface can be thought of as a “socket” and “plug”, which exchanges information between the
two parts. The simulator and UO do not have to know anything about the internal coding and
standards used by the other. The job of the interface is to translate requests for information or
action by either party into something the other understands. The same has to be true for any solver
component which can be thought as a plug, exchanging information with the socket from a UO or
from the simulator executive.

For example, these diagrams show some of the ways in which external facilities could
communicate with a host simulator through the interface that has been created by the CAPE-
OPEN work packages. Please note that these are purely conceptual represebhatieparate
connections shown represent the areas of responsibility of the different work packages,

rather than any physical segregation in the final interface.

Simulator

v
@External uo

O

Executive @

11

Libraries
U: Unit Interfaces
T: Thermo Interfaces
Unit Numerics N: Numeric Interfaces
Thermo

Figure 2-1 Areas of responsibility of the different work packages (approach 1)




This shows an external UO using the host simulator's thermodynamic facilities. The UO is
solving its own equations and so is unlikely to be sending numerical information to the simulator.
This is likely to be the default method of operation in sequential modular simulators.

Simulator
(Y)
Executive @
(N)
Libraries
Unit Numerics
Thermo

—

©

]

External Numeric

External UO@

j [ @External Thermo
(e ®

U: Unit Interfaces
T: Thermo Interfaces
N: Numeric Interfaces

Figure 2-2 Areas of responsibility of the different work packages (approach 2)

This shows an external UO using external thermodynamic and numerical facilities directly. It
assumes that the UO requires derivative information from the thermodynamic package, hence the
traffic on the part of the interface defined by the NUMR work package. Alternatively, the external
thermodynamics package could be plugged into the simulator using the CO Interface. It could still
be accessed by the external UO through the CO interface, but would then also be available to all
of the unit operations in the simulator’s standard library.

2.1.3 CO Objects Present in a Compliant Simulator

In software terms, this architecture requires the following types of objects in a CO system:

u

Unit: this represents the CO unit and provides methods for initialisation, calculation and
reporting. A CO compliant simulator uses these methods to operate the plug-in unit.

Simulator: this provides services that a unit is likely to need from the simulator, such as
stream information.

Thermo: this provides physical property services

Numerics: this provides numerical services. Numerical components may be of two kinds.
First sequential modular simulators require specific tools to address graph analysis problems.
This is adressed by the SMST component. Then, both types of simulator need solvers of
different set of equations modelling the behaviour of individual unit operations or of the




complete process. This is addressed by the SOLVER component. This document is focusing
on the latter component.

The actua location of the services provided by the last two objects may be in separate plug-in

software components or may be provided by the simulator itself. Asfar as the unit is concerned, it

just sees the objects. A unit does not, of course, have to use the simulator’'s thermo and numerics,
if it has them built-in already.

The CO interface system will support the creation and use of these objects. In this way a
compliant simulator can use an external unit operation directly.

2.1.4 Models

We introduce thelfodel object to embody the general mathematical description of a physical
system. The fundamental building block employed for this purpose is a set of continuous
equations, described by &guation Set Object (see section 2.1.8).

However, many physical systems also involve discontinuities (see section 2.1.9.1), and this fact
must be reflected in their mathematical description. Accordingly, a Model may additionally
encompass one or maSeute Transition Networks. These are formal descriptions of discontinuous
phenomena (see section 2.1.9.3).

2.1.5 Mathematical Problems

We are concerned with the solution of three different types of mathematical problems that are
relevant to the operation of flowsheeting packages:

1. The solution of square systems of linear algebraic equations.
2. The solution of square systems of nonlinear algebraic equations.

3. The solution of mixed square systems of ordinary differential and algebraic
equations (DAESs) over time or another independent variable.

All of these problems are relevant to both Sequential/Simultaneous Modular-based and Equation-
based flowsheeting packages.

The solution of systems involving partial differential and/or integral equations, and of
optimisation problems is considered to be outside the scope of the current CAPE-OPEN project.
2.1.6 Solvers
We propose to achieve the above aims by introducing three different classes of object, each
corresponding to one of the problems listed above. In the rest of this document, we will
generically refer to these objects &sfers”:

1. The Linear Algebraic Solvei4Solver) object.

2. The Nonlinear Algebraic SolveN{.ASolver) object.

3. The Differential-Algebraic Equation Solveb{ESolver) object.




Each of these contains both the data that characterise the corresponding mathematical problem
and the numerical algorithms that solve this problem.

2.1.7 Solver Manager

In addition to the three types of Solvers, we introduce one “manager” class. This is used to create
Solvers using information that defines the mathematical problem to be solved by each such
instance.

2.1.8 The Equation Set Object

The definition of large sets of nonlinear equations of any kind generally requires a large amount of
relatively complex data. This has led us to introduce the conceptHafuanion Set Object (ESO)

as a means of defining this information in a way that can be accessed and used by instances of
NLASolvers and DAESolvers. The structure of the ESO is, therefore, central to the interface
definitions which are the ultimate goal of this work.

The Equation Set Object is an abstraction representing a square or rectangular set of equations.
These are the equations that define the physical behaviour of the prowissconsideration, and

which must be solved within a flowsheeting problem. The interface to this object is intended to
serve the needs of the various solver objects by allowing them to obtain information about the size
and structure of the system, to adjust the values of variables occurring in it, and to compute the
resulting equation residuals and, potentially, other related informatignp@rtial derivatives).

Hence, this interface requires standardisation as part of CAPE-OPEN. Howeversthetion

of such an object will be a proprietary matter for individual vendors of flowsheeting packages and
will not be standardised as part of CAPE-OPEN.

More specifically, an ESO will support a number of operations including the following:
» Obtain the current values of a specified subset of the variables.
» Alter the values of any specified subset of the variables.

» Compute the residuals of any specified subset of the equations at the current variable
values.

» Obtain the partial derivatives of a specified subset of the equations with respect to a
specified subset of the variables (at the current variable values of the object).

The information associated with an ESO differs depending on whether the set of equations being
described is purely algebraic (as is the case with the NLASolver class mentioned above) or mixed
differential and algebraic (as in the case of DAESolver). For this reason, we introduce a hierarchy
of ESOs. At present, this hierarchy comprises three classes:

1. ClassdlgebraicESO defines a linear system of equations.

! Here, the term “process” may mean the entire plant being modelled, a plant section or, indeed, a single unit
operation or part thereof.




2. Class DifferentialAlgebraicESO inherits from class AlgebraicESO and refines it to
define amixed set of differential and algebraic equations.

An underlying assumption throughout this document is that we are often dealing with large, sparse
mathematical systems. Hence the exploitation of sparsity is an important consideration.

2.1.9 Description of Discontinuous Processes

The ESO is a purely continuous mathematical description; this means that the equations it
contains have the same form for all possible values of the variables occurring in them.

However, our best understanding of a number of common process phenomena is based on
discontinuous descriptions. As mentioned earlier, the Model concept used to represent nonlinear
algebraic and differential problems contains an ESO of the appropriate type and may also carry
additional discontinuous information in the form of one or more State Transition Networks (the
States of which are defined through further Models). As we will see, this permits complex
hierarchies of discontinuous behaviour to be represented in a natural way.

However, it is worth stating at the outset that it is not our intention to require all solvers for these
types of problem to include algorithms for handling discontinuous problems. The design of the
Moded object is such that it is a simple matter for codes which lack such facilities to check
whether any STNs arein fact present, and to report afailure if so.

2.1.9.1 Origins of discontinuities in physical descriptions

There are many examples of process phenomena that are commonly described in a discontinuous
manner. These include:

e appearance and disappearance of thermodynamic phases,
e transitions of flow regimes from laminar to turbulent, and vice-versa;
» changesin the direction of flow, and their consequences;

» changes in flow due to discontinuities in equipment geometry (e.g. position of
overflow pipes);

* equipment breakdown.

Additional discontinuities may arise as a result of discrete control actions and disturbances
imposed on the process by external agents. However, here we are primarily concerned with
discontinuities in the physical behaviour since it is precisely this behaviour that ESOs are
supposed to describe mathematically.

2.1.9.2 Mathematical descriptions of physical discontinuities

The mathematical descriptions of physical discontinuities is itself discontinuous. Early modelling
tools described such discontinuities via the use of conditional equations typically defined using
| F/ THEN ELSE constructs. Each such conditional equation has one of two different forms
depending on the value (TRUE or FALSE) of alogical condition. The latter is itself expressed in
terms of the values of the system variables.




As an example, consider the friction factor f for flow in a pipe. Thisis adifferent function of the

Reynolds number Redepending on whether the flow is laminar or turbulent. Mathematically, this
effect is described by the following conditional equation:

|F Re < 2100 THEN
16
fe
Re
ELSE
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Albeit by far the simplest mechanism for specifying discontinuous equations, | F/ THEN ELSE
eguations are not sufficiently general for the description of the range of phenomena occurring in
chemical processes. For instance, they are unable to describe:

 Asymmetric discontinuities such as the hysteresis phenomena that occur in the
opening and closing of safety relief valves; such valves tend to open at a higher
pressure than the one at which they actually close.

» Irreversible discontinuities such as those occurring when equipment breaks down
when certain operating limits (e.g. pressure) are reached; in most cases, the
breakdown, once it occurs, cannot be reversed even if the operating conditions revert
to their normal ranges.

For this reason, our description of discontinuities is based on a more general formalism, called
State-Transition Networks.




2.1.9.3 State-Transition Networks

Siate 3
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Figure 2-1 : Example of a State-Transition Network

For the purposes of this document, a State-Transition Network (STN) is smply a description of a
discontinuous equation or set of equations.

An example of an STN is shown in Figure 2-1. Each STN comprises two types of information, a
set of states® and a set of transitions from one state to another.

A state in an STN corresponds to one of the operating regimes of a discontinuous phenomenon.
So, for instance, the STN describing the flow regime in a pipe would typically have two states
corresponding to the laminar and turbulent regimes respectively.

In fact, | F/ THEN ELSE conditional equations (see section 2.1.9.2) are specia cases of STNsin
which, for any pair of states s and s’, both transitions s — s’ and s’ — soccur and the logica
condition associated with the former transition is the negation of that associated with the latter.
Thus, the STN describing the friction factor equation discussed in section 2.1.9.2 isshownin :

2 The states in a STN are also sometimes called “modes” in order to avoid confusion with the
term “states” used in control theory.

10



Re > 2100

L - 4jog,H L +@E

N FReJ7 37

Re < 2100

More formally, each state s in an STN is characterised by:
* A setof equations
* A (possibly empty) set of transitions to other states.

At any particular point in time, exactly one state in an STN is designated as being active. In
physical terms, thisimplies that the process behaviour satisfies the equationsin that state.

Each transition (s,s ) in an STN is characterised by:
* A dtart state, s
* Anenddate, s’
* Alogica condition.

If, at acertain point in time, a state s of the STN is active and the logical condition associated with
a trangition (s,s) becomes TRUE, then the transition (s,s’) takes place, i.e. state s stops being
active and state s becomes active.

In the interests of simplicity, all STNs used for the purposes of CAPE-OPEN will satisfy the
following assumption:

» All equations and logica conditions are expressed in terms of (subsets of) the same
set of variables.

2.1.9.4 State-Transition Networks in Models

Each Model contains exactly one ESO, and zero or more STNs. Thus, the complete set of
equations which is applicable at any particular point in time comprises:

» theequationsin thetop level Modd’s own ESO;
» the equations in the active state of each of its constituent STNs.

Conversely, the equations associated with each state in an STN are themselves described by a
Model.

11



The reation between STNs and Models is, therefore, recursive. This alows for the nesting of
discontinuous equations to an arbitrary number of levels.

An underlying assumption is that a Model's own ESO of and all the ESOs describing the states of

all STNs contained within it share th@ne set of variables. Albeit not necessary, this assumption
obviates the need for complex mapping mechanisms between different sets of variables; it also
happens to be satisfied by most typical cases where descriptions of discontinuous phenomena
occur within process models.

2.1.10 Events and Eventinfos

As has already been mentioned in section 2.1.9.3, each transition in an STN is characterised by a
logical condition that determines if and when the transition will take place. Such a transition
constitutes aavent.

Another type of event occurs when a dynamic simulation terminates once it has reached a
specified time or when the system fulfils a specified condition.

It is important to provide formal mechanisms for representing such events and, in particular, the
logical conditions that define them.

Moreover, in designing an object to represent these conditions, it is important to identify the
amount and type of information that must be provided to client software regarding them. Clearly,
such decisions depend crucially on the type of usage that is envisaged for these conditions by, for
instance, numerical solvérs

It is important to understand that the above logical conditions may be quite complex. For instance,
a transition within an STN could be triggered by a logical condition of the form:

I[xl2 + x5 2 x2]0-[x3%< xZ]J O [x, = x,]

where x,, x, and x; are real-valued variables, and the symhdls[] and = denote theOR,
AND andNOT logical operators.

Most of the older numerical codes for the simulation and optimisation of processes involving
discontinuities required only thealuation of complex logical expressions such as the above for
given values of the variables occurring in them. Consequently, a simple interface that would
return the valueTRUE or FALSE) of a specified logical condition at the current values of the
ESO'’s variables would be sufficient in this case.

However, more modern solution methods derive their improved reliability and efficiency from the
availability of more information on each logical condition. For example, if the above logical
condition were to change value (frarfRUE to FALSE, or vice-versa) at a particular point in time,
these methods would need to knewictly which of the three logical subexpressions:

% Already similar decisions have been made implicitly in the design of the basic ESO. In that case, it was
deemed appropriate that the ESO should provide numerical values for the residuals of its equations and their
partial derivatives, as well as information on the structure of these equations. On the other hand, it was not
thought necessary to provide information on the symbolic form of these equations.

12
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was the one that changed value, thereby causing the change in the value of the overall logical
expression. The solution method would aso need to know other information on this particular
sub-expression, such as the set of variables that appear init, and its partial derivatives with respect
to these variables.

Our aim is to accommodate the requirements of the modern solution methods without resulting in
an excessively complex interface. Thisis particularly important as simpler methods are till being
used by many of the currently available tools. As a compromise, the proposed interface supports
arbitrarily complex logical conditions involving any combination of the [1, [J and = operators
while imposing the following restriction:

« All lowest level logical sub-expressionsin alogical expression are of the form:

x, <k,x,>k,x, 2k orx, <k
where x, isany one of the variables occurring in the ESO.

This assumption is not actualy as redtrictive as might first appear. For instance, the logical
condition shown above could be expressed as.

[x, =01 0-[x,20]] O [x,=20]

where we have introduced three new variables x,, x; and x,defined via the three additional
equations:

— .2 2 _ .2 —_.2 = _
X, Ex; X, X5, Xg E-x7tX,, X5 EX, X,

2.1.10.1 Events

The main advantage of introducing the above restriction is that it permits the representation of any

logical condition by an object known as an Event with a relatively simple interface. The event
class has three subclasses deriving from it:

* BasicEvent, containing a variable index 7, an operator op and a constant resl

value k . This represents the lowest level condition x, op k, where op must be
either<,>, =2 or <.

e CompositeEvent, containing a boolean operator (AND, OR or NOT) and two
subevents (only one of which is meaningful in the case of NOT).

e IndVarEvent, containing an independent variable value. This type of event
represents the most common type of termination condition when solving DAE
problems.

Thus, consider the following examples:

¢ TheBasicEvent

(3, =, 0)

13



denotes the condition x; = 0.

e The CompositeEvent
[OR, BasicEvent(1l, =, 0),
Conposi t eEvent (NOT, BasicEvent(2, =, 0) , ...)]

denotes the condition (x, 20)[-(x,=20) (i.e. “x, non-negative orx,
negative”).

The pseudocode which follows illustrates how these sequences can be evaluated by a simple
recursive routine. We assume that the current variable values are held in the globad,vaator
introduce enumerated types with value sets (BASIC, COMPOSITE, INDVAR), (GEQ, NEQ), and
(AND, OR, NOT) to represent the values of the Event types, the relational operators and the
boolean operators respectively.

Bool ean function eval (Event* event)
| f event->type==BASI C THEN
I f event->o0p==CEQ THEN
Return (x[event->i ndex] >=event - >val ue)
El se
Return (x[ event->i ndex] <=event - >val ue)
End
El se
Case (event->operator)
AND: Return eval (event->evl) AND
eval (event - >ev2);
OR Return eval (event->evl) OR
eval (event ->evl);
NOT: Return NOT eval (event->evl);
End
End

End

14



2.1.10.2 Eventinfos

The occurrence of eventsis avery important aspect of (especially dynamic) process simulation. If,
during the solution process, a Solver object detects an Event associated with the termination of the
dynamic simulation, then it naturally hasto return control to its client, with some indication of the
value of the independent variable (usualy time) at which the Event has occurred. Since there may
be multiple termination events, the Solver also has to indicate which event(s) have actually
triggered the termination.

On the other hand, if a Solver detects that an Event associated with an STN transition has taken
place, then it essentially has mwo options: either handle the event itself or return control to its
client so that the latter can take some necessary action. Clearly, for this action to be possible, the
Solver has to return some information on the events that have actually taken place. In addition to
the information associated with termination events, the Solver needs to identify the STN involved
and the new state.

We thus define a new class, Eventinfo, to carry the information associated with the occurrence of
an event. It has two sub-classes ExternalEventInfo and Internal EventInfo deriving from it, because
the type of information to be conveyed is rather different in the two cases.

Specifically, when an internal event occurs, the Solver (either an NLASolver or a DAESolver)
may return control to the client software reporting the event, in which case the client software will
wish to identify the STN concerned, and the new state to which transition is due to occur. At this
point the client software would probably set the STN to the new state, reinitialise the Model in
order to obtain variable values consistent with the new set of equations which are now active, and
make a further call to the Solver. However, advanced solvers which are able to perform all these
actions internally, are not required to return control to the calling routine (although they should
call their Reportinglnterface routine before and after the discontinuity).

However, when an external event occurs, the Solver (which will be a DAESolver in this case)
must return control to the client signalling that the event has occured, and in this case the
information desired by the client will be an indication of which of the externally specified
termination conditions has arisen.

2.1.11 Overview of Typical Usage

We will now give a broad outline of the mathematical problems addressed by the two main types
of flowsheeting package, namely Modular and Equation-based, highlighting the deployment of the
various classes of objects that were introduced and their interactions.

We consider dynamic simulation as an example because it incorporates most of the behaviour
relevant to the interface.

21111 Modular-Based Dynamic Simulation

Performance of a dynamic simulation in a “typical” modular package may be summarised as
follows:

1. Set time to zero and guess torn streams.

2. Ask each unit to initialise itself, using the sequence implied by the torn streams. As
part of this initialisation, the unit will create a square DifferentialAlgebraicESO
describing its own dynamic behaviour. It will then pass a Model containing this
DifferentialAlgebraicESO to a SolverManager to create a DAESolver.
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3. Check convergence of torn streams, repeating step 2 if necessary.
4. WHILE not finished DO:

4.1 Predict the inputs u(¢) for all streams.

4.2 For each unit in the sequence, advance solution from ¢ to ¢ + ¢ to obtain the
computed stream values y . This is the main role of each unit's individual

DAESolver.

4.31f, for any tear streank, the predicted input, differs from the computed
input y, by more than a toleranag, reduce¢ and repeat from step 4.1.

5. STOP.

2.1.11.2 Equation-Based Dynamic Simulation

The performance of a dynamic simulation in a “typical” equation-based package may be
summarised as follows:

1. Form a single squateDifferentialAlgebraicESOY 7} representing the equations and
variables gathered from all the units.

2. Given a set of initial conditiofg} °, combine these with the original equatidng}
to form an augmented square AlgebraicES} °.

3. Using the AlgebraicESO created at step 2 (enclosed in a Model), employ a
SolverManager to create an NLASolver, and solve the initialisation problem.

4. Using the DifferentialAlgebraicESO created at step 1 (enclosed in a Model), employ a
SolverManager to create a DAESolver.

5. Using the DAESolver created at step 4, advance the solution of the dynamic system
{f} from the point computed at the last step, until a termination condition or
discontinuity occurs

6. If a discontinuity has occurred:

“i.e. the number of equations equals the number of variables

® Here we consider the initial conditions {g} to be general equaity relations of the form

g(x(O),)'c(O)): 0. The number of such initial conditions will normally be equa to the number of
differential variables x. However, for DAE systems of index exceeding unity, the number will be smaller.

® This system is square because the time derivatives X are treated as separate unknowns to the x variables.
The entire system of equations {f g} is then considered to be a purely algebraic system for the purposes of
the initialisation calculations.

" The detection of discontinuities will typically require additional information to be provided by the Model.

16



6.1 Construct a new augmented sgquare AlgebraicESO {f R} incorporating

continuity or other “junction” condition® representing the relations between
the two stages of the simulation before and after the discontinuity.

6.2 By employing a SolverManager, create an NLASolusing the above
AlgebraicESO (enclosed in a Model) and solve the reinitialisation problem.

6.3 Go to step 5.

7 STOP.

2.1.12 Linear Algebra

As can be seen from the algorithm sketches in sections 2.1.11.1 and 2.1.11.2, the solution of linear
systems isiot normally adirect requirement in either type of package. However, such systems
will usually arise as sub-problems in the solution of NLASolvers and DAESolvers. Accordingly,
the latter will themselves have responsibility for instantiating and using appropriate LASolvers.
For this reason, the interface of LASolvers has to be standardised as part of the CAPE-OPEN
activity, and this is why these have been considered in section 2.1.6.

More specifically, we will enable NLASolvers and DAESolvers to carry out the linear algebra
operations that they require by making available to them an LASolverManager which they can
then use to create LASolvers as and when this is necessary.

In order to allow the code which uses these solvers to be written with the greatest possible
generality, we have developed a polymorphic approach to matrices. The top level object involved
in this approach is theéarrix, which has various subtypes derived from AwliMatrix,
UnstructuredMatrix and BandedMatrix’. The Matrix object itself has &etValues method which

returns an array of real numbers, but the semantics of this array are dependent on the precise type
of the matrix.

The other methods provided by therix object itself simply provide the type of the matrix and

its dimensions, as well as two Boolean values, “Symmetric” and “ByRow”. The first of these
indicates whether the matrix is understood to be fully symmetric about the leading diagonal, in
which case the repeated values will be omitted in the resuWledfalues. The second specifies
whether (in the unsymmetric, structured cases) the ordering of values is by row or by column: in
the former, the values in each row are given in turn (in column order), whereas in the latter the
values for each column are given in turn (in row order).

Detailed explanations of the semanticg7efValues for each subtype follow.

2.1.12.1 The FullMatrix Subtype

This subtype contains no further methods. If “Symmetric” is true, GetValues returns only unique
values, thus (in this diagram and those that follow, the index appearing in each cell indicates that
element’s position in the array returned by GetValues).

8 Other subtypes can be added if a need for them becomes apparent.
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2 |4 |5

3 |5 |6

Otherwise, if “ByRow” is true, the values are ordered by row:

1] 2 3 4

5| 6 7 8

9| 10| 11| 12

Otherwise, they are ordered by column.

2.1.12.2 The UnstructuredMatrix Subtype
This interface adds the following method:

- GetStructure() : row and column indices of nonzeroes.

If “Symmetric” is true, only the lower or up triangular entries should be defined by this
method.

There is no ordering requirement on the row and column indices.

Thus the following structure:

X 10 |0 | X
X 10 [ X |0
0 |0 |0 |X

Could be represented by
Row list:(1,1,2,2,3)
Column list:(1,4,1,3,4)
or

Row list(1,2,3,2,1)
Column list(1,1,4,3,4)

Thus “ByRow” has no meaning for this type: the semantics of GetValues are determined
by the ordering of the lists of indices.

18



21123 The BandedMatrix Subtype

This matrix type specifies banded matrices, i.e. those where all nonzeroes occur within some
bandwidth of the leading diagonal. The following method is added:

GetBandWidth() — returns an integer N s.t. no nonzero occurs more than N rows/columns from the
leading diagonal. All values in this band must then be returned by the GetValues method.

For example, if a 3 by 4 matrix has bandwidth 1, and “ByRow” is true, the semantics of GetValue
are:

1|2
3 14 |5
6 |7 |8

while if “ByRow” had been false they would be:

1|3
2 |4 |6
5 |7 |8

For symmetric matrices, “ByRow” is irrelevant as for the full case, e.g. 5 by 5 matrix with
bandwidth 2:
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2.1.13 Desirable Characteristics for the CO Interface

Q

Minimal performance degradation compared to native simulator facilities.

Minimal impact on the rest of the simulator: other native facilities do not need any change.
Extendable without reworking existing facilities.

No limitations on the data that can be transferred.

The interfaces generated by all work packages should be consistent in design.

The approach to units of measure conversion should be handled consistently across all work
packages and with the host simulator.
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2.2 Use Cases

The next sections formalise the description of the user requirements for solver operations
interfacing in the CAPE-OPEN Interface System, described in the previous section. They provide
a Unified Modelling Language (UML) description of the interfaces, which is the basis for the
software design described in later sections.

The first step in the UML process is to express the user requirements in the form of a Use Case

Model, which is described in this section. It identifies the “users” of the system, called Actors, and
describes, in the form of Use Cases, what they wish the system to do. It also identifies the
boundaries of the system.

The rest of this section lists and describes the Actors and Use Cases involving Solvers.

2.2.1 Use Cases Categories

o Solvers Use Cases. Contains all the Use Cases listed in this document.

0 General Purpose Use Cases. Use Cases that express a software requirement to handle CAPE-
OPEN Solver Components. These Use Cases do not have a direct impact on the CAPE-OPEN
interfaces, and therefore the requirement does not need to be met by the CAPE-OPEN
interfaces.

0 Simulation Context Use Cases. These are Use Cases that list a sequence of actions,
expressed as requirements, so that a CAPE-OPEN Solver is guaranteed to be correctly
handled in the different simulation environments. Many times these Use Cases do not have a
direct impact on the CAPE-OPEN interfaces, but they represent behavioural requirements on
the process simulator side. Many times they also use or extend other more specific Use Cases
that do have a direct impact on one or more Solver Interfaces.

a Specific Unit Operation Use Cases. These are Use Cases that represent behaviours of CAPE-
OPEN Flowsheet Unit components that do have a direct impact on one or several interfaces.

0 Boundary Use Cases. These are Use Cases in which a Solver is an actor in other CAPE-
OPEN Use Cases different from those corresponding to Solvers (i.e. THRM or UNIT Use
Cases)
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2.2.2 Actors

0 Flowsheet Builder. The person who sets up the flowsheet, the structure of the flowshest,
chooses thermo models and the unit operation models that are in the flowsheet. This person
hands over a working flowsheet to the [Flowsheet user] The Flowsheet Builder can act as a
[Flowsheet User]

0 Flowsheet User. The person who uses an existing flowsheet. This person will put new data
into the flowsheet rather than change the structure of the flowsheet.

0 Flowsheet Solver. A sub system responsible for converging the flowsheet by iterating the
adjustable variables to meet specified convergence criteria.

In the modular case, thiswill be done by iterating the adjustable variables.

In the equation oriented case, thiswill be done by performing Newton iteration on a sparse set
of nonlinear equations.

The function of setting sequencing, nesting of solving sequences and relative convergence
limits will be covered in the Use Cases of the NUMR Work Package. The Flowsheet Solver
would at some point make use of the sequence of computation of the Flowsheet Units.

0 Optimiser sub system. Part of the simulation overall system that is responsible for using an
objective function calculated from the flowsheet in order to search for an optimum. What is
optimised could be one Flowsheet Unit or a whole process. The optimiser may use an
infeasible path method, wherein the optimising and the flowsheet converging are carried on
simultaneoudly.

0 Flowsheet Unit. A software representation of a physical unit operation or a hon-physical unit
such as a controller or optimiser.

0 Simulator Executive. That part of a simulator whose job it is to create or load a previoudy
stored flowshest, solve it and display the results.

0 Reporting sub system. Thisis a part of the Smulator Executive that reports on the outcome
of the calculation of the flowsheet. It reports on the state of the streams and units involved in
the flowsheet. Note: reporting is done in different ways. Some reporting is done directly by
the unit operation on a request from the Simulator Executive. In addition, reporting is done by
passing some values from the unit to the reporting system which has a generalised report
generating capability.

0 Solver Manager. A subsystem that handles the selection and configuration of solver
“factory” components.

o NLAE Solver. A solver responsible for converging a system of nonlinear algebraic
equations.

0 DAE Solver. A solver responsible for advancing the solution of a system of DAEs over the
domain of a single independent variable.
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2.2.3 Use Cases

This subsection lists al the Use Cases that are relevant for the Solver Interfaces.

2.2.3.1 Solver Selection, Instantiation and Configuration

Use Case Diagrams

Select Numerical Code ™.

C;o*ﬁfigure Numerical Code

Flowsheet Builder

Unit Selects Numerical Code

Flowsheet Unit
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2.2.3.1.1 Select Numerical Code (ref. UC-41-001)
Actors: <Flowsheet Builder>, <Simulator Executive>, <Solver M anager>

Classification: <Solvers Use Cases>, <Genera Purpose Use Cases>, <Simulation Context Use
Cases>

Status:

Pre-conditions:

O <Theremust be at least one registered solver of the specified type>
o <A complete flowsheet has been defined>

Flow of events:

Basic Path:

The Flowsheet Builder requests the Simulator Executive to carry out a simulation or
optimisation.

If no solver for thistype of calculation has yet been configured, the Smulator Executive
asks the Solver Manager for the list of the numerical codes (e.g. DAE solvers) available
on the system which are applicable to this task.

The Simulator Executive then displays this list to the Flowsheet Builder who selects the
code to be used. The [Configure Numerical Code] Use Caseisthen applied.

Post-conditions:

0 <selection succeeded>
<...>

Exceptions:

a <selection failed>

Subordinate Use Cases:

[Configure Numerical Code (ref. UC-41-0D3)
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2.2.3.1.2 Unit Selects Numerical Code (ref. UC-41-002)

Actors: <Flowsheet Unit>, <Simulator Executive>, <Solver Manager>, <Flowsheet Builder>,
<Flowsheet User>

Classification: <Solvers Use Cases>, <General Purpose Use Case>, <Simulation Context Use
Case>

Status:

Pre-conditions:

O <Theremust be at least one registered solver of the specified type>

Flow of events:

Basic Path:
The Flowsheet Unit requests from the Solver Manager a list of numerical codes that are
appropriate for its purpose. For example, a steady-state flash unit model will typicaly
require the solution of a system of nonlinear algebraic equations; it will therefore request
alist of codes for this purpose. On the other hand, a steady-state tubular reactor model
may require the solution of a set of differential and algebraic equations over a spatia
domain, and would therefore request a list of available DAE integration codes.
The Flowsheet Unit then selects a code from the list itself or prompts the Flowsheet

Builder/User for a choice. The Solver Manager creates an instance of this code. The
[Configure Numerical Code] Use Case is then applied.

Post-conditions:

0 <selection succeeded>
<...>

Exceptions:

a <selection failed>

Subordinate Use Cases:

[Configure Numerical Code (ref. UC-41-0D3)
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2.2.3.1.3 Configure Numerical Code (ref. UC-41-003)
Actors: <Solver Manager>

Classification: <Solvers Use Cases>, <Simulation Context Use Cases>

Status:

Pre-conditions:

O <A solver has been selected>
Flow of events:

Basic Path:

The Solver Manager asks the Solver for alist of its parameters. each of which will have
aname, atype, adefault value and avalid range (for rea values).

It may then provide this list to the user to give him/her the opportunity to override the
default values.

Post-conditions:

a <Parameter list obtained>

<...>

Exceptions:

0 <Required parameter missing>

Subordinate Use Cases:

None
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2.2.3.2 Solver Initialisation

Use Case Diagrams

C D

Unit Defines Linear
Equations to be Solved

Unit Defines Non-Linear
Equations to be Solved

Flowsheet Unlt\‘o

Unit Defines DAEs
to be Solved

Identify Global System
To Be Solved

Flowsheet Solver O

Eliminate Degrees
of Freedom
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2.2.3.2.1 Unit Defines Linear Equations to be Solved (ref. UC-41-004)
Actors: <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

O <A Linear Solver has been selected and an instance of it has been created and configured.>
Flow of events:

Basic Path:

The Flowsheet Unit provides its Linear Solver with the structure of a matrix 4 in the
equation Ax =b.

Post-conditions:
a <>

<..>
Exceptions:

a <>

Subordinate Use Cases:

None
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2.2.3.2.2 Unit Defines Nonlinear Equations to be Solved (ref. UC-41-005)
Actors: <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:
< A Nonlinear solver has been selected and an instance of it created and configured. >
Flow of events:
Basic Path:
Summary: The Flowsheet Unit identifies a subset of its equations and variables as a
nonlinear problem, and sets up a Nonlinear Solver to handle this problem during

execution.

The Flowsheet Unit creates a square set of equations based on NV of its equations and N
of itsvariables. It aso generates, or otherwise obtains, initial guesses for al unknowns.

Post-conditions:
o <>

<...>
Exceptions:

o <>

Subordinate Use Cases:

None
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2.2.3.2.3 Unit Defines DAEs to be Solved (ref. UC-41-006)
Actors: <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:
< A DAE Solver has been selected and an instance of it created and configured. >
Flow of events:
Basic Path:
The Flowsheet Unit identifies a subset of its equations and variables as a differential-

algebraic problem, and sets up a DAE Solver to handle this problem during execution. It
also generates or otherwise obtainsinitial guesses for all unknowns.

Post-conditions:
o <

<..>
Exceptions:

o <>

Subordinate Use Cases:

None
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2.2.3.2.4 Identify Global System to Be Solved (ref. UC-41-007)
Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

o <>

Flow of events:

Basic Path:
The Flowsheet Solver identifies the global lists of variables and equations. It normally
does this by concatenating the sets of equations and variables in the units of the
flowsheet, and adding appropriate connectivity information. At this stage, it may aso
regquest the Flowsheet Unitsto provide suitable initial guesses for their variables.

Note: the resulting global set of equations is usualy rectangular, involving more
variables than equations.

Post-conditions:
o <

<...>
Exceptions:

o <>

Subordinate Use Cases:

None
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2.2.3.2.5 Eliminate Degrees of Freedom (ref. UC-41-008)
Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

o <>

Flow of events:

Basic Path:
The Flowsheet Solver fixes the values of variables which the Flowsheet Builder wishes
to be regarded as fixed/known for the present caculation. Thereafter these variables are

no longer present in the global variable list. The global variable list should be the same
length as the global equation list should be square when this process is complete.

Post-conditions:

a <>

<...>

Exceptions:

o <Discover inconsistencies in the degrees of freedom specification.>

Subordinate Use Cases:

None
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2.2.3.3 Solver Execution

Use Case Diagrams

Converge
Non Linear Problem

e

Flowsheet Solver

R

) Unit Requests Solution
Flowsheet Unit of Unit Equations

A e

Advance
DAE Solver DAE Solution
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2.2.3.3.1 Unit Requests Solution of Unit Equations (ref. UC-41-009)
Actors: <Flowsheet Unit>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

0 <An appropriate solver has been selected, instantiated, configured and initialised.>
Flow of events:

Basic Path:

The Flowsheet Unit requests that the numerical method solves the unit equations.

Post-conditions:

O <Unit equations solved>

<...>

Exceptions:

O < Various types of numerical failure may occur. >

Subordinate Use Cases:

None
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2.2.3.3.2 Converge Nonlinear Problem (ref. UC-41-010)
Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

0 <Thegloba equation and variables sets have been constructed. >

0 <An appropriate solver has been selected, instantiated, configured and initialised.>
Flow of events:

Basic Path:

The Flowsheet Solver requests that the numerica method solves the flowsheet
equations.

Post-conditions:
o <

<..>
Exceptions:

o <>

Subordinate Use Cases:

None
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2.2.3.3.3 Advance DAE Solution (ref. UC-41-011)
Actors: <DAE Solver>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:
o <>

Flow of events:
Basic Path:

The DAE Solver carries out steps in the independent variable. It interacts with the global
differential-algebraic equation and variable sets as follows :

1) it changesthe variable values
2) it requests residual values corresponding to the latest variable valuesit has supplied
3) it checksfor any conditional equations changing their branch.

4) solution must advance exactly to the point where the termination condition is
satisfied or a discontinuity occurs (whichever isfirst).

The termination condition will be provided by the Simulator Executive. It will consist
either of an explicit target value of the independent variable, or a condition on a
particular variable value.

A discontinuity will result when a conditional equation has changed branch.

The numerical method will involve an iterative procedure. Thisislikely to make use of a
Sparse LAE Solver. It could instead use a NLAE Solver.

Note : this use caseiswritten only for EO simulators.

Post-conditions:
a <>

<..>
Exceptions:

a <>

Subordinate Use Cases:

None
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2.2.3.4 More Complex Use Cases

Note : These use cases have been broken into smaller ones. They should not imply any
new use case.

Use Case Diagrams

C D

Perform EO
Steady-State Simulation

* >
Perform SM
Flowsheet Steady-State Simulation

Solver

Perform EO
Dynamic Simulation
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2.2.3.4.1 Perform EO Steady-State Simulation (ref. UC-41-012)
Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:

Pre-conditions:

o <>

Flow of events:

Basic Path:
The Flowsheet Solver applies the [Identify Global System To Be Solved] Use Case.
If there are any differential variables in the global system, the Flowsheet Solver adds
Z(iquilaet)if)ns setting to zero the derivative of each with respect to the independent variable

The Flowsheet Solver applies the [Eliminate Degrees of Freedom] use case to generate a
Nonlinear Problem from the global system.

The Flowsheet Solver then applies the [Converge Nonlinear Problem] use case.

Post-conditions:
a <>

<..>
Exceptions:

a <>

Subordinate Use Cases:

[Identify Global System to Be Solved (ref. UC-41-J07)

[Eliminate Degrees of Freedom (ref. UC-41-Q08)

[Converge Nonlinear Problem (ref. UC-41-0j10)
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2.2.3.4.2 Perform SM Steady-State Simulation (ref. UC-41-013)

Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:
o <>

Flow of events:
Basic Path:

[To Be Completed]

Post-conditions:
a <>

<...>
Exceptions:

a <>

Subordinate Use Cases:

I
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2.2.3.4.3 Perform EO Dynamic Simulation (ref. UC-41-014)
Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:

< The Flowsheet Builder/User has provided the following information to the Simulator
Executive:

1) initial conditions
2) time varying information (e.g. scheduled changesin input values)
3) atermination condition>

Flow of events:

Basic Path:

The Flowsheet Solver applies the [Identify Globa System To Be Solved] use case to
construct the system of equations { /} which represents the dynamic system, i.e. those

equations which apply at al values of the independent variable.

The Flowsheet Solver merges this system { f} with the initial conditions {g} provided

by the Flowsheet Builder to create an augmented global system {f g} for the
initialisation.

The Flowsheet Solver applies the [Eliminate Degrees of Freedom] use case to generate a
Nonlinear Problem from the augmented globa system.

The Flowsheet Solver then applies the [Converge Nonlinear Problem] use case.
The Simulator Executive then enters aloop in which :

1) It instructs the DAE Solver to apply the [Advance DAE Solution] use case to
advance to the next discontinuity or to the end of the simulation.

2) If adiscontinuity is encountered, it asks the Flowsheet Solver to compute the state of
the system immediately after the discontinuity (“reinitialise”). The Flowsheet Solver
may do this by :

e Merging the dynamic global systefnf} with continuity conditions{#} (which usually

equate the differential variables in their system to their values immediately before the
discontinuity) to represent the reinitialisation problem

* Applying the NonLinear Solver to this problem.

The loop terminates when an error occurs or the termination condition is satisfied.
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Post-conditions:
o <

<..>
Exceptions:

o <>

Subordinate Use Cases:

[Identify Global System to Be Solved (ref. UC-41-J07)

[Advance DAE Solution (ref. UC-41-011)

[Eliminate Degrees of Freedom (ref. UC-41-Q08)

[Converge Nonlinear Problem (ref. UC-41-0j10)
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2.2.3.4.4 Perform SM Dynamic Simulation (ref. UC-41-015)

Actors: <Flowsheet Solver>

Classification: <Solvers Use Cases>

Status:
Pre-conditions:
o <>

Flow of events:
Basic Path:

[To Be Completed]

Post-conditions:
a <>

<...>
Exceptions:

a <>

Subordinate Use Cases:

I
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3 Analysis

3.1 Overview

We have defined three separate components in this specification. In particular we have introduced
a separation between the model (Model Component), the sets of equations (ESO Component)
and the solver itsdlf (Solver Component).

1. The Model describes the physical problem and models the behaviour of a unit or a
complete flowsheet, including the physical discontinuities using states and
transitions.

2. The ESOs are sets of equations that describes mathematically the continuous part of a
particular model or subparts of that model.

3. The Solver itsdf is responsible of driving the resolution of the problem using all the
information defined in the model.

Inside the Solver Component we have defined three main types of solvers which
can be further refined in more specific subtypes :

* TheLinear Algebraic Solver (LASolver)

» TheNonlinear Algebraic Solver (NLASolver)

« The Differential Algebraic Equation Solver (DAESolver)

Each solver type can of course use some of the other types inside that component in
order to solve some sub-problems. For example atypical use would be a DAESolver

instance creating an instance of a NLASolver for solving some part of the problem
or an NLASolver instance using an LASolver.
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3.2 Component Diagram

In this diagram we have tried to represent the various dependencies between the different
components used during asimulation. In our case the UO or the Executive Simulator are clients of
both the Modd and the Solver, which in turn are making use of the ESO as a common resource.

The interfaces needed between these three components in order for them to communicate and
exchange their information are described further in the chapter "Interface description”.

Component Dependencies

1

Simulator

Executive

]

UO Component

SMST
Component

S / /o]
| g N

-
e / / \

R /
p / \
m Lo

‘ — v Y oy
Physical Properties | Therm odynamic Parameter Service Report Service Identification Service
Component Component

Figure 3-1 : Package dependencies between Components
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Class Diagrams

According to our package decomposition, we have defined three class diagrams, one for each
package. In these class diagrams, you will aso find some specific data types or classes that are
implementation dependent and that should not be part of the interface diagram itself. They are
there only as an example to promote a better understanding of each diagram.

On the contrary there is some other types, or classes, that are common to different packages (some
of them could even be shared throughout the whol e CapeOpen project).

Among them we have defined the following classes or datatypes:

1. The class Matrix, which can be further refined if needed into subclasses like FullMatrix,
SparseMatrix, BandedMatrix, etc.

2. The class PhysicalVariable which describes the different variables of the Unit Operation
or of the Simulator Executive. These variables are used by aModel.

3. Theclass Event with its different subclasses (BasicEvent, CompositeEvent, BinaryEvent,
UnaryEvent).

4. Thetype PublicParameter which holds information on any parameter in general.
5. Thetype NumericVariable is atype that holds the different values for each variable.
All the classes will be described with the interface description of the component where they are

used, but the types will be defined in a separate chapter because they can be used in different
interfaces.
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3.2.1 Class Diagram of the Unit Package

The Unit Operation is not part of this specification, but for a better understanding of the
relationships between the UO and the other components, we have included here a simplified
representation of this class diagram.

Public Parameter
(from Logical View)

EiName
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ESLower Bound
U pper Bound
ESDefault Value
ESCurrent value

Port

Wport()
*®|GetConnectedObject()
®Connect()
®Disconnect()
WGetPortTy pe()
WGetDirection()

InOut

1

Material

MWGetTPComposition()
W\aterial()

e

Out

U.0. PACKAGE

UO Factory

manages

1..%

Unit Operation

Calcu des with

Owns

Solver Component
(from Logical View)

(from Solver

Solver

Model Component
(from Logical View)

Model

Figure 3-1 : Simplified diagram of the Unit Operation
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3.2.2 Class Diagram of the Model Package
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Figure 3-1 : Class diagram of the Model package
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3.2.3 Class Diagram of the ESO Package
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Figure 3-1 : Class Diagram of the ESO Component
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3.2.4 Class Diagram of the Solver Package
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Figure 3-1 : Class Diagram of the Solver Component
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3.3 Sequence Diagram

This sequence diagram describes as an example the various operations needed to configure a
model using anon linear ESO and to create a solver for its resolution.

The Client (Unit or the Simulator Executive) creates in some way, or selects a Model (top
model) instance that represent the problem to be solved.

The Client then initialises this Model. This means that the Client will have to fix some
information like:

B the current state of each STN if it isa Hierarchical Model,
B the value of some variables (in order to get a square ESO) and,

B theinitial values of the other variables before starting the solve process.

Doing so, the Model isthen ableto create a global square ESO which can be used by a solver.

The Client then creates in some way, or selects an instance of the correct type of Solver
(NLASolver) needed for that problem and passes it the Model to be solved.

As part of this creation, the NLA Solver will get dl the information it needs from the
Model, and his associated ESOs, such as all the initial values of the variables, number of
equations, etc. As part of this creation the Solver Factory can get the list of al the
parameters needed by the Solver and will set some of them to a value different from the
default value.

Then the Client will ask the Solver to solve the problem.

In order to do that, the Solver Component (NLA Solver) will get information from the
Model, and the ESO using the standard methods defined in these objects. It can also act as
a client of the Solver component and create some other instances of solvers like a
LASolver to solve some part of the problem.

Then the Client will be able to get the value of the variables computed by the Solver as a
solution.

TO BE COMPLETED

Figure 3-1 : Sequence Diagram
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3.4 Collaboration diagram
This diagram is another representation of the sequence of operations showing collaboration

between the different classes of object. It shows the methods that need to be defined and
standardised if you want to make a component from some class or group of classes.

TO BE COMPLETED

Figure 3-1 : Collaboration Diagram
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3.5 Interface Diagrams

We have considered that the ESO is a separate component from the Unit Component, but as it
acts as a server of information for the Solver Component we need to define at least its interface
with it. It seems more appropriate to separate the ESO as a component from the Unit itself, since
an ESO can belong to other clients as well, like the Simulator Executive or even the Solver
Component if this component needs to create a specific ESO to solve DAE systems for example.
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3.5.1 Model Interface Diagram
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Figure 3-1 : Model Component Interfaces
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3.5.2 ESO Interface Diagram
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Figure 3-1 : ESO Component Interfaces
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3.5.3 Solver Interface Diagram
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Figure 3-1 : Solver Component Interfaces
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3.6 Interface Descriptions

This section details the specification of the methods appearing in the interface diagrams for the
following components:

e  Model Component

¢ ESO Component

e  Solver Component

Each interface is presented together with its corresponding methods.
It should be noted that:

* Inherited methods are documented only under the parent interface which defines
them.

» All methods should return a CapeError value. One role of this value is to report a
successful execution: the error conditions applicable to each method will have to be
defined as part of the refinement of this interface definition.

» The errors and exceptions mentioned in this specification do not pretend to be
exhaustive.

Remark :

All the system errors defined as CapeError (HRESULT in DCOM or System exceptions in
CORBA) are not used here. The return values described are the usua return (out retval in DCOM)
from the method, and the exceptions described are only some errors that can occur during
execution of the method.

We have defined a standard exception structure CapeException to handle all the possible
exceptions that can be raised by each method. This structure is similar to the one defined by
DCOM.

These errors can be transmitted as an argument out (in DCOM or CORBA) or as an exception (in
CORBA). Thisis still an issue that needs to be resolved.

In defining the argument lists of the various methods, our general approach has been to use the
simplest possible argument types, namely those used throughout the CAPE-OPEN project:

» CapelLong

» CapeDouble

» CapeArrayLong

» CapeArrayDouble
o CapeString

» Capelnterface
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However, to provide the functionality that is necessary for our components, we have had to
introduce sometimes new structures. Most of the time these structures are only applicable to one
component and are part of the definition of this component. However one of these structures is
common to all the components and is defined hereafter: CapePublicParameter, and its
corresponding array type, CapeArrayPublicParameter.

This structure has the following members:

CapeString  Name : anidentifying string for this parameter
CapeString  Description . atextual description of this parameter, its eide
CapeDouble LowerB . the lower bound for valid values of this parameter

(numeric parameters only)

CapeDouble UpperB : the upper bound for valid values of this parameter
(numeric parameters only)

CapeVariant DefaultValue : the default value if there is one
CapeVariant Value . the current value of this parameter

The public parameters handled by the various interfaces presented in this document may be of any
one of the types listed at the start of the section. Thus, it should be noted that the Value member of
the CapePublicParameter structure presented above is a CapeVariant.

It is particularly worth noting that some algorithmic parameters are of type Capelnterface.
Consider, for example, a nonlinear algebraic equation solver based on a Newton or quasi-Newton
iterative scheme. An important parameter in this case would be the linear algebra solver that is
used to solve the set of linear equations arising at each iteration. In our interfaces, such a
parameter would be an interface to a Soleeg. (ICapeNumericLASolver in the example just
mentioned). Once this interface is made available, the nonlinear solver may use it to create one or
more LASolvers as and when required.
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3.6.1 Model Component

We now proceed to describe the interfaces to Models and their associated Equation Set Objects.
Two other ‘auxiliary’ objects related to the solution of nonlinear and dynamic systems are also
described, namely Event, and STN.

As we have seen, a Model may contain one or more state-transition networks (STNs). The
equations in each state and the logical conditions associated with each transition in these STNs are
all expressed in terms of the Model’'s own setafables, i.e. those contained in its ESO.

Detailed information on the STNs within a Model must be obtained via a different set of methods
provided by interfacéCapeNumericSTIN

The Model component interfaces are:

o ICapeNumericModelManagefhis is the interface of the Model object, which is used to
represent hierarchical sets of equations, or aggregate sets of equations.

o ICapeNumericModelThe Model object embodies the general mathematical description of a
physical system.

o ICapeNumericContinuousModeérhis is the interface of a simple simulation model with only
one ESO associated.

o ICapeNumericHierarchicalModeThis is the interface of a complex simulation model with a
State Transition Network and multiple ESOs to pilot the simulation process.

o ICapeNumericAggregateModdt allows to "concatenate" two or more previously defined
models (continuous or hierarchical).

o ICapeNumericSTN This is the interface which provides facilities for State Transition
Networks.

o ICapeNumericEventThis is the interface which provides facilities for handling Events.

o ICapeNumericBasicEven(This is the interface which provides facilities specific to Basic
Events.

o ICapeNumericCompositeEventhis is the interface which provides facilities specific to
Composite Events.

o ICapeNumericBinaryEvenfThis is the interface which provides facilities specific to Binary
Events.

o ICapeNumericUnaryEventThis is the interface which provides facilities specific to Unary
Events.

o ICapeNumericEventinfoThis is the interface for handling information on events.

o ICapeNumericExternalEventinfdhis is the interface which provides facilities specific to
external events.

o ICapeNumericinternalEventinfarhis is the interface which provides facilities specific to
internal events.
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3.6.1.1 Model Manager : ICapeNumericModelManager
Inherits from: | CapeUtilityComponent

Thisistheinterface of the Model object, which is used to represent hierarchical sets of equations,
or aggregate sets of equations. Only one method has been defined, CreateMode.

* CreateModel

Interface Name ICapeNumericModelManager
Method Name CreateModel
Returns CapeError

Description

Creates a new ssimulation model for a specific unit or for acompl ete flowsheet.

Arguments
Name Type Description
[in] CapeModel Type the type of the model, can be a
Continuous Moddgl, a Hierarchical
TheTypeOfTheModel Model, an Aggregate Model or one of
their subtypes.
[out, return] | CapeNumericModel: the Interface of the Model which has
Capelnterface been created.
TheModel
Exceptions

To be defined (any run time error during the creation)
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3.6.1.2 Simulation Model: ICapeNumericModel

Inherits from: | CapeUtilityComponent

Thisinterface supports the following methods:

u

Q

GetParameterList

SetParameter

SetV ariableslndex

SetActiveESO
GetActiveESO

SetCommonESO

GetCommonESO

GetActiveEvents

AddExternal Event

Destroy
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GetParameterList

Interface Name ICapeNumericModel

Method Name GetParameterList

Returns CapeError
Description

Getsthelist of all the parameters defined for this class of Model.

Arguments
Name Type Description
[out, return] CapeArrayNumericPu | the ligt of al the Public Parameters
blicParameter available for this class of Model.

TheListOf Parameters

Exception

None.
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SetParameter

Interface Name ICapeNumericModel

Method Name SetParameter

Returns CapeError
Description

Sets the current value of a specific parameter to be used by the constructor of that class to create
an instance of that object.

Arguments
Name Type Description
[in] CapesString the name of the parameter to be set
TheParameterName
[in] CapeVariant the value of that particular parameter
TheParameterValue

Exceptions

Invalid type of the value.

Invalid parameter name.

Remark

This needs some experimentation, because it can be difficult for the Client to build such objects
automatically and to hand them to the Solver if they are a bit complicated.
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SetVariablesindex

Interface Name ICapeNumericModel

Method Name SetVariablesindex

Returns CapeError
Description

Sets the general indices of the variables in this Model to establish the mapping between the list
of variable in the ESO and the list of the Physical Variables. This is one way (a choice) for
establishing the mapping, another way would be to reference the Physical Variables object in the

Model directly.
Arguments
Name Type Description
[in] CapeArrayLong the set of general indices for dl the
variables
Varlndices
[out, return] CapelLong the total number of variables N for this

TheNumberOfVars

ESO

Exception

Incorrect number of indicesin thelist (too few or too many).
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+ SetActiveESO

Interface Name ICapeNumericModel

Method Name SetActiveESO

Returns CapeError
Description

Setsthe global ESO which isthe current one depending of all the active statesin the STN and al
the common or specific ESOs. This needs to be done for the top level Model only.

Arguments

Name

Type

Description

[out, return]

| CapeNumericESO:Ca

creates the active ESO for the top level

pelnterface Model. This will be some kind of
TheActiveESO Global ESO.
Exceptions
To be defined.
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GetActiveESO

Interface Name ICapeNumericModel

Method Name GetActiveESO

Returns CapeError
Description

Getsthe globa active ESO which isthe current one.

Arguments

Name

Type

Description

[out, return]

TheActiveGloba ESO

| CapeNumericESO:Ca
pelnterface

returns the ActiveGlobal ESO.

Exception

No current active ESO.
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SetCommonESO

Interface Name ICapeNumericModel

Method Name SetCommonESO

Returns CapeError
Description

Assigns the common or specific ESO to this particular model.

Arguments
Name Type Description
[in] |CapeNumericESO:Ca | the common ESO associated with this
pelnterface model.
ANESO
Exception
None.
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GetCommonESO

Interface Name ICapeNumericModel

Method Name GetCommonESO

Returns CapeError
Description

Gets the common or specific ESO of this particular model.

Arguments

Name

Type

Description

[out, return]

TheCommonESO

| CapeNumericeSQO:IC
apelnterface

the common ESO associated with this
model.

Exception

No common ESO associated with this model.
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GetActiveEvents

Interface Name ICapeNumericModel

Method Name GetActiveEvents

Returns CapeError
Description

Getsthelist of the currently active events associated with al the current statesin the model.

Arguments
Name Type Description
[out, return] CapeArrayNumericev | thelist of the active events.
entinfo

TheEventInfoList

Exception

No active state currently defined.
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AddExternalEvent

Interface Name ICapeNumericModel

Method Name AddExterna Event

Returns CapeError
Description

Adds an Event to the list of the dready defined External Events for this Model.

Arguments
Name Type Description
[in] | CapeNumericEvent the event to be added to the list.
TheEvent

[out, return]

AnEventinfo

| CapeNumericExterna
| Eventlnfo:Capel nterf
ace

the External Event Info associated to
that Event.

Exception

None.
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Destroy

Interface Name ICapeNumericModel

Method Name Destroy

Returns CapeError

Description

Destroys this model.

Arguments
None.
Exception

None.
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* Important Remark: Other methods

Some other methods might be needed there that are already defined in the ESO Component like
(SetFixedVars and SetAllDerivatives) just to hand values from the Client to the ESO Component.

This is needed in our architecture because we have supposed that both ESO Component and
Model Component could be distributed, and only the Model knows about the ESO.

This point can be discussed later.
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3.6.1.3 Continuous Model: ICapeNumericContinuousModel
Inherits from: | CapeNumericM odel

Simple simulation model with only one ESO associated.

3.6.1.4 Hierarchical Model: ICapeNumericHierarchicalModel
Inherits from: | CapeNumericM odel

This Modd represents a complex simulation model with a State Transition Network and multiple
ESOs to pilot the simulation process (mostly used for dynamic simulation with DAESO).

We have not specified here the methods that would be needed to create such amodel (methods to
create STN, create state, assign a model to a state, create transition, etc.), only the method needed
to use such amodel is defined here.

* GetSTNList

Interface Name ICapeNumericHierarchicalModel
Method Name GetSTNList
Returns CapeError

Description

Getsthelist of all the state transition networks (STNs) associated to this Hierarchical Model.

Arguments
Name Type Description
[out, return] CapeArrayNumericST | thelist of associated STNs.
N
TheSTNList
Exception

No STN currently associated with this Hierarchical Model.
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3.6.1.5 Aggregate Model: ICapeNumericAggregateModel
Inherits from: | CapeNumericM odel

This model alows to "concatenate” in some sense two or more previously defined
models (continuous or hierarchical). This enable the creation of acomplex model representing two
or more units with their own variables and equations. Some equations can be added in the
common ESO to represent the connections equations between these units.

+ GetModelList

Interface Name ICapeNumericAggregateModel
Method Name GetModelList
Returns CapeError

Description

Getsthelist of all the models associated with this Aggregate Model.

Arguments
Name Type Description
[out, return] CapeArrayNumericM the list of associated models.

odel
TheListOfModdls

Exception

No Model currently associated with this Aggregate Moddl.
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SetConnectionEquation

Interface Name ICapeNumericAggregateModel
Method Name SetConnectionEquation
Returns CapeError

Description

Establish the connection between two variables that are the same in two different models of
this Aggregate Model.

Arguments
Name Type Description
[in] | CapeNumericModel origin Mode
ThelnputModel
[in] CapelLong index of the variable

Thelnputindex

[in] | CapeNumericModel destination Model
TheOutputModel
[in] Capel.ong index of the variable

TheOutputlndex

Exception

Invalid Model or invalid index.

Remark

This notion of connection and its representation will probably need further investigation, there
is no assumption made here on how these connection equations are represented (either by
explicit equations added in the common ESO for this Aggregate Model or by identity between
the two variables).
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3.6.1.6 State Transition Network: ICapeNumericSTN

Inherits from: | CapeUtilityComponent

Eight methods are defined for thisinterface:

a

Q

SetCurrentState
GetCurrentState

GetParentM odel

GetPossibleTransitions

GetStateTransitions

GetStatel ist
GetStateM odel

MoveToNextState

76



SetCurrentState

Interface Name ICapeNumericSTN

Method Name SetCurrentState

Returns CapeError
Description

Sets the value of the current state. This method can be used to set the value of the initial state

or internally to switch from one state to another.

Arguments
Name Type Description
[in] CapeString the name of the current state.
TheStateName
Exception

Invalid state name.
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GetCurrentState

Interface Name ICapeNumericSTN

Method Name GetCurrentState

Returns CapeError
Description

Gets the name of the current state for this STN.

Arguments
Name Type Description
[out, return] CapeString the name of the current state
TheStateName
Exception

No current state defined yet.

78



GetParentModel

Interface Name ICapeNumericSTN

Method Name GetParentM odel

Returns CapeError
Description

Gets the model which owns this specific STN.

Arguments
Name Type Description
[out, return] | CapeNumericModel: the name of the model which owns this
Capelnterface STN.
TheParentM odel
Exception
None
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GetPossibleTransitions

Interface Name ICapeNumericSTN

Method Name GetPossibleTransitions

Returns CapeError
Description

Getsthelist of all the transitions for the current state in this STN.

Arguments

Name

Type

Description

[out, return]

TheListOf Eventlnfo

CapeArraylnternalEve
ntinfo

the list of the current Interna Event
Infos associated with this STN.

Exception

No current state defined.
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GetStateTransitions

Interface Name ICapeNumericSTN

Method Name GetStateTransitions

Returns CapeError
Description

Returns the names of the states which can be reached from a specified state of the network,
together with the EventInfos [Events] which control each transition.

Arguments

Name Type Description

[in] CapeString the name of the state.

FromState

[out] CapeArrayEventinfo list of the Eventlnfos associated to
each transition.

EventList

[out] CapeArrayString list of the corresponding names of the
states.

Statelist

[out, return] CapeDouble the number of transitions from that

NumberOf Transitions

state.

Exceptions

No transitions defined for this state.

Invalid state name
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GetStateList

Interface Name ICapeNumericSTN

Method Name GetStateL ist

Returns CapeError
Description

Getsthelist of al the statesin the STN.

Arguments
Name Type Description
[out, return] CapeArrayString list of the states
Statel ist
Exceptions

No state has been defined yet.
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GetStateModel

Interface Name ICapeNumericSTN

Method Name GetStateM odel

Returns CapeError
Description

Getsthe model associated with a particular state.

Arguments
Name Type Description
[in] CapeString the name of the state
StateName

[out, return]

TheModel

| CapeNumericModel:

Capelnterface

the Mode associated with
particular state

this

Exception

Invalid state name.
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MoveToNextState

Interface Name ICapeNumericSTN

Method Name MoveToNextState

Returns CapeError
Description

Changes the current state according to the event that hasfired.

Arguments
Name Type Description
[in] ICapeNumericEventln | the eventinfo that has triggered the
fo:Capelnterface change to anew dtate.
FiredEvent
[out, return] CapeString the name of the new current state.
StateName
Exception

Invalid eventlnfo passed as a parameter.
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3.6.1.7 Event : ICapeNumericEvent
Inherits from: | CapeUtilityComponent

This object represents a condition on a variable or on a number of variables, with a boolean value.
It serves two distinct roles, although the same definition is appropriate for both:

e [nterna events, i.e. the transition conditions of the STNswithin aModd.

* Externa events, i.e. those specified as stopping conditions when advancing the
solution of a DAESystem (see section |CapeNumericDAESolver).

Event itself defines only a method to return its value (True or False): further information is
dependent on its subtypes, and is contained in four distinct subtypes derived fromiit.

CapeNumericEventType = {BASIC, COMPOSITE, BINARY, UNARY}
The definitions make use of two other enumerated types, as follows :
CapeLogicalRelation = {GT, LT, GEQ, LEQ}

CapeLogicalOperator = {AND, OR, NOT}
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Eval

Interface Name ICapeNumericEvent

Method Name Eval

Returns CapeError
Description

Evaluates the logical expression represented by this particular event.

Arguments
Name Type Description
[out, return] CapeBoolean True or Fase depending on the
evaluation of the logical condition
TheResult
Exception
None.

86



QueryType

Interface Name ICapeNumericEvent

Method Name QueryType

Returns CapeError
Description

Returns the type of event involved (thus allowing the correct interface and behaviour to be
determined directly rather than on atria-and-error basis).

Arguments
Name Type Description
[out, return] CapeNumericEventTy | returnsthe type of this event.
AnEventType >
Exception
None.
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3.6.1.8 Basic Event : ICapeNumericBasicEvent
Inherits from: | CapeNumericEvent

A Basic Event is a triplet of the form [variable, operator, valug], like for example x5 > 1.5. We
have defined the different numeric operators (>, <, >=, <=) as a CapelL ogicalRelation in a typedef.
Three methods are defined for this interface:

o GetVariable

u GetLogicaRelation

o GetVaue

+ GetVariable

Interface Name ICapeNumericBasicEvent
Method Name GetVariable
Returns CapeError

Description

Getsthe variable used in the representation of this Basic Event.

Arguments
Name Type Description
[out, return] CapelLong the General index representing this
variable
TheVariablelndex
Exception
None.
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GetLogicalRelation

Interface Name

ICapeNumericBasicEvent

Method Name GetLogicaRelation
Returns CapeError
Description

Gets the logical relation used in the expression of this Basic Event. This can be one of atype
definition for all the supported relations (i.e. >, <, >=, <=).

Arguments
Name Type Description
[out, return] CapelLogicaRelation | the logicd relation used by this basic

Thel ogicalRelation

Event.

Exception

None.
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GetValue

Interface Name

ICapeNumericBasicEvent

Method Name GetVaue
Returns CapeError
Description

Getsthe value of the real constant used in the expression of that Basic Event.

Arguments

Name Type Description

[out, return] CapeDouble the constant value used in the
comparison.

TheVaue

Exception

None.
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3.6.1.9 Composite Event : ICapeNumericCompositeEvent
Inherits from: | CapeNumericEvent

A Composite Event is a relation between two events links together by a logical operator (AND,
OR, NOT). In the same way we have defined numeric operators, we also have defined logical
operators (AND, OR, NOT) as a Capel ogica Operator typedef.

Such a composite event can be unary or binary depending of the number of operands needed by
the logical operator.

* GetRightOperand

Interface Name ICapeNumericCompositeEvent
Method Name GetRightOperand
Returns CapeError

Description

Getstheright part of the Composite Event.

Arguments
Name Type Description
[out, return] |CapeNumericEvent:C | the Basic or Composite Event used on
apelnterface the right part of the logical expression
TheRightOperand
Exception
None.
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GetLogicalOperator

Interface Name

ICapeNumericCompositeEvent

Method Name GetL ogica Operator
Returns CapeError
Description

Getsthelogical operator used in thelogical expression. It must be one of the Logica Operators

(AND, NOT, OR).

Arguments

Name Type Description

[out, return] CapeNumericLogical | the logica operator used in this
Operator expression.

Thel ogical Operator

Exception

None.
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3.6.1.10 Binary Event : ICapeNumericBinaryEvent
Inherits from: 1CapeNumericCompositeEvent

A Binary Event is the most common case of a Composite Event where you have a
|eftOperand, an Operator, and arightOperand like in the expression A AND B.

* GetLeftOperand

Interface Name

ICapeNumericBinaryEvent

Method Name GetL eftOperand
Returns CapeError
Description

Getsthe left logical expression in the case of binary operator.

Arguments

Name Type Description

[out, return] ICapeNumericEvent:C | the left operand in the logica
apelnterface expression.

TheL eftOperand

Exception

None
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3.6.1.11 Unary Event : ICapeNumericUnaryEvent
Inherits from: | CapeNumericCompositeEvent

A Unary Event is an Event wher you do not have a leftOperand ; an example is the expression
NOT A. No specific methods have been defined for this subclass.

3.6.1.12 Event Info : ICapeNumericEventinfo
Inherits from: | CapeUtilityComponent

This object is designed as a return value from the DAESolver aobject, and contains information
about the occurence of an Event.

The Eventlnfo object itself contains only a method to indicate the kind of event information

returned (external or internal), and another to access the «sub Event» object: this is so called
because even when a transition or stopping condition is specified with a composite event, the
Solver is expected to return the most detailed information it can. This is likely to be a component

of the original composite event.

Further detail is dependent on the kind of event information, and is contained in two distinct
subtypes derived from it.

An enumerated type is needed to define the kind, as follows:
CapeNumericEventInfoKind = {INTERNAL, EXTERNAL}

Three methods are defined for this interface:

o QueryKind

o GetSubEvent

a GetEvent
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QueryKind

Interface Name

ICapeNumericEventInfo

Method Name QueryKind
Returns CapeError
Description

Returns the kind of Eventlnfo.

Arguments

Name

Type

Description

[out, return]

TheKind

CapeNumericEventlnf
oKind

the kind of this event:
external.

internal or

Exception

None.
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GetSubEvent

Interface Name

ICapeNumericEventInfo

Method Name GetSubEvent
Returns CapeError
Description

Provides access to the sub-event object.

Arguments

Name

Type

Description

[out, return]

AnEvent

| CapeNumericEvent:C
apelnterface

the sub-event that has fired.

Exception

None.
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GetEvent

Interface Name

ICapeNumericEventInfo

Method Name GetEvent
Returns CapeError
Description

Gets the event associated with this Event Info.

Arguments

Name Type Description

[out, return] ICapeNumericEvent:C | the event associated with this
apelnterface Eventinfo.

AnEvent

Exception

None.
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3.6.1.13 External Event Info : ICapeNumericExternalEventinfo
Inherits from: | CapeNumericEventinfo

When an external event occurs, we will need to know which of the stopping conditions we
provided to the System has occured. This object simply adds this piece of information to that in
the general Eventinfo class.

3.6.1.14 Internal Event Info : ICapeNumericinternalEventinfo
Inherits from: | CapeNumericEventinfo

When an internal event occurs, we will generally simply have to set the state of the model as

indicated, and continue the solution process. However, in order to do this or carry out some more

complex action, we will require access to the STN object in which the transition «wants» to occur,
as well as the target state (the current state can be obtained from the STN). This object adds these
two items of information to the general Eventinfo class.

« GetSTN

Interface Name

ICapeNumericlnternalEventInfo

Method Name GetSTN
Returns CapeError
Description

Provides access to tih€apeNumericSTNobject in which the state transition indicated by the
EventInfo is set to occur.

Arguments

Name

Type Description

[out, return]

TheSTN

ICapeNumericSTN:Ca the STN associated with this Eventinfo.
pelnterface

Exception

None.
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GetToState

Interface Name

ICapeNumericInternalEventInfo

Method Name GetToStete
Returns CapeError
Description

Provides the name of the state which is indicated as becoming active because of the transition
condition which has became true.

Arguments
Name Type Description
[out, return] CapeString the name of the next current state
according to that Event.
TheState
Exception
None.
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3.6.2 ESO Component

This component mainly represents a rectangular system of P equations and N variables (P superior
or equal to N). We have build the ESO as an independent component with al the interfaces
needed between the Model Component and the Solver Component.

We have described the methods that standardise the communications with the Solver Component,
and the methods that allow to map the variables used in this ESO with the variables defined by the
Moddl.

We have defined a "Global" ESO as a subclass of the general ESO. This Globa ESO has some
extramethods to set the list of the ESOs it is composed of and to manage thislist.

The interfaces described are the following:

o |CapeNumericMatrix. Thisinterface has three subtypes.

o ICapeNumericESOManager. This interface alows the creation and the management of the
various ESOs.

o [CapeNumericESO. Thisistheinterface of the Algebraic Equation Set Object.

o |CapeNumericLAESO.

o 1CapeNumericNLAESO.

o |CapeNumericDAESO.

o |CapeNumericGloba ESO.

o ICapeNumericGloba LAESO.

o 1CapeNumericGloba NLAESO.

o |CapeNumericGloba DAESO.
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3.6.2.1 Internal types used by this component

|CapeNumericMatrixType is an enumerated type defining the matrix types for which we have so
far defined interfaces. It consists of:

(FULL, UNSTRUCTURED, BANDED)

3.6.2.2 Matrix interface : ICapeNumericMatrix
The ICapeNumericMatrix interface has the following methods:

QueryType(): The subtype of the matrix (an |CapeNumericMatrixType value)
GetNumCaols(): number of columnsin the matrix (Capel.ong)
GetNumRows(): number of rows in the matrix (CapeL ong)

GetVaues(): the values of the matrix — exact semantics depend on the subtype
(CapeArrayDouble)

QuerySymmetrif): determines whether the matrix is symmetric or not
(CapeBoolean)

QueryOrderin€): determines whether values are given by row or column, for
structured, unsymmetric matrices (CapeBoolean).
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e QueryType

Interface Name ICapeNumericMatrix
Method Name QueryType
Returns CapeError

Description

This method indicates which subtype is this Matrix.

The value returned is a CapeOpen enumerated type (CapeNumericMatrixType) with three
values (FULL, UNSTRUCTURED and BANDED). This alows the subtype of the matrix to be
determined without trial and error.

Arguments
Name Type Description
[out, return] CapeNumericMatrixT | returns the subtype of the matrix.
ype
ASubType
Exception
None.
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¢ GetNumCols

Interface Name ICapeNumericMatrix

Method Name GetNumCols

Returns CapeError
Description

Gets the number of columnsin amatrix.

Arguments

Name

Type

Description

[out, return]

TheNbCols

Capelong

the number of columns.

Exceptions

None.
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¢ GetNumRows

Interface Name ICapeNumericMatrix

Method Name GetNumRows

Returns CapeError
Description

Gets the number of rowsin a matrix.

Arguments

Name

Type Description

[out, return]

TheNbRows

CapelLong the number of rows.

Exception

None.
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+ GetValues

Interface Name ICapeNumericMatrix

Method Name GetVaues

Returns CapeError
Description

This method returns an array of double values in all cases. The semantics depend on the
subtype, symmetry and ordering (see QueryType and QueryOrdering).

Arguments

Name Type Description

[out, return] CapeArraylLong returns the values.

TheVaues

Exception

None.

105



QuerySymmetric

Interface Name ICapeNumericMatrix
Method Name QuerySymmetric
Returns CapeError

Description

Returns TRUE if thisis a symmetric matrix, FAL SE otherwise.

Note that NumRows must equal NumColsiif this matrix is symmetric.

Arguments

Name

Type

Description

[out, return]

ABoolean

CapeBoolean

returns TRUE or FALSE.

Exception

None.
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* QueryOrdering

Interface Name ICapeNumericMatrix
Method Name QueryOrdering
Returns CapeError

Description

For unsymmetric matrices, some subtypes can return their values ordered either "by row" or
"by column”. This method indicates which type is used.

The value returned is a CapeOpen type (CapeNumericMatrixOrdering) with three values
"BYROW", "BYCOL", "OTHER". ("OTHER" is for symmetric matrices where BY ROW or
BYCOL gives the same result, or unstructured matrices where values are returned depending
on the information given by GetStructure).

Arguments
Name Type Description
[out, return] CapeNumericMatrixO | returns the ordering used to decode the
rdering values returned by GetValues.
AnOrdering
Exception
None.
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3.6.2.2.1 ICapeNumericFullMatrix
Inherits from: | CapeNumericMatrix

See section 2.1.12.1 for the detailed semantics of this subtype. No further methods are defined by
the interface.

3.6.2.2.2 CapeNumericUnstructuredMatrix
Inherits from: | CapeNumericMatrix

See section 2.1.12.2 for the detailed semantics of this subtype.

A single method is added, GetStructure(), which returns two CapeArrayLong values: RowlIndices
and Columnindices.

¢« GetStructure

Interface Name ICapeNumericUnstructuredMatrix
Method Name GetStructure
Returns CapeError

Description

Gets the structure of the matrix (row and column indices of nonzeroes).

Arguments

Name Type Description

[out] CapeArraylLong therow list of indices.

RowlIndices

[out] CapeArraylLong the column list of indices.

ColIndices

Exception

None.
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3.6.2.2.3 CapeNumericBandedMatrix
Inherits from: | CapeNumericMatrix

See section 2.1.12.3 for the detailed semantics of this subtype.

A single method is added, GetBandWidth(), which returns a Capelong value.

« GetBandWidth

Interface Name ICapeNumericBandedMatrix
Method Name GetBandWidth
Returns CapeError

Description

Returns an integer N for banded matrices (no nonzero occurs more than N rows/columns from
the leading diagonal).

Arguments

Name Type Description

[out, return] Capelong returns the bandwidth.

BandWidth

Exception

None.
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3.6.2.3 Equation Set Object Manager interface : ICapeNumericESOManager
Inherits from: | CapeUtilityComponent

Thisinterface allows the creation and the management of the various ESOs.
There is only one instance of the ESOManager, this object knows all the ESO classes and

subclassesthat are available in the ESO component and will manage all the instances of ESOs that
are created.

+ CreateESO

Interface Name ICapeNumericESOManager
Method Name CreateESO
Returns CapeError

Description

Creates a new ESO. This can be done a so by instantiating some known subclasses of ESO.

Arguments
Name Type Description
[in] CapeESOType the type of ESO to be created may be
LA, NLA, DAE or Global, or some
TheTypeOfESO other subclasses of these classes.
[out, return] |CapeNumericESO:Ca | the Interface of the ESO which has
pelnterface been created.
ANESO
Exception

To be defined (any run time error during the creation)
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3.6.2.4 Equation Set Object (ESO) interface : ICapeNumericESO
Inherits from: | CapeUtilityComponent

Thisisthe interface of the Equation Set Object which in the most general case represents a set of
equations of the form :

f(x,x)=0

In general, a set described by an ESO can be rectangular, i.e. the number of variables does not
have to be the same as the number of equations’.

The variables in an ESO are characterised by their current values (that can be changed via the
provided interface), and also lower and upper bounds. Usually, these bounds relate to the domain
of definition of the equations™ and/or physical reality™. For this reason, any attempt to set one or
more variables to values outside these bounds is considered to be illegal and will, therefore, be
rejected.

The equations in an ESO are assumed to be sparse, i.e. any given equation will involve only a
subset of the variables in the ESO. Consequently, only a (usually small) subset of the partial
derivatives df / 0x are going to be nonzero for any set of values of the variables x. The sparsity

pattern of the ESO refers to the number of such nonzero elements, and the row i (i.e. equation f,)
and column j (ie. variable x ) to which each such nonzero corresponds. The way in which
information on this structure is defined is entirely analogous to that for linear systems.

The interface defined in this section provided mechanisms for obtaining information on the

current values and bounds of the variables x, as well as the sparsity pattern of the ESO. It also

allows the modification of the variable values, and the computation of the values («residuals») of
the equationsf(x)for the current values oft and of the nonzero elements of the matrix

0f / 0x (the so-called «Jacobian» matrix).

Finally, we note that CAPE-OPEN does define any standard mechanisms or interfaces for the
construction of ESOs. These are left at the discretion of implementers.

° Of course, any ESOs that is to be solved using the nonlinear algebraic solver interfaces described in
section Numerical Solver Component must be square, i.e. it must have the same number of equations and
variables.

19 For instance, an equation involving a term +/1— x is undefined for any value of variable x exceeding
unity; thus, x issubject to an upper bound of 1.0.

1 For instance, variables representing molar fractions must stay between a lower bound of 0 and an upper
bound of 1.
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The methods of the |CapeNumericESO interface are:

Q

u

GetParameterList

SetParameter
GetNumVars
GetNumEgns
SetFixedVars
SetAllVariables
SetVariables
GetAllVariables
GetVariables

GetAllResiduals

GetResiduals

GetJacobianStruct

GetAllJacobianValues

GetJacobianVaues

Destroy
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GetParameterList

Interface Name ICapeNumericESO

Method Name GetParameterList

Returns CapeError
Description

Getsthelist of al the parameters defined for this ESO class.

Arguments
Name Type Description
[out, return] CapeArrayNumericPu | the list of al the Public Parameter
blicParameter available for this class of ESO.

TheListOf Parameters

Exception

None.
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SetParameter

Interface Name ICapeNumericESO

Method Name SetParameter

Returns CapeError
Description

Sets the current value of a specific parameter to be used by the constructor of that class to
create an instance of that object.

Arguments
Name Type Description
[in] CapesString the name of the parameter to be set.
TheParameterName
[in] CapeVariant the value of that particular parameter.
TheParameterValue
Exceptions

Invalid type of the value.

Invalid parameter name.
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GetNumVars

Interface Name ICapeNumericESO

Method Name GetNumVars

Returns CapeError
Description

Gets the number of variables of this ESO. In the case of a "Global" ESO (built by a complex
model), it will return the total number of variablesin the Globa ESO.

Arguments
Name Type Description
[out, return] CapelLong the total number of variables N for this
ESO
TheNumberOfVars
Exception

No set of variables associated yet with this ESO.
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GetNumEqgns

Interface Name ICapeNumericESO

Method Name GetNumEgns

Returns CapeError
Description

Gets the number of equations in this ESO. In the case of a Global ESO, it will return the total
number of equations for this Global ESO.

Arguments
Name Type Description
[out, return] Capelong the total number of equations P for this
ESO.
TheNumberOfEgns
Exception
None.
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SetFixedVars

Interface Name ICapeNumericESO

Method Name SetFixedVars

Returns CapeError
Description

Sets the value of some variables and marks these variables as fixed.

Arguments
Name Type Description
[in] CapeArraylLong the indices of the variables we wish to
Set.
Varlndices
[in] CapeArrayDouble the values of the variables we wish to
Set.
VarValues
Exceptions

No set of variables associated yet with this ESO.

Index out of range for some variables.

Not the same length in the two arrays.
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SetAllVariables

Interface Name ICapeNumericESO

Method Name SetAllVariables

Returns CapeError
Description

Sets the value of all variables of this ESO.

Arguments
Name Type Description
[in] CapeArrayDouble the values of al the variables we wish
to set.
VarValues
Exceptions

No set of variables associated yet with this ESO.
Too many valuesin the array (extra values can be ignored).

Not enough valuesin the array (values missing can be set to 0).
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SetVariables

Interface Name ICapeNumericESO

Method Name SetVariables

Returns CapeError
Description

Sets the value of some variables.

Arguments
Name Type Description
[in] CapeArraylLong the indices of the variables we wish to
Set.
Varlndices
[in] CapeArrayDouble the values of al the variables we wish
to set.
VarValues
Exceptions

No set of variables associated yet with this ESO.

Index out of range for some variables.

Not the same length in the two arrays.
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GetAllVariables

Interface Name ICapeNumericESO

Method Name GetAllVariables

Returns CapeError
Description

Getsthe value of all variables.

Arguments
Name Type Description
[out, return] CapeArrayDouble the values of al the variables.
VarVaues
Exception

No set of variables associated yet with this ESO.
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GetVariables

Interface Name ICapeNumericESO

Method Name GetVariables

Returns CapeError
Description

Getsthe value of a subset of the variables.

Arguments
Name Type Description
[in] CapeArraylLong the indices of the variables we wish to

get.
Varlndices
[out, return] CapeArrayDouble the values of the subset of variables.
VarVaues
Exceptions

No set of variables associated yet with this ESO.

Index out of range for some variables.
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GetAllIResiduals

Interface Name ICapeNumericESO

Method Name GetAllResiduals

Returns CapeError
Description

Getsthe value of all the residuas.

Arguments
Name Type Description
[out, return] CapeArrayDouble the values of al theresidualsfor all the
equations.
AllResiduals
Exception

Variables not initiaised.
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GetResiduals

Interface Name ICapeNumericESO

Method Name GetResiduals

Returns CapeError
Description

Getsthe value of a subset of the residuals.

Arguments
Name Type Description
[in] CapeArraylLong the indices of the equations we wish to
get the residua s from.
Indices
[out, return] CapeArrayDouble the values of the residuals for the
regquested equations.
TheResiduas
Exception

Invalid indices for the equations.

Remark

All theresiduals are evaluated at the current variables values.
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GetJacobianStruct

Interface Name ICapeNumericESO

Method Name GetJacobianStruct

Returns CapeError
Description

Returns a matrix object which contains information on the structure of the Jacobian matrix.
The GetVaues method of this object will provide values encoded as follows :

e -1.0indicates an entry which cannot be computed by the ESO.

* 0.0indicates an entry which will always be zero.

Any other value indicates a nonzero, computable entry.

Arguments

Name

Type

Description

[out, return]

TheMatrix

|CapeNumericMatrix:
Capelnterface

a matrix or any matrix subclass with
the Jacobian structure.

Exception

None.
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GetAllJacobianValues

Interface Name ICapeNumericESO

Method Name GetAllJacobianValues

Returns CapeError
Description

Returns a matrix object whose GetVaues method will provide the Jacobian values at the

ESO’s current variable values each time it is called (the values of entries indicated as
uncomputable in the matrix returned GgtJacobianStruatill be meaningless, but the call to
GetValueswill not cause an error simply because such entries exist).

Arguments
Name Type Description
[out, return] ICapeNumericMatrix: | a Matrix object yielding the Jacobian
Capelnterface values.
TheMatrix
Exception
None.
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GetJacobianValues

Interface Name ICapeNumericESO

Method Name GetJacobianVaues

Returns CapeError
Description

Getsthe values of selected entries of the Jacobian, at the current variable values of the ESO.

Arguments
Name Type Description
[in] CapeArraylLong the indices of selected elements. The

semantics are those of the matrix’s

TheElementIndices GetValuesmethod.
[out, return] CapeArrayDouble the values of the requested elements.
TheValues

Exceptions

Some of the requested Jacobian values cannot be computed.

Indices out of range.
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Destroy

Interface Name ICapeNumericESO

Method Name Destroy

Returns CapeError
Description

Deletes the ESO Component and all the objects associated with this particular ESO

Component.

Arguments
None.
Exception

None.
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3.6.2.5 Linear Analysis ESO interface : ICapeNumericLAESO
Inherits from: 1CapeNumericESO

Only afew methods have been defined for this interface, more could be added. Four methods have
been defined so far:

o SetRHS
a SetLHS
u GetRHS

o GetLHS
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SetRHS

Interface Name ICapeNumericLAESO
Method Name SetRHS
Returns CapeError

Description

Sets the values of the right hand side vector.

Arguments
Name Type Description
[in] CapeArrayDouble the values of the RHS to be set.
Vaues
Exceptions
None.

129



SetLHS

Interface Name ICapeNumericLAESO
Method Name SetLHS
Returns CapeError

Description

Sets the left hand side values of the linear system, i.e. the matrix values. The input argument is
interpreted with the same semantics as the array returned when the GetValues method is called.

Arguments

Name

Type

Description

[in]

Matrix

| CapeNumericM atrix

the values of the LHS to be set.

Exception

None.
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GetRHS

Interface Name ICapeNumericLAESO
Method Name GetRHS
Returns CapeError

Description

Gets the values most recently set for the right hand side vector of this linear system.

Arguments

Name

Type

Description

[out, return]

Vaues

CapeArrayDouble

the values of the RHS.

Exceptions

No values have been set.
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GetLHS

Interface Name ICapeNumericLAESO
Method Name GetLHS
Returns CapeError

Description

Gets the left hand side values of thislinear system.

Note: the result should be the same as what is returned by calling the GetV alues method of the

Matrix object returned by GetAllJacobianV alues.

Arguments
Name Type Description
[out, return] | CapeNumericMatrix the current values of the LHS.
Matrix

Exceptions

No values have been set..
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3.6.2.6 Non Linear Analysis ESO interface : ICapeNumericNLAESO
Inherits from: 1CapeNumericESO

Thereis no special method right now for this interface.
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3.6.2.7 Differential Analysis ESO interface : ICapeNumericDAESO
Inherits from: 1CapeNumericESO

This is the interface of the Differential-Algebraic Equation Set Object which represents a
(generaly rectangular) set of differential-algebraic equations of the form:

f(x,x,1)=0

wheret is the independent variable and x(z) is a vector of dependent variables. Also x denotes the
derivatives dx /dt . We note that, in general, the quantities x will appear in the system for only a
subset of the dependent variables x. This subset of x are often referred to as thdigerential
variables» while the rest are thewkgebraic variables». Of courseqll these variables are functions
of the independent variable

It is worth clarifying the semantic interpretation of the methods that are inherited by this interface
from ICapeNumericESO

. GetNumVarsmust return the length of the vector x
. SetVariableandGetVariablegelate only to the vectar .
. All the methods associated with the JacobigBet{acobianStructand

GetJacobianValugselate todf / 0x .

. The equation residuals and Jacobian are evaluated at the current valygs of
andz.

The methods defined in this section introduce equivalent functionality for accessing and altering
: . o f(x %) =0 . . . .
information pertaining (Q — 1 N€Y also provide mechanisms for accessing and altering
the value of the independent variabl&he defined methods are:

o SetAllDerivatives

o GetAllDerivatives

u GetDerivatives

u GetDiffJacobianStruct

o GetAllDiffJacobianValues

u GetDiffJacobianValues

u SetindependentVar

o GetlndependentVar
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SetAllDerivatives

Interface Name ICapeNumericDAESO
Method Name SetAllDerivatives
Returns CapeError

Description

Sets the numerical value of al the derivatives. The length of the array supplied must equal the
number of variables: values for derivatives which do not appear in any of the equations can be

ignored.
Arguments
Name Type Description
[in] CapeArrayDouble the values of the derivatives.
VarVaues
Exceptions

No set of variables associated yet with this ESO.

Number of values provided not equal to the number of variables.

Not the same length in the two arrays.
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GetAllDerivatives

Interface Name ICapeNumericDAESO
Method Name GetAllDerivatives
Returns CapeError

Description

Gets the values of the derivatives for all the variables. The length of the array returned will be
equal to the number of variables, but the values of derivatives which do not appear in the
equation system may be meaningless.

Arguments
Name Type Description
[out, return] CapeArrayDouble the values of al the derivatives.
TheVaues
Exception

No set of variables associated yet with this ESO.
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GetDerivatives

Interface Name ICapeNumericDAESO
Method Name GetDerivatives
Returns CapeError

Description

Getsthe value of a subset of the derivatives.

Arguments
Name Type Description
[in] CapeArraylLong the indices of the variables whose
derivatives we wish to get.
Thelndices
[out, return] CapeArrayDouble the values of the subset of derivatives.
TheVaues
Exceptions

No set of variables associated yet with this ESO.

Index out of range for some variables.
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GetDiffJacobianStruct

Interface Name ICapeNumericDAESO
Method Name GetDiffJacobianStruct
Returns CapeError

Description

Returns a matrix object which contains information on the structure of the differential Jacobian
matrix. The GetVaues method of this object will provide values encoded as follows:

e -1.0indicates an entry which cannot be computed by the ESO.

* 0.0 indicates an entry which will always be zero.

* Any other value indicates a honzero, computable entry.

Arguments

Name

Type

Description

[out, return]

Matrix

| CapeNumericMatrix

full or sparse matrix

Exception

None.
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GetAllDiffJacobianValues

Interface Name ICapeNumericDAESO
Method Name GetAllDiffJacobianValues
Returns CapeError

Description

Returns a matrix object whose GetV alues method will provide the differential Jacobian values

at the ESO’s current variable values each time it is called (the values of entries indicated as
uncomputable in the matrix returned BetDiffJacobianStrucwill be meaningless, but the

call toGetValueswill not cause an error simply because such entries exist).

Arguments

Name Type Description

[out, return] ICapeNumericMatrix a Matrix object vyielding the
differential Jacobian values.

TheMatrix

Exception

None.
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GetDiffJacobianValues

Interface Name ICapeNumericDAESO
Method Name GetDiffJacobianVa ues
Returns CapeError

Description

Gets the values of selected entries of the differential Jacobian, at the current variable values of

the ESO.
Arguments
Name Type Description
[in] CapeArraylLong the indices of selected elements. The
semantics are those of the matrix’s
TheElementIndices GetValuesmethod.
[out, return] CapeArrayDouble the values of the requested elements.
TheValues
Exception
None.
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SetindependentVar

Interface Name

ICapeNumericDAESolver

Method Name SetIndependentV ar
Returns CapeError
Description

Sets the value of the independent variable in the DAESO.

Arguments
Name Type Description
[in] CapeDouble the value of the independent variable
IndVarValue
Exceptions
None.
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GetindependentVar

Interface Name

ICapeNumericDAESolver

Method Name GetIndependentVar
Returns CapeError
Description

Getsthe current value of the independent variable in the DAESO.

Arguments

Name

Type

Description

[out, return]

IndVarVaue

CapeDouble

the value of the independent variable

Exceptions

None.
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3.6.2.8 Global ESO interface : ICapeNumericGlobalESO
Inherits from: | CapeUtilityComponent

Thisinterface is there to alow concatenation of multiples ESOs in the case we want to aggregate
multiple ESOs (in the case of aflowsheet) in asingle ESO.

It has specific methods for that.

SetListOfESOs

Interface Name

ICapeNumericGlobalESO

Method Name SetListOfESOs
Returns CapeError
Description

Setsthelist of all the ESOs included in this Global ESO.

Arguments
Name Type Description
[in] CapeArrayNumericES | thelist of the ESOs the Global ESO is
@] composed of.
ListOfESOs
Exception

Incompatible ESO types.
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GetListOfESOs

Interface Name

ICapeNumericGlobalESO

Method Name GetListOfESOs
Returns CapeError
Description

Getsthelist of al the ESOs included in this Global ESO.

Arguments
Name Type Description
[out, return] CapeArrayNumericeS | the list of the ESOs the Global ESO is
@] composed of.
ListOfESOs
Exception
None.
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3.6.2.9 Global LAESO interface : ICapeNumericGlobalLAESO
Inherits from: | CapeNumericGloba ESO and |CapeNumericLAESO

This Globa ESO isalist of LAESOs and inherits from LAESO and Global ESO.

3.6.2.10 Global NLAESO interface : ICapeNumericGlobalNLAESO
Inherits from: | CapeNumericGloba ESO and | CapeNumericNLAESO

This Globa ESO isalist of NLAESOs and inherits from NLAESO and Global ESO.

3.6.2.11 Global DAESO interface : ICapeNumericGlobalDAESO
Inherits from: 1CapeNumericGloba ESO and |CapeNumericDAESO

This GlobalESO isalist of DAESOs and inherits from DAESO and Globa ESO.
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3.6.3 Solver Component

This part describes all the interfaces and their associated methods for the Solver Component itself.
The different interfaces are:

| CapeNumericSolverManager. Thisinterface creates an instance of the Solver Component.

| CapeNumericSolver. This interface provides facilities that are common to the different kinds
of solvers.

|CapeNumericLASolver. This interface provides facilities which are specific to Solvers of
Linear Algebraic equation systems.

| CapeNumericNLASolver. This interface provides facilities which are specific to Solvers of
Non Linear Algebraic equation systems.

| CapeNumericDAESolver. This interface provides facilities which are specific to Solvers of
Differential Algebraic equation systems.
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3.6.3.1 Solver Manager interface : ICapeNumericSolverManager
Inherits from: | CapeUtilityComponent

We first need to have a factory to create an instance of the Solver Component for a specific ESO
from a specific type, either linear, non linear or differential.

* CreateSolver

Interface Name

ICapeNumericSolverManager

Method Name CreateSol ver
Returns CapeError
Description

Creates a specific Solver Component of the type appropriate to the input argument.

Arguments
Name Type Description
[in] ICapeNumericModel : | the reference of the Modd to be
Capelnterface solved.
TheModel
[in] CapeSolverType the type of the Solver to be created.
theSolverType

[out, return]

theSolver

| CapeNumericSolver:C
apelnterface

the reference of the Solver Component
created.

Exceptions

Thetotal number of equationsin the Model differs from the number of variables.

Other possible errors.
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3.6.3.2 Numeric Solver interface : ICapeNumericSolver
Inherits from: | CapeUtilityComponent

This interface exists to provide facilities for identifying the various algorithmic parameters (e.g.
convergence accuracy, integration error tolerances efc.) that are recognised by a numerical solver,
and for altering their valuesif necessary.

We have also grouped here all the methods that are common to the different kinds of solvers. Six
methods have been defined:
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GetParameterList

SetParameter
Solve
GetSolution

Destroy

SetReportinglnterface

149



GetParameterList

Interface Name ICapeNumericSolver

Method Name GetParameterList

Returns CapeError
Description

Getsthelist of all the parameters defined for this Solver class.

Arguments
Name Type Description
[out, return] CapeArrayNumericPu | the list of al the Public Parameter
blicParameter available for this class of Solver.

TheListOf Parameters

Exception

None.
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SetParameter

Interface Name ICapeNumericSolver

Method Name SetParameter

Returns CapeError
Description

Sets the current value of a specific parameter to be used by the constructor of that class to
create an instance of that object.

Arguments
Name Type Description
[in] CapesString the name of the parameter to be set.
TheParameterName
[in] CapeVariant the value of that particular parameter.
TheParameterValue
Exceptions

Invalid type of the value.

Invalid parameter name.
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Solve

Interface Name ICapeNumericSolver

Method Name Solve

Returns CapeError
Description

Attempts to solve the system of equations defined within the Model associated with this solver
instance. Return will occur in different circumstances:

e Theattempt succeeds.

* Thesolver gives up.

* An unexpected problem («exception») arises.

If the underlying Model contains one or more STNs, the Solver may consider a switch to a
different set of active states necessary to finding a solution. In this case, it may use the
MoveToNextStatanethod of one or more of the Model's STNs during the computation. The

numerical values held in the model on return should be consistent with the set of states which
are active on return.

Distinction between the first three types of return will be made by examining the return
argument (one component of this will be a general OK/Error flag, where Error indicates an
exception, while another will be a Success/Failure flag).

Notes : The initial guesses for this solution will be the current variable values of the Model.

Arguments
Name Type Description
[out, return] Capelong a code indicating if a solution has been
found and under which conditions
TheStatus (Ex : Maxlterations reached or some
more complex conditions especially in
the case of a DAE Solver). This will
need further investigations.
Exceptions

Various exceptions could appear in this method, like LA Solver not solvable, or initials values
not set, etc.
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GetSolution

Interface Name ICapeNumericSolver

Method Name GetSolution

Returns CapeError
Description

Gets all the values of the variables that solve this System.

Arguments
Name Type Description
[out, return] CapeArrayDouble the array of the P free variables in the

TheValues

system.

Exception

No solution is available: either the Solve method has not been called, or it has ended with an

error.
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Destroy

Interface Name ICapeNumericSolver

Method Name Destroy

Returns CapeError
Description

Deletes the Solver Component and all the objects associated to this particular Solver

Component.

Arguments
None.
Exception

None.
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» SetReportinginterface

Interface Name ICapeNumericSolver

Method Name SetReportinglnterface

Returns CapeError
Description

Sets the reference to an object in charge of managing some reporting at each step of the
process.

Arguments
Name Type Description
[in] Capelnterface the object reference of the reporting

object.
Reportinglinterface

Exception
None.
Remark
The reporting interface will be called by the Solver:

* Immediately on entry to AdvanceT oNextEvent.

* When the independent variable reaches a value specified by it (seeinterface).
» Before and after all discontinuities handled internally be the Solver.

» Immediately before return from AdvanceT oNextEvent.

It isits own responsibility to decide what to do and which information needs to be displayed.
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3.6.3.3 Numeric LA Solver interface : ICapeNumericLASolver
Inherits from: 1CapeNumericSolver

No specific methods have been defined for this kind of solver and no assumption has been made
either for the representation of the vector and matrix of the system. It is left open to the
implementation.

We have assumed that the Solve method get the [A] matrix and the [B] vector of the [A][X]=[B]
system using the already defined methods.

The [A] matrix is given by the GetJacobianV alues method of the ESO and the [B] vector is equal
to minus the GetResiduals method with all the variables set to zero. The [X] vector result is given
by the GetSol ution method.
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3.6.3.4 Numeric NLA Solver interface : ICapeNumericNLASolver
Inherits from: 1CapeNumericSolver

In this section we define the interfaces related to the solution of sets of nonlinear agebraic
eguations.

Thisinterface defines methods for the identification and setting of parameters that will occur in all
CAPE-OPEN compliant nonlinear algebra components. A small number of such generic
parameters have been identified; separate methods are defined for obtaining information on, and
changing the value of each such parameter. Five methods have been defined:

o SetCvgTolerance

u GetCvgTolerance

o SetMaxlterations

o GetMaxlterations

o DoNlterations
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SetCvgTolerance

Interface Name ICapeNumericNLASolver
Method Name SetCvgTolerance
Returns CapeError

Description

Sets the convergence tolerance to be used in solving a nonlinear system. The precise
interpretation of this parameter will depend on individual implementations; the nature of the
convergence criterion used by nonlinear solversis not defined by CAPE-OPEN.

Arguments

Name Type Description

[in] CapeDouble the convergence tolerance value.

CTolVaue

Exception

None.
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GetCvgTolerance

Interface Name ICapeNumericNLASolver
Method Name GetCvgTolerance
Returns CapeError

Description

Gets information on the convergence tolerance to be used in solving a nonlinear system, as
well as its current value. The precise interpretation of this parameter will depend on individual
implementations; the nature of the convergence criterion used by nonlinear solvers is not
defined by CAPE-OPEN.

Arguments
Name Type Description
[out, return] CapeDouble the convergence tolerance value.
CTolvaue
Exception

No value set for the convergence tolerance.
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SetMaxlterations

Interface Name ICapeNumericNLASolver
Method Name SetMax|terations
Returns CapeError

Description

Sets the maximum number of iterations to be used in solving a nonlinear system. The precise
interpretation of this parameter will depend on individual implementations; the nature of what
constitutes an «iteration» used by nonlinear solvers is not defined by CAPE-OPEN.

Arguments

Name Type Description

[in] CapelLong the maximum number of iterations.

MaxltsValue

Exception

None.
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GetMaxlterations

Interface Name ICapeNumericNLASolver
Method Name GetMax|terations
Returns CapeError

Description

Gets information on the maximum number of iterations to be used in solving a nonlinear

system, as well asits current value. The precise interpretation of this parameter will depend on
individual implementations; the nature of what constitutes an «iteration» used by nonlinear
solvers is not defined by CAPE-OPEN.

Arguments
Name Type Description
[out, return] Capelong the maximum number of iterations.
MaxltsValue

Exception

No value set for the maximum number of iterations.
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DoNlterations

Interface Name ICapeNumericNLASolver
Method Name DoNlterations
Returns CapeError

Description

Perform N iterations on the nonlinear agebra problem. The possible returns are the same as for
Solve, except that in this case «OK+Failure» may merely indicate that more iterations are
needed.

Arguments
Name Type Description
[in] CapelLong the number of iterations to be
performed.
Nblteration
[out, return] Capelong depends of the conditions reached
(O=normal return, or l=convergence
ReturnCode tolerance, 2=max iterations reached
before N iterations).
Exceptions

Same exceptions as in tBelve method. Various exceptions could appear in this method, like
LA Solver not solvable, or initials values not set, etc.
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3.6.3.5 Numeric DAE Solver interface : ICapeNumericDAESolver
Inherits from: 1CapeNumericSolver

In this section, we describe the interfaces related to the solution of differential-algebraic equation
systems.

Thisinterface defines methods for the identification and setting of parameters that will occur in all
CAPE-OPEN compliant differential-algebraic components. A small number of such generic
parameters have been identified; separate methods are defined for obtaining information on, and
changing the value of each such parameter. The defined methods are:

o SetReTolerance

u GetRelTolerance

o  SetAbsTolerance

o GetAbsTolerance

o AdvanceToNextEvent
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SetRelTolerance

Interface Name ICapeNumericDAESolver
Method Name SetRel Tolerance
Returns CapeError

Description

Sets the relative tolerance values to be used in performing local error tests while solving a
DAE system. The precise interpretation of this parameter will depend on individua
implementations; the exact nature of the error measure used (e.g. loca truncation error, local
error etc.) and the way in which thisis estimated are not defined by CAPE-OPEN.

Arguments
Name Type Description
[in] CapeArrayDouble the relative tolerance values.
RelTolVaues
Exception

Incorrect size of the array.
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GetRelTolerance

Interface Name ICapeNumericDAESolver
Method Name GetRel Tolerance
Returns CapeError

Description

Gets information on the relative tolerance to be used in performing local error tests while
solving a DAE system, as well asits current value. The precise interpretation of this parameter
will depend on individual implementations; the exact nature of the error measure used (e.g.
locdl truncation error, local error ezc.), and the way in which this is estimated, are not defined
by CAPE-OPEN.

Arguments
Name Type Description
[out, return] CapeArrayDouble the relative tolerance values.
TheRel TolVaues
Exception

Tolerance not set.
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SetAbsTolerance

Interface Name ICapeNumericDAESolver
Method Name SetAbsTolerance
Returns CapeError

Description

Sets the absolute tolerance to be used in performing local error tests while solving the DAE
system. The precise interpretation of this parameter will depend on individual
implementations; the exact nature of the error measure used (e.g. loca truncation error, local
error etc.), and the way in which thisis estimated, are not defined by CAPE-OPEN.

Arguments
Name Type Description
[in] CapeArrayDouble the absol ute tolerance values.
AbsTolVaues
Exception

Incorrect size of the array.
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GetAbsTolerance

Interface Name ICapeNumericDAESolver
Method Name GetAbsTolerance
Returns CapeError

Description

Gets information on the absolute tolerance to be used in performing local error tests while
solving a DAE system, as well as the current value of this parameter. The precise interpretation
of this parameter will depend on individual implementations; the exact nature of the error
measure used (e.g. loca truncation error, local error etrc.) and the way in which this is
estimated are not defined by CAPE-OPEN.

Arguments
Name Type Description
[out, return] CapeArrayDouble the absol ute tolerance values.
TheAbsTolValues
Exception

Tolerance not set.
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AdvanceToNextEvent

Interface Name

ICapeNumericDAESolver

Method Name AdvanceT oNextEvent
Returns CapeError
Description

Advances the solution of the DAESO with respect to its independent variable until some
Event(s) occurs, or an error occursin the solution process.

Note : For dynamic problems, we cannot be certain that the Solver will be able to identify
precisely the single Event which causes termination. Thus we alow it to provide alist of Event
objects, together with independent variable values which «bracket» the termination point.

Arguments
Name Type Description
[in] CapeArrayNumericEv| the list of stopping conditions for this
entinfo call.

EndConditions

[out] CapeDouble the independent variable value at the
beginning of the internal step.

TimeBefore

[out] CapeDouble the independent variable value at the
end of the internal step.

TimeAfter

[out, return] CapeArrayNumericEv| a list indicating the cause(s) of
entinfo termination.

ListOfEvents

Exceptions

To be defined later.
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4 Interface specifications

This section contains the CORBA IDL instructions. They are compilable files that you
can directly use for producing CAPE-OPEN compliant components for Solvers. No
COM IDL was developed so far.

4.1 CORBAIDL

4.1.1 Common definitions

4111
I

Utility Definitions

/1 CORBA CapeUtilityDefinitions.id

11

#i f ndef

CapeUtilityDefinitions_id

#define CapeUtilityDefinitions_id

[ I #i ncl

ude corba.h //only for C++

// Primtive conmon data types

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

t ypedef
t ypedef

bool ean CapeBool ean
sequence<CapeBool ean> CapeArrayBool ean

char CapeChar;
sequence<CapeChar > CapeArrayChar;

short CapeShort;
sequence<CapeShort > CapeArrayShort;

| ong Capelong;
sequence<CapelLong> CapeArraylLong;

fl oat CapeFl oat;
sequence<CapeFl oat > CapeArrayFl oat ;

doubl e CapeDoubl e;
sequence<CapeDoubl e> CapeArrayDoubl e;

string CapeString;
sequence<CapeStri ng> CapeArrayString;

any CapeVari ant;
sequence<CapeVari ant > CapeArrayVari ant;

Cbj ect Capel nterface;
sequence<Capel nt erface> CapeArrayl nterface;

/1l Exceptions

exception CapeException {
CapelLong type;
CapeLong m nus;
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CapelLong conpl et ed,;
CapeString idl nmethod;
CapeString expl anation

#endi f

4.1.1.2 Utility Component
11

/| CORBA CapelUtilityConponent.id

/1

#include "CapeUtilityDefinitions.idl"

#i f ndef CapeUtilityConponent id

#define CapeUtilityConponent id

nodul e CapeUtilityConponent {

/1 CORBA Utility Conponent interface : |CapelUtilityConponent

interface | CapeUtilityConmponent {
CapeString Get Versi onNunber () rai ses(CapeException);
CapeString Get Conponent Narme() rai ses(CapeException);

CapeString Get Component Descri ption() rai ses(CapeException);

1
typedef sequence<| CapeUtilityConponent> CapeArrayUilityConponent;

[/ Definition of Numeric structures that should be in Common

struct CapePubl i cParaneter {
CapeString nane;
CapeString description
CapelLong | ower Bound;
CapelLong upper Bound;
CapeVari ant def aul t Val ue;
CapeVari ant current Val ue;

s

typedef sequence<CapePubl i cParanet er> CapeArrayPubl i cParaneter;

}; /1 end of CapeUtilityConponent nodul e

#endi f

4.1.2 Model Component

/1
/| CORBA CapeNurmeri cMdel Conponent.id
11
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#i ncl ude "CapelUtilityConponent.idl"”
#i ncl ude " CapeNuneri ceSOConponent.idl"

#i f ndef CapeNuneri cMbdel Conponent _i dl
#def i ne CapeNuneri cMbdel Conponent _i dl

nodul e CapeNuneri cMbdel Conmponent {
/1l Some enunerated types

typedef enum Model Types {
CONTI NUQUS,
HI ERARCHI CAL,
AGGREGATE

} CapeModel Type;

typedef enum Event Types {
BASI C,
COVPCSI TE,
Bl NARY,
UNARY
} CapeEvent Type;

typedef enum Event | nf oKi nds {
EXTERNAL,
| NTERNAL

} CapeEvent | nf oKi nd;

typedef enum Logi cal Rel ati ons {
GEQ
LEQ
GT,
LT
} CapelLogi cal Rel ation;

typedef enum Logi cal Qperators {
AND,
R
NOT

} Capelogi cal Operat or;

i nterface | CapeNumneri cMdel Manager ;

t ypedef sequence<l CapeNuneri cMdel Manager > CapeArrayNuneri cMbdel Manager ;
i nterface | CapeNuneri cMdel ;

typedef sequence<l CapeNuneri cMbdel > CapeArrayNuneri chMbdel ;
i nterface | CapeNuneri cConti nuoushbdel ;

t ypedef sequence<l CapeNuneri cConti nuoushbdel >
CapeArrayNureri cCont i nuoushodel ;

i nterface | CapeNuneri cHi erar chi cal Mbdel ;

typedef sequence<l| CapeNuneri cHi erar chi cal Model >
CapeArrayNuneri cHi erar chi cal Model ;

i nterface | CapeNureri cAggr egat eMbdel ;

typedef sequence<l CapeNuneri cAggregat eModel >
CapeArrayNuneri cAggr egat eModel ;

i nterface | CapeNuneri cSTN;

typedef sequence<l| CapeNuneri cSTN> CapeArrayNuneri cSTN,;

i nterface | CapeNureri cEvent;

typedef sequence<l CapeNuneri cEvent > CapeArrayNuneri cEvent;
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interface | CapeNuneri cBasi cEvent;

typedef sequence<l CapeNuneri cBasi cEvent > CapeArrayNuneri cBasi cEvent;
i nterface | CapeNuneri cConpositeEvent;

typedef sequence<l CapeNuneri cConpositeEvent >

CapeArrayNureri cConposi t eEvent ;

i nterface | CapeNuneri cBi naryEvent;

typedef sequence<l CapeNuneri cBi naryEvent > CapeArrayNuneri cBi naryEvent ;
i nterface | CapeNunericUnaryEvent;

t ypedef sequence<l CapeNuneri cUnaryEvent > CapeArrayNuneri cUnaryEvent;
i nterface | CapeNuneri cEventl| nfo;

t ypedef sequence<l CapeNuneri cEvent| nfo> CapeArrayNuneri cEvent | nfo;

i nterface | CapeNuneri cExt ernal Event | nf o;

typedef sequence<l CapeNuneri cExt er nal Event | nf o>

CapeArrayNuneri cExt er nal Event | nf o;

i nterface | CapeNuneri cl nternal Event | nfo;

typedef sequence<l CapeNuneri cl nternal Event | nf o>

CapeArrayNuneri cl nt er nal Event | nf o;

[l ***** CORBA Model Manager interface : | CapeNunericMdel Manager

i nterface | CapeNuneri cMbdel Manager :
CapeUtilityConponent:: | CapeltilityConponent {

| CapeNurrer i cMbdel Creat eModel (i n CapeModel Type typeO TheModel )
rai ses (CapeException);

s

/[ ***** CORBA Sinulation Mddel interface : | CapeNumnerichMdel

i nterface | CapeNuneri chMbdel :
CapeUtilityConponent:: | CapeltilityConponent {

CapeUtilityConmponent:: CapeArrayPublicParaneter GetParaneterlList()
rai ses (CapeException);
voi d SetParaneter(in CapeString parameterNane, in CapeVari ant
par anet er Val ue)
rai ses (CapeException);
CapelLong Set Vari abl el ndex(i n CapeArraylLong var | ndi ces)
rai ses (CapeException);
CapeNurer i cESOConponent : : | CapeNuneri ceESO Set Acti veESQ()
rai ses (CapeException);
CapeNuner i cESOConponent : : | CapeNurreri cESO Get Acti veES(O()
rai ses (CapeException);
voi d Set ConmonESQ(i n CapeNuneri cESOConponent : : | CapeNuneri cESO
anESO)
rai ses (CapeException);
CapeNuner i cESOConponent : : | CapeNurrer i cESO Get CommonESQ( )
rai ses (CapeException);
CapeArrayNuneri cEventl nfo Get ActiveEvents()
rai ses (CapeException);
| CapeNuneri cExt er nal Event | nf o AddExt er nal Event (i n
| CapeNureri cEvent anEvent)
rai ses (CapeException);
voi d Destroy();
1
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[ ***** CORBA Continuous Sinmnmulation Mdel interface :
| CapeNurneri cCont i nuoushModel

i nterface | CapeNuneri cConti nuoushMbdel : | CapeNunericMdel {

b

/[ ***** CORBA Hi erarchical Sinmulation Mdel
| CapeNureri cHi er ar chi cal Mbdel

interface | CapeNunericHi erarchical Model : | CapeNunericMdel {
CapeArrayNumeri cSTN Get STNLi st() rai ses (CapeException);
b
/] ***** CORBA Aggregate Sinulation Mdel : | CapeNureri cAggregat eMbdel
i nterface | CapeNureri cAggregat eMbdel : | CapeNuneri cMdel {
CapeArrayNuneri cModel Get Model List() rai ses (CapeException);
voi d Set Connecti onEquati on(in | CapeNuneri cMdel inputModel,
i n CapelLong i nputl ndex,
in | CapeNureri civbdel
out put Model ,
i n CapelLong out put | ndex)
rai ses (CapeException);
b

/] ***** CORBA State Transition Network : | CapeNumeri cSTN

interface | CapeNuneri cSTN : CapeUtilityConmponent:: | CapeUtilityConponent
{

void SetCurrentState(in CapeString theStateNane) raises
(CapeException);
CapeString GetCurrentState() raises (CapeException);
| CapeNureri cMbdel Get Parent Model () rai ses (CapeException);
CapeArrayNureri cl nt ernal Event | nfo Get Possi bl esTransitions()
rai ses (CapeException);
CapeDoubl e Get StateTransitions(in CapeString fronftate,
out
CapeArrayNuneri cEvent | nfo eventlLi st,
out CapeArrayString
st at eLi st)
rai ses (CapeException);
CapeArrayString GetStateList() raises (CapeException);
| CapeNurreri cMbdel GCet St at evbdel (i n CapeString stat eNane)
rai ses (CapeException);
CapeString MoveToNext State(in | CapeNureri cEventinfo firedEvent)
rai ses (CapeException);
1

/] ***** CORBA Event : | CapeNurneri cEvent

interface | CapeNuneri cEvent :
CapeltilityConponent:: | CapeltilityConponent {
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CapeBool ean eval () rai ses (CapeException);
CapeEvent Type QueryType() raises (CapeException);
1
/] ***** CORBA Basic Event : |CapeNunericBasi cEvent
i nterface | CapeNuneri cBasi cEvent : | CapeNuneri cEvent {
CapelLOng Get Vari abl e() raises (CapeException);
Capelogi cal Rel ati on GetLogi cal Rel ation() raises (CapeException);
CapeDoubl e Get Val ue() raises (CapeException);
1
[] ***** CORBA Conposite Event : | CapeNunericConpositeEvent
i nterface | CapeNuneri cConpositeEvent : | CapeNunericEvent {
| CapeNurreri cEvent GCet Ri ght Operand() rai ses (CapeException);
Capelogi cal Operat or GetLogi cal Operator()
rai ses (CapeException);
1
// CORBA Binary Event : | CapeNumnericBi naryEvent
i nterface | CapeNunericBi naryEvent : | CapeNuneri cConpositeEvent {
| CapeNureri cEvent GetLeft Operand() raises (CapeException);
i
/] ***** CORBA Unary Event : | CapeNunericUnaryEvent

i nterface | CapeNureri cUnaryEvent : | CapeNuneri cConpositeEvent {

b

/] ***** CORBA Event Info : | CapeNunericEvent!nfo

i nterface | CapeNuneri cEventl nfo
CapeUtilityConponent:: | CapeltilityConponent {

CapeEvent I nf oKi nd QueryKi nd() raises (CapeException);
| CapeNuneri cEvent Get SubEvent () raises (CapeException);
| CapeNurneri cEvent Get Event () raises (CapeException);

s

/] ***** CORBA External Event Info : |CapeNunericEventlnfo

interface | CapeNuneri cExternal Eventlinfo : | CapeNunericEventlnfo {
s

/] ***** CORBA Internal Event Info : | CapeNunericEventlnfo

i nterface | CapeNurericlnternal Eventinfo : | CapeNunericEventlnfo {
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| CapeNurreri cSTN Get STN() rai ses (CapeException);
CapeString GetToState() raises (CapeException);

s
#endi f

}; I/ end CapeNuneri cMbdel Conponent nodul e
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4.1.3 ESO Component

11
/| CORBA CapeNuneri cESOConponent . i dl
11

#i ncl ude "CapelUtilityConponent.idl"”

#i f ndef CapeNuneri cESOCConponent _i dl
#def i ne CapeNuneri cESOCConponent _i dl

nmodul e CapeNuneri cESOConponent {

typedef enum ESCQtypes ({
LA,
NLA,
DAE,
GLOBAL
} CapeESOType;

typedef enum Matri xTypes {
FULL,
UNSTRUCTURED,
BANDED

} CapeMatri xType;

typedef enum QueryOrderings {
ROW
COLUMN,
OTHER

} CapeMatri xOrdering;

interface | CapeNurericMatri x;

typedef sequence<l CapeNunericMatri x> CapeArrayNunericMatri x;

interface | CapeNunericFul | Matri x;

t ypedef sequence<l CapeNuneri cFul | Matri x> CapeArrayNuneri cFul | Matri x;
interface | CapeNurericUnstructuredMatri x;

t ypedef sequence<l CapeNunericUnstructuredMatri x>

CapeArrayNureri cUnstruct uredMvatri x;

i nterface | CapeNuneri cBandedMatri x;

typedef sequence<l CapeNuneri cBandedMat ri x> CapeArrayNuneri cBandedMatri x;
i nterface | CapeNuneri cESOvanager ;

t ypedef sequence<l CapeNuneri cESOvanager > CapeArrayNumneri cESOvanager ;

i nterface | CapeNuneri cESQ

typedef sequence<l CapeNuneri ceSC> CapeArrayNuneri cESG,

i nterface | CapeNuneri cLAESG,

typedef sequence<l CapeNuneri cLAESC> CapeArrayNumneri cLAESG,

i nterface | CapeNumneri cNLAESQG,

typedef sequence<l CapeNuneri cNLAESO> CapeArrayNuneri cNLAESG,

i nterface | CapeNuneri cDAESQC,

typedef sequence<| CapeNuneri cDAESC> CapeAr rayNuneri cDAESC,

i nterface | CapeNunericd obal ESG,

t ypedef sequence<l| CapeNuneri cd obal ESO> CapeArrayNuneri cd obal ESG,
interface | CapeNuneri cd obal LAESG,

typedef sequence<l CapeNuneri cd obal LAESC> CapeArrayNuneri cd obal LAESG,
i nterface | CapeNuneri cd obal NLAESO,

typedef sequence<l CapeNuneri cd obal NLAESO> CapeArrayNuneri cd obal NLAESO,
interface | CapeNumneri cd obal DAESG,
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typedef sequence<l CapeNuneri cd obal DAESO> CapeArrayNuneri cd obal DAESO,

/] ***** CORBA Matrix interface : | CapeNumericMatri x

interface | CapeNurericMatri x
CapeUtilityConponent:: | CapeltilityConponent {

CapelLong Cet NunRows() rai ses(CapeException);

CapelLong Get NunCol s() rai ses(CapeException);

CapeBool ean QuerySynmetric() rai ses(CapeException);
CapeMatri xOrderi ng QueryOrdering() rai ses(CapeException);

CapeMatri xType QueryType() rai ses(CapeException);
CapeArrayDoubl e GetVal ues() raises(CapeException);

H

[l ***** CORBA Ful |l Matrix interface : | CapeNunericFul |l Matri x
interface | CapeNurericFull Matrix : | CapeNunericMatrix {
b
[ ***** CORBA Unstructured Matrix interface :
| CapeNuneri cUnstructuredMatri x
interface | CapeNunericUnstructuredMatrix : | CapeNunericMatrix {

void Get Structure(out CapeArrayDoubl e row ndi ces,

out CapeArrayDoubl e col I ndi ces)
rai ses(CapeException);

b

/] ***** CORBA Banded Matrix interface : | CapeNunericBandedMatri x
i nterface | CapeNureri cBandedMatri x : | CapeNunericMatrix {
CapelLong Get BandW dt h() rai ses(CapeException);

s

/] ***** CORBA ESO Manager interface : | CapeNuneri cESOvanager

i nterface | CapeNuneri ceSOvanager
CapeltilityConponent:: | CapeltilityConponent {

| CapeNuneri ceSO Creat eESQ(i n CapeESOlype typeO ESO
rai ses (CapeException);

b

/] ***** CORBA Equation Set (bject (ESO interface : | CapeNuneri ceSO

interface | CapeNurreri cESO : CapeltilityConponent:: | CapeltilityConponent
{
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CapeUtilityConponent:: CapeArrayPubl i cParanmeter GetParaneterlList()
rai ses (CapeException);
voi d SetParaneter(in CapeString parameterNane, in CapeVari ant
par anet er Val ue)
rai ses (CapeException);
CapelLong Get NunVar s() rai ses(CapeException);
CapelLong Get NunEqns() rai ses(CapeException);
voi d Set Fi xedVari abl es(in CapeArrayLong varl ndi ces,
i n CapeArrayDoubl e var Val ues)
rai ses(CapeException);
voi d Set Al |l Vari abl es(in CapeArrayDoubl e var Val ues)
rai ses(CapeException);
voi d SetVari abl es(in CapeArraylLong varl ndi ces,
i n CapeArrayDoubl e var Val ues)
rai ses(CapeException);
CapeArrayDoubl e Get Al | Vari abl es() rai ses(CapeException);
CapeArrayDoubl e Get Vari abl es(in CapeArrayLong varl ndi ces)
rai ses(CapeEkxception);
CapeArrayDoubl e Get Al |l Resi dual s() rai ses(CapeException);
CapeArrayDoubl e Get Resi dual s(i n CapeArraylLong eqgnl ndi ces)
rai ses(CapeEkxception);
| CapeNurnericMatri x GetJacobianStruct() rai ses(CapeException);
| CapeNurnericMatri x Get Al |l Jacobi anVal ues()
rai ses(CapeException);
CapeArrayDoubl e Get Jacobi anVal ues(i n CapeArraylLong i ndices)
rai ses(CapeException);
voi d Set Vari abl esl ndex(in CapeArraylLong varl ndi ces);
CapeArrayDoubl e Get Lower Bounds() rai ses(CapeException);
CapeArrayDoubl e Get Upper Bounds() rai ses(CapeException);
voi d Destroy();

b

/] ***** CORBA Linear Al gebraic ESO (LA ESO interface :

| CapeNuneri ceSO

interface | CapeNuneri cLAESO : | CapeNurreri cESO {
void SetLHS(in | CapeNumericMatrix val ues) raises (CapeException);
void SetRHS(in CapeArrayDoubl e val ues) raises (CapeException);

| CapeNurnericMatri x Cet LHS() rai ses (CapeException);
CapeArrayDoubl e Cet RHS() rai ses (CapeException);

b

[l ***** CORBA Non Linear Algebraic ESO (NLA ESO interface :
| CapeNurrer i cESO

i nterface | CapeNuneri cNLAESO : | CapeNuneri cESO {

b

/] ***** CORBA Differential Al gebraic ESO (DAESO) interface :
| CapeNuner i cDAESO

i nterface | CapeNureri cDAESO : | CapeNumneri cESO {
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void Set All Derivatives(in CapeArrayDoubl e var Val ues)
rai ses(CapeException);
CapeArrayDoubl e Get Al Il Derivatives() raises(CapeException);
CapeArrayDoubl e GetDerivatives(in CapeArraylLong varl ndi ces)
rai ses(CapeException);
| CapeNurrericMatrix GetDi ffJacobi anStruct () raises(CapeException)
| CapeNurnericMatri x Get All Di ffJacobi anVal ues()
rai ses(CapeException);
CapeArrayDoubl e Get Di ffJacobi anVal ues(in CapeArrayLong i ndi ces)
rai ses(CapeException);
voi d Set | ndependent Var (i n CapeDoubl e i ndVar)
rai ses(CapeException);
CapeDoubl e Get I ndependent Var () rai ses(CapeException);

s

[l ***** CORBA d obal ESO (d obal ESO interface : | CapeNunericd obal ESO

i nterface | CapeNureri cd obal ESO : | CapeNurreri cESO {

voi d SetListOFESOCs(in CapeArrayNuneri ceSO |i st OF ESOs) ;
CapeArrayNuneri ceSO Get Li st OF ESOs() ;

s
[l ***** CORBA d obal LAESO (d obal LAESO interface :
| CapeNuneri cd obal LAESO

i nterface | CapeNunericd obal LAESO : | CapeNuneri cLAESQ,
| CapeNurneri cd obal ESO {

1
[l ***** CORBA G obal NLAESO (d obal NLAESO interface :
| CapeNurneri cd obal NLAESO

interface | CapeNuneri cG obal NLAESO : | CapeNuneri cNLAESO,
| CapeNurreri cd obal ESO {

i
/] ***** CORBA G obal DAESO (d obal DAESO interface :
| CapeNureri cd@ obal DAESO

interface | CapeNuneri cd obal DAESO : | CapeNurreri cDAESO,
| CapeNurrer i cd obal ESO {

s

#endi f

}; I/ end CapeNuneri ceESOConponent nodul e
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4.1.4 Solver Component

11
/| CORBA CapeNuneri cSol ver Conponent . i dl
11

#i ncl ude " CapeNuneri cMbdel Conmponent.idl™

#i f ndef | CapeNuneri cSol ver Conponent _i dl
#defi ne | CapeNuneri cSol ver Conponent _i dl

nmodul e CapeNuneri cSol ver Conponent {

typedef enum Sol vertypes {
LA,
NLA,
DAE

} CapeSol ver Type;

i nterface | CapeNuneri cSol ver Manager

typedef sequence<| CapeNuneri cSol ver Manager >
CapeArrayNuneri cSol ver Manager ;

i nterface | CapeNureri cSol ver;

typedef sequence<l CapeNuneri cSol ver> CapeArrayNuneri cSol ver Conponent ;
i nterface | CapeNurneri cLASol ver;

typedef sequence<| CapeNuneri cLASol ver > CapeArrayNuneri cLASol ver

i nterface | CapeNuneri cNLASol ver;

t ypedef sequence<l CapeNuneri cNLASol ver> CapeArrayNuneri cNLASol ver ;
i nterface | CapeNuneri cDAESol ver ;

typedef sequence<| CapeNuneri cDAESol ver > CapeArrayNuneri cDAESol ver ;

/[ ***** CORBA Sol ver interface : |CapeNunericSol ver Manager

i nterface | CapeNureri cSol ver Manager
CapeUtilityConponent:: | CapeltilityConponent {

| CapeNuneri cSol ver CreateSol ver (
i n CapeSol ver Type type,
in
CapeNuner i cModel Conponent : : | CapeNuneri cMbdel theModel)
rai ses (CapeException);

b

[ ***** CORBA Sol ver interface : | CapeNunericSol ver

i nterface | CapeNureri cSol ver
CapeltilityConponent:: | CapeltilityConponent {

CapeUtilityConponent:: CapeArrayPubl i cParaneter GetParaneterlList()
rai ses (CapeException);

voi d Set Paraneter(in CapeString paramneterNane, in CapeVari ant

par anet er Val ue)

rai ses (CapeException);

CapelLong Sol ve() raises (CapeException);

CapeArrayDoubl e Get Sol ution() raises (CapeException);

Capel nterface SetReportinglnterface() raises (CapeException);

void Destroy();
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s

/[ ***** CORBA LA Solver interface : | CapeNunericLASol ver
interface | CapeNuneri cLASol ver : | CapeNunericSol ver {

s

/] ***** CORBA NLASol ver interface : |CapeNuneri cNLASol ver
i nterface | CapeNuneri cNLASol ver : | CapeNurnericSol ver {

voi d Set CvgTol erance(i n CapeDoubl e cvgVal ue)

rai ses (CapeException);
CapeDoubl e Get CvgTol erance() raises (CapeException);
voi d Set Maxlterations(in CapeLong maxlteration)

rai ses (CapeException);
CapeLong Get Maxlterations() rai ses (CapeException);
CapelLong DoNlteration(in CapeLong nblterations)

rai ses (CapeException);
1

[ ***** CORBA DAESol ver interface : | CapeNuneri cSol ver DAESol ver
i nterface | CapeNuneri cDAESol ver : | CapeNunericSol ver {

voi d Set Rel Tol erance(in CapeArrayDoubl e rel Tol Val ue)
rai ses (CapeException);
CapeArrayDoubl e Get Rel Tol erance()
rai ses (CapeException);
voi d Set AbsTol erance(i n CapeArrayDoubl e absTol Val ues)
rai ses (CapeException);
CapeArrayDoubl e Get AbsTol erance()
rai ses (CapeException);
CapeNuner i cModel Conponent : : CapeArrayNuneri cEventl nfo
AdvanceToNext Event (
in
CapeNurer i cModel Conponent : : CapeArrayNuneri cEvent | nfo endCondi ti ons,
out CapeDoubl e ti meBef ore,
out CapeDoubl e tinmeAfter)
rai ses (CapeException);

s
#endi f

}; /1 End of CapeNunericSol ver Sol ver
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4.2 COMIDL

This section needs to be compl eted.

4.2.1 Common definitions

4.2.2 Model Component

4.2.3 ESO Component

4.2.4 Solver Component

182



5 Notes on analysis and interface specifications

We tried to summarise in this part of the document some of the remaining issues and problems
that need further investigations and discussions.

5.1 Differences between CORBA and COM

As already mentioned before in this document there is some important differences between COM
and CORBA. One of them is the way exceptions are handled in CORBA and in COM.

This could lead to different interfaces.

5.2 Public Parameter

In order to alow some customisation of each component when an instance of this component is
created we have defined a Public Parameter structure which can be used either by a Solver, a
Modéd or an ESO. Each parameter value can be any object instance.

This could be difficult to implement, and will need some communication with the user (through a
user interface or some language specification) to get the correct values for each of these
parameters.
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¢ GetParameterList

Interface Name

Method Name GetParameterList

Returns CapeError
Description

Gets the list of al the public parameters defined for a given class (ESO, Model, Solver, etc.).
Thisis aClass method that allows to customise the objects that will be created by the constructor
of that Class.

Arguments
Name Type Description
[out, return] CapeArrayNumericPu | the list of al the Public Parameters

blicParameter availablefor this class.
TheListOf Parameters

Exceptions

None.
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SetParameter

Interface Name

Method Name SetParameter

Returns CapeError
Description

Sets the current value of a parameter in the parameter list.

Arguments

Name Type

Description

[in] CapeString

TheParameterName

the name of the parameter to be set.

[in] CapeVariant

TheParameterVaue

the value of that particular parameter.

Exceptions
Invalid type of the value.

Invalid parameter name.
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5.3 Reporting

We have supposed that there is somewhere an object capable of displaying the information we
want to display during the process of solving the DAE System. It is the responsibility of the solver
component to inform this object each time new pieces of information have been calculated, but no
communication scheme has been defined yet. Here is a proposa for an lcapeNumericReport
Interface. It has not been integrated in the main body of the interface definitions since it remains a
general issue within the CAPE-OPEN project.

Thisinterface requires the following enumerated type :

CapeNumericReportReason = (INITIAL, INDVARREACHED, BEFOREDISC,
AFTERDISC, FINAL)
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+ ReportModelValues

Interface Name ICapeNumericReport
Method Name ReportModelVaues
Returns CapeError

Description

Gives a reporting routine an opportunity to extract and display values from the Model, and

specify the next call.
Arguments
Name Type Description
[in] Capelnterface handle to the modédl which the Solver
is solving
TheModel
[in] CapeNumericReportRe | why the reporting routine has been
ason caled (see list under the
ReasonForCall SetReportinglnterface method).
[out] CapeDouble the value of the independent variable at
which the Solver should next be called
NextTime (unless an Event occurs)
Exceptions
None.
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5.4 Thermo and Physical Property Packages

In order to do some calculation, the ESO package may need to access the thermodynamic
package. This has not been modelled yet. It means that the ESO should know in some way how to
access to the THRM package.

The problem is the same as for the reporting.

188



