
CAPE-OPEN
Expanding Process Modelling Capability

through Software Interoperability Standards

Errata and Clarifications for

Parameter Common Specification 1.0

www.colan.org

2

ARCHIVAL INFORMATION

Filename Parameter_Errata_1.0_1.022.docx

Authors Methods & Tools SIG

Status Authorized for public release

Date February 2016

Version Version 1.0.1.022

Number of pages 20

Versioning 18 February 2016 approved for public release by Mgt Bd

Additional material

Web location

Implementation

specifications version

Version 1.0

Comments

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of

any kind. CO-LaN and its partners and suppliers disclaim any warranties including without limitation

an implied warrant or fitness for a particular purpose. The entire risk arising out of the use or

performance of any sample code --- or any other software described by the CAPE-OPEN Laboratories

Network --- remains with you.

Copyright © 2016 CO-LaN and/or suppliers. All rights are reserved unless specifically stated

otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed

as trademarks. Where those designations appear in CO-LaN publications, and the authors are aware

of a trademark claim, the designations have been printed in caps or initial caps.

Microsoft, and the Component Object Model (COM) are registered trademarks of Microsoft

Corporation.

4

SUMMARY

This document describes clarifications on implementation of the CAPE-OPEN Parameter Common

Interface Specification version 1.0. In particular, this document addresses the effect of various

initialization and editing operations on the state of the Parameter Collection so that PMEs will know

potential changes to the Parameter Collection that may result from these operations. This clarification

is intended to improve the performance of a process simulation application by reducing the number

of times the PME iterates through the Parameter Collection to update the state of the Parameter

Collection in the PME’s graphical user interface. This document clarifies what are the static elements

of the Parameters and identifies the conditions under which the static aspects can be modified. The

document clarifies the dimensionality object and defines new array elements that indicate use of

absolute or relative values. The document clarifies minimum support for Parameters and array

Parameters.

5

6

ERRATA

1. Description of ICapeRealParameterSpec.UpperBound

In ICapeRealParameterSpec.UpperBound, the description says “Gets/Sets the upper bound of the real

valued parameter for which this is the specification”. The upper bound is read-only so the description should

say “Gets the upper bound of the real valued parameter for which this is the specification”.

2. Description of ICapeIntegerParameterSpec.DefaultValue

In ICapeIntegerParameterSpec.DefaultValue, the description says “Gets/Sets the default value of the

integer valued parameter for which this is the specification”. The upper bound is read-only so the description

should say “Gets the default value of the integer valued parameter for which this is the specification”.

7

CLARIFICATIONS

3. Roles and Responsibilities of the Parameter Owner, Parameter
Clients, and the Process Modeling Environment

Overall Context: The Parameter Common Interface Specification document identifies two actors in

Parameter Uses Cases: the Parameter Owner and the Parameter Clients. The Parameter Owner is the

software component that implements the Parameter; typically, this is the PMC that either implements

the ICapeUtilities interface, or provides the Parameter Collection service through methods in their

defining interface. In addition, energy or information streams contain Parameters that are owned by

the PME. A Parameter Client is defined as a human user or piece of software that will access the

functionalities provided by the Parameter Package. Three distinct Parameter Clients are identified in

the Parameter Common Interface Specification document: the Solver Manager, the Flowsheet

Builder, and the Flowsheet User.

The Use Cases that can be performed by Parameter Clients include UC-002: Get List of Parameters,

UC-003: Display List of Parameters, UC-004: Change Parameter, UC-005: Validate Parameter, and

UC-006: Validate Parameters Owner List of Parameters. Use Cases UC-004, UC-005, and UC-006

change the state of the Parameter, and have been implicated in performance issues due to the fact that

the Process Modeling Environment (PME) often maintains and/or displays a list of the current

Parameter values to the Flowsheet User which must be updated when the list of Parameters is

modified.

For the most part, modifications of Parameters originated by the Flowsheet User and the Flowsheet

Builder occur as a result of an activity initiated through the PME, such as setting the value of an

individual Parameter, calculation of the Flowsheet, or editing of a particular PMC. When these actions

occur, the PME can respond by updating its information regarding the state of the Parameter or

Parameter Collection, as appropriate. For Parameters that are owned by the PME, the PME is also

aware of changes to the Parameter.

Other actors that can serve as Parameter Clients and modify the Parameter or Parameter Collection

in general are identified CAPE-OPEN PMC Primary Objects, including Optimization PMCs and

Flowsheet Monitoring PMCs. Actions of these actors need to be initiated by, or coordinated through

the PME so that the PME is aware that actions have occurred, triggering an update of the PME’s

information regarding the state of the Parameters and Parameter Collection of the PMCs in the current

Flowsheet.

The role of the PME in maintaining the state of the Parameters and Parameter Collections within a

particular Flowsheet need to be formalized and incorporated into the Parameter Common Interface

Specification. Parameter Clients that modify a Parameter or Parameter Collection need to act only

under the direction of, or in coordination with the PME. The Parameter Client will be a defined

CAPE-OPEN PMC Primary Object, and activities of that PMC Primary Object that modify the

Parameter or Parameter Collection of other PMCs need to be clearly stated in the PMC Primary

Object’s defining interface specification document.

Clarification 1: It should be noted that most Parameter Client activities are initiated by the Flowsheet

User and performed through a method invoked on the Parameter Owner by the PME. These activities

8

that modify either the Parameter Collection or individual Parameters should be stated in the PMC

Primary Object defining interface specification document. The PME can assume that the value of the

Parameters remains unchanged except as a result of invoking these methods.

4. Performance Issues

Overall Context: Some PMEs are continually scanning the PMC’s Parameter Collection, causing

performance degradation. Scanning of the Parameter Collection includes the following actions:

obtaining the Parameter Collection from the PMC by calling ICapeUtilities.Parameters, obtaining an

individual Parameter by calling ICapeCollection.Item, accessing any of the Parameter properties by

calling methods on the ICapeParameter, ICapeParameterSpec, or the individual Parameter

specification interfaces (ICapeRealParameterSpec, ICapeIntegerParameterSpec,

ICapeArrayParameterSpec, ICapeOptionParameterSpec, or ICapeBooleanParameterSpec).

The likely reason that PMEs excessively scan the Parameter Collection is that there are no established

means to inform the PME that changes have occurred within the Parameter Collection. The purpose

of this clarification is to identify those times at which the changes can occur with the Parameter

Collection and the PME can limit its scan of the Parameter Collection to these times. In order to limit

the number of times that the Parameter Collection is scanned by the PME, the methods that can

modify either an individual parameter or the entire list of parameters, necessitating action by the PME

to update its information about the Parameter or Parameter Collection have been identified. The

following list of methods can modify the entire Parameter Collection, and after a call to these

methods, the PME shall rescan the entire Parameter Collection:

 ICapeUtilities.Initialize

 ICapeUtilities.Edit

 ICapeUnit.Calculate

The following methods can only modify the Parameter that implements the method. Therefore, only

the modified Parameter will require scanning.

 ICapeParameter.SetValue

 ICapeParameter.Reset

 ICapeParameter.Validate (Validation Status only)

Recommendation 1: PMEs should limit their scans of a PMC’s Parameter Collection and the

individual Parameters in these collections to only those times where either the Parameter Collection

or individual Parameters in the collection may have been modified by a method call.

Clarification 1: PMCs must ensure that their Parameter Collection is only modified during the above

calls from the PME. ICapeParameter.Validate may only change the Validation Status of the

Parameter. It must not change value or other attributes of the Parameter. No other operations are

allowed to modify any aspect of a PMC’s Parameter Collection.

5. Parameter Specification Object

Issue: There is no guidance in the document for the purpose of the typed Parameter Specification

interfaces, e.g. ICapeRealParameterSpec.

9

Discussion: Parameter specification object provides constraints on the Parameter’s value, such as

lower and upper bounds, default values, and the options list, indicating conditions under which the

Parameter value is valid. In general, Parameters are objects that parameterize the PMC, this could

include choice of calculation method/equation of state, initial temperatures/pressures, maximum

number of iterations before a calculation is considered to not converge, whether the calculation

converged, and a wide variety of other uses.

The default value of a Parameter is an attempt by the Parameter Owner’s developer to provide a

typical starting value. Examples of uses for the default value include: setting 100 as the default

maximum number of iterations for a calculation, 1 atmosphere of pressure, 273.15 degrees Kelvin

temperature, or using the “van der Waals” equation of state. In any case, these are not the only

acceptable value for the Parameter, but just one that can typically be used and will likely result in

convergence of the Flowsheet. Use of an UNDEFINED default value for CAPE_INPUT or

CAPE_INPUT_OUTPUT Parameters implies that there is no obvious choice of default value, and

that the Flowsheet User will need to specify these values prior to the Parameter validation method

resulting in the Parameter taking a state of CAPE_VALID. An UNDEFINED CAPE_OUTPUT

Parameter indicates that there is no predicted value for the Parameter.

Upper and Lower bounds, as well as the options list for Option Parameters provide limits on the

values that the Parameter can take. In the case of numerical bounds, these may represent physical

limitations of the system being simulated, limits to the size of a finite element grid, etc. For

CAPE_INPUT and CAPE_INPUT_OUTPUT Parameters, these values may be used to check that

input values are in an appropriate range, such as within a range where the calculation is likely to

converge, or limits on the validity of models. For CAPE_INPUT_OUTPUT and CAPE_OUTPUT

Parameters, the values indicate that the calculated values are within an acceptable range of values.

Choosing an UNDEFINED numeric value for either the upper or lower bound implies that there is no

limit on the value of the Parameter in that bound.

The Options List represents the list of choices the value of an Option Parameter make assume. For

instance, it could be the choice of adiabatic, isothermal, or isochoric calculation.

The Parameter Specification provides the minimum constraints that can be placed on a Parameter

value, and is the base line for determining whether the Parameter’s value is valid.

Clarification 1: The following values are allowed for properties of the Parameter Specification:

• Real

o Default Value, upper and lower bounds – any real value, including UNDEFINED

(Not-a-Number, NaN).

o Upper bound must be greater than or equal to the lower bound, if both upper and lower

bound are defined.

o The Default Value can be UNDEFINED (NaN). If both Default Value and upper

bound are not UNDEFINED, Default Value must not be larger than upper bound. If

both Default Value and lower bound are not UNDEFINED, Default Value must not

be smaller than lower bound.

o A dimensionality, in the form of a double array.

• Integer

o Default Value, upper and lower bounds – any integer value, including UNDEFINED

(minimum integer value).

o Upper bound must be greater than or equal to the lower bound, if both upper and lower

bound are defined.

10

o The Default Value can be UNDEFINED. If both Default Value and upper bound are

not UNDEFINED, Default Value must not be larger than upper bound. If both Default

Value and lower bound are not UNDEFINED, Default Value must not be smaller than

lower bound.

• Boolean

o Default Value – TRUE or FALSE.

o If there is no clear preference for either TRUE or FALSE, an Option Parameter should

be considered with an Options List including “TRUE”, “FALSE”, and “Make a

selection”, or other meaningful terms.

• Option

o Default Value – any string value, including UNDEFINED.

o RestrictedToList is TRUE

 OptionsList – a string array containing at least one value.

o RestrictedToList is FALSE

 OptionsList – a string array. An empty string array is valid.

• Array Parameters shall have a valid specification for each element of the array based on

the element type.

Clarification 2: An UNDEFINED default value can either mean that the default value is the

UNDEFINED value, or that no default value is appropriate. The

ICapeParameter<Type>Spec.Validate method can be used to distinguish between these two cases

by checking if UNDEFINED is a valid value. If UNDEFINED is an invalid value, a default value is

not available for the Parameter, and the value of the Parameter must be set by the Flowsheet User.

Clarification 3: UNDEFINED upper or lower bound values imply that the upper or lower bound are

not available.

Clarification 4: The Parameter Specification can only be modified by calling ICapeUtilities.Edit on

the Parameter Owner.

6. Use of Invalid Parameter Values

Issue: Some Parameter implementations do not allow the Parameter value to be invalid.

Discussion 1: Parameter validation provides that the Parameter can have a value that is either valid

or invalid for the Parameter. A CAPE_INVALID validation status indicates that the value of the

Parameter does not comply with its Parameter specification. The validation message argument

returned by the ICapeParameter.Validate method must indicate the reason for which the Parameter

value is not valid.

Discussion 2: The Parameter Specification (ICape<Type>ParameterSpec interface) provides a

Validate method to test the compliance of a proposed Parameter value with its Parameter

Specification. The message argument of the ICape<Type>ParameterSpec.Validate method must

provide information regarding the non-conformance of the proposed value.

Clarification 1: Parameters are allowed to have a validation status of CAPE_INVALID, which means

that the Parameter’s value does not comply with its Parameter Specification.

Clarification 2: Attempting to change the value of a Parameter using the ICapeParameter.value to a

value of type that does not match the CapeParameterType of the Parameter shall raise an

ECapeBadArgument, and the validation status of the Parameter shall be set to CAPE_INVALID.

11

Clarification 3: When the value of a Parameter is changed using the ICapeParameter.value property,

then its ICapeParameter.ValStatus property is changed to CAPE_NOT_VALIDATED. The

ICapeParameter.Validate method can then be called to validate the Parameter and set the

ICapeParameter.ValStatus property to either CAPE_VALID or CAPE_INVALID.

Clarification 4: If the new value of a Parameter being changed using the ICapeParameter.value

property does not comply with its Parameter specification, the Parameter may perform one of the

following actions:

1. Accept the invalid value. The Parameter will have a validation status of CAPE_INVALID after

a subsequent call to ICapeParameter.Validate.

2. Reject the invalid value and raise an ECapeInvalidArgument error. In COM, this will be done

through returning an HRESULT value of ECapeInvalidArgumentHR (0x80040506) (and the

ECapeInvalidArgument interface must be exposed). The value of the Parameter remains

unchanged. The ECapeUser.description string will provide the reason that the value was not

accepted. The Validation Status of the Parameter remains unchanged.

Clarification 5: PME implementations are encouraged to inform the Flowsheet User of the cause of

the validation failure provided by the Parameter Validate() method message argument.

7. Parameter Validation

Issue 1: The following behaviour by a PME was observed: upon instantiation of a CAPE-OPEN Unit

Operation that carries a Parameter Collection, the PME navigated the contents of the Parameter

Collection (type, mode, etc.) including the ValStatus of each Parameter, and each Parameter returned

a ValStatus of CAPE_NOT_VALIDATED. The Parameter Client was therefore aware that the

Validate() method had not been called on each Parameter. The ICapeUtilities.Edit method was never

called within the sequence observed; however, the PME kept requesting the ValStatus of each

Parameter.

Discussion 1: The behaviour described above indicates that the Parameter client was repeatedly

checking the ValStatus of the Parameter having a ValStatus of CAPE_NOT_VALIDATED without an

intervening change in the ValStatus of the Parameter. The ValStatus must be re-evaluated and set to

the appropriate status (CAPE_VALID or CAPE_INVALID) during the call to

ICapeParameter.Validate. It is not useful for the Parameter Client to obtain its validation state if the

Parameter Client does not make any subsequent attempt to validate the Parameter in case the current

validation state is CAPE_NOT_VALIDATED.

Clarification 1: The outcome of a successful call to the ICapeParameter.Validate method is to set

the Parameter ValStatus property to either CAPE_VALID or CAPE_INVALID. The Parameter cannot

have a validation status of CAPE_NOT_VALIDATED following a successful call to

ICapeParameter.Validate.

If the call to ICapeParameter.Validate is unsuccessful, the Parameter validation status must be set to

CAPE_NOT_VALIDATED, and an appropriate error HRESULT returned for the

ICapeParameter.Validate call.

Performance advisory: The Parameter client shall not make successive calls to

ICapeParameter.ValStatus to obtain the validation status of the Parameter having a ValStatus of

CAPE_NOT_VALIDATED without making an intervening call to ICapeParameter.Validate.

12

Issue 2: The events which may trigger a change in the validation status of a Parameter are not stated

in the Parameter specification.

Discussion 2: The validation status of a Parameter can be changed by various actions, including PMC

initialization, PMC configuration, PMC calculation, etc. This clarification will indicate the times at

which a Parameter validation status may be set to CAPE_NOT_VALIDATED, requiring the PME to

validate the Parameter to set its validation status to CAPE_VALID or CAPE_INVALID.

Clarification 2: A Parameter may have a validation status of CAPE_NOT VALIDATED at the

following times:

1. After a successful call to ICapeUtilities.Initialize

2. After changing the ICapeParameter.value property

3. After a call to ICapeParameter.Reset

4. After a call to ICapeUtilities.Edit

5. After an unsuccessful call to ICapeParameter.Validate

6. Additional events stated in PMC business specifications, including for example:

a. After a call to ICapeUnit.Calculate

b. After a call to ICapeThermoPropertyPackage.CalcEquilibrium.

c. After a call to ICapeThermoPropertyPackage.CalcProp.

d. After a call to ICapeThermoCalculationRoutine.CalcProp.

e. After a call to ICapeThermoEquilibriumServer.CalcEquilibrium.

f. After a call to ICapeThermoPropertyRoutine.CalcSinglePhaseProp.

g. After a call to ICapeThermoPropertyRoutine.CalcTwoPhaseProp.

h. After a call to ICapeThermoPropertyRoutine.CalcAndGetLnPhi.

i. After a call to ICapeThermoequilibriumRoutine.CalcEquilibrium.

Issue 3: The purpose of Parameter validation is not stated in the document.

Discussion 3: Validation (and the validation status) of the Parameter is a means by which a Parameter

Owner can identify and communicate to the Parameter Client and Flowsheet User whether the

Parameter’s current value complies with its Parameter Specification and other applicable criteria. For

input Parameters, this implies the Parameter value is not acceptable for subsequent calculations, while

for output Parameters, likely means the result of the calculation is not within an acceptable design

envelope. Examples of uses for Parameter validation and ValStatus include indicating that initial

values are within a range where convergence is considered likely, or that calculated results represent

value within an acceptable range, e.g. pressures and temperatures outside a safety threshold. Scanning

the validation status of the Parameter Collection items provides a PME with a quick check of the state

of the PMCs in the Flowsheet and enables the PME to quickly alert Flowsheet Users to potential

problems.

Clarification 4: Parameter validation status is informational and shall not have any impact on PMC

performance, ability to be edited using ICapeUtilities.Edit, or ability to perform operations except as

specified by the PMC’s controlling interface specification document or documented in the PMC’s

user’s documentation. SIGs providing specifications for PMC Primary Objects, and developers of

PMC objects must clearly state any effect Parameter validation status can have on a PMC’s behavior.

Issue 4: The criteria for validation against the Parameter Specification is not stated in the Parameter

Common Interface Specification document.

13

Discussion 4: Validation of a Parameter against its Parameter Specification is the minimum default

validation that can be performed on a Parameter. The Parameter Specification provides bounds or

other limitations on the value of the Parameter, such as restriction of the value to an element of the

OptionsList for an Option Parameter. Validation against the Parameter Specification simply tests

whether the value of the Parameter meets these criteria. The purpose or context of the Parameter may

impose additional restrictions on the validity of values Parameters can take, in which case, the

Parameter Owner’s documentation must provide information regarding these additional constraints.

Clarification 4: When validated against its Parameter Specification, a Parameter is considered valid

if it meets the following criteria:

• Real-valued Parameter

o A value between upper and lower bounds.

o A value of Infinity is invalid.

o Not-a-Number (NaN) represents an UNDEFINED value, and is valid if either the

upper or lower bound are UNDEFINED.

• Integer-valued Parameter

o A value between upper and lower bounds

o An UNDEFINED value may or may not be valid.

• Boolean-valued Parameter

o A value of TRUE or FALSE.

• Option-valued Parameter

o If the value of the RestrictedToList property is TRUE, the Parameter value must be

one of the elements of the OptionsList string array.

o If the value of the RestrictedToList property is FALSE, any string value is valid.

• Array Parameter

o Must have the structure described below.

o Each array element must have a valid value for the specification of the array element.

o Each array element has a corresponding specification.

Clarification 5: Parameter Owners can establish additional or alternative validation protocols or

criteria. The PMC developer must document these additional validation protocols so that Flowsheet

Users know the reason for, and implications of CAPE_VALID and CAPE_INVALID Parameter

validation states on the results of the process simulation. Examples of alternative Parameter validation

include:

 String Parameters that contain file paths must contain a valid file path.

 The validity of Parameters that are inter-dependent may depend on the values of other

Parameters.

 An optional input, such as a temperature override, may be valid if UNDEFINED,

 A PMC that sets Boolean Parameter to FALSE to indicate that the last calculation attempt

failed to converge, can make a FALSE value invalid.

Clarification 6: Validation messages for invalid Parameters shall state the criterion that invalidated

the Parameter.

8. Implementation of the Parameter Specification Interfaces

Issue: In one example, a Parameter Client is attempting to obtain an ICapeIntegerParameterSpec

interface from Parameter Specification having a CapeParameterType of CAPE_BOOLEAN.

14

Discussion: The specification document requires that the Parameter Specification must implement

the ICapeParameterSpec interface, but the document does not indicate which of the typed Parameter

specification interfaces that a Parameter Specification should implement. In particular, it does not

indicate whether a Parameter Specification should implement all of the ICape<Type>ParameterSpec

interfaces, or just the interface corresponding to the CapeParamType of the Parameter. Section 3.3

and Figure 8 of the document provide the UML class diagrams for the Parameter objects. The

ICape<Type>ParameterSpec interfaces are shown as specializations of the ICapeParameterSpec

interface, which implies that the specialization interfaces are only required on the particular

specialization type.

Clarification: The Parameter Specification must expose both the ICapeParameterSpec interface and

the ICape<Type>ParameterSpec interface implied by the CapeParamType of the Parameter returned

by the ICapeParameterSpec.Type. The following list indicates which Parameter specification

interface must implemented for the CapeParamType of a Parameter:

 CAPE_REAL implements ICapeRealParameterSpec,

 CAPE_INT implements ICapeIntegerParameterSpec,

 CAPE_OPTION implements ICapeOptionParameterSpec,

 CAPE_BOOLEAN implements ICapeBooleanParameterSpec,

 CAPE_ARRAY implements ICapeArrayParameterSpec

It should be noted that some Parameter implementations use the same Parameter Specification for all

Parameter types, therefore the Parameter Specification may implement multiple

ICape<Type>ParameterSpec interfaces. No Parameter Client shall attempt to obtain or use an

ICape<Type>ParameterSpec interface from a Parameter that does not match the current

CapeParamType value returned by the ICapeParameterSpec.Type method of the Parameter.

9. Inconsistencies in the Parameter Specifications

Issue: The document is inconsistent in whether the specification accessed via the

ICapeRealParameterSpec, ICapeIntegerParameterSpec, ICapeArrayParameterSpec

ICapeOptionParameterSpec, or ICapeBooleanParameterSpec are read only (just gets), or can be

modified (get and set methods). For instance, the ICapeRealParameterSpec.LowerBound property

description indicates that its value may only be obtained (the description indicated that the method

can “Gets the lower bound of the real valued Parameter for which this is the specification”), while

the ICapeRealParameterSpec.UpperBound property can be changed (the description indicated that

the method can “Gets/Sets the upper bound of the real valued Parameter for which this is the

specification”).

Modifications of the Parameter Specification have been found to add complexity to the Parameter

Common Interface as it may cause PMEs to excessively scan the Parameter Collection, having

significant implications for the performance of the application. For this reason, modification of a

Parameter Specification is limited to actions of a custom editor of the Parameter Owner accessed

through the ICapeUtilities.Edit method.

Clarification: The properties accessed through the Parameter Secification interfaces are read-only.

The Parameter Collection can only be modified through the custom editor of the Parameter Owner

accessed through the ICapeUtilities.Edit method.

15

10. Parameter Mode

Issue: The mode of the Parameter determines when the Parameter value can be modified. Parameters

have three possible modes of operation: CAPE_INPUT, CAPE_INPUT_OUTPUT, and

CAPE_OUTPUT. CAPE_INPUT Parameters are used to configure the state of the PMC such that the

Flowsheet User is able to modify its value, but the value will not be changed by calculating the PMC.

While different values of these Parameters are possible, changing their value during calculation would

change the nature of the PMC. For a PMC, CAPE_OUTPUT Parameters have the opposite role –

providing the state of the PMC after calculation, and are evaluated during the calculation process.

CAPE_INPUT_OUTPUT Parameters have values that can be set prior to a calculation and can be

changed by the calculation process. An initial estimated value for a Parameter calculated iteratively

could be one possible use of a CAPE_INPUT_OUTPUT Parameter.

The values of energy and information streams are also represented by Parameters. The Parameter

owner in this case is the PME. The Parameters are exposed to the Unit Operation PMCs by means of

connection of an energy or information object to a Unit Operation port. For Parameters on INLET

ports, the Parameter mode should be CAPE_OUTPUT (the Parameter is read-only from the point of

view of the Unit Operation); the Parameter mode on OUTLET ports should be CAPE_INPUT (the

Parameter value must be specified by the Unit Operation as part of its Calculate method).

Runtime modifications of the Parameter Mode outside of configuration using the ICapeUtilities.Edit

method has been found to add complexity to implementation of the Parameter Common Interface

Specification as it may require PMEs to excessively scan the Parameter Collection, having significant

implications for the performance of the application.

Reccommended Change to the Parameter Interface: The mode of the Parameter will be deemed

read-only. Parameter clients should not modify the mode of a Parameter, and calls to the

ICapeParameter.SetMode method shall result in an error condition being raised. The Parameter mode

can only be changed through the custom editor of the owning PMC accessed through the

ICapeUtilities.Edit method by the PME.

11. Dimensionality

Parameter dimensionality allows communication of the units of measurement for the Parameter’s

value between the Parameter and its clients. The CAPE-OPEN standard includes the Dimensionality

on the ICapeParameterSpec interface. The ICapeParameterSpec interface is exposed by all

Parameters. According to the document:

The dimensionality represents the physical dimensional axes of this Parameter. It

is expected that the dimensionality must cover at least 6 fundamental axes (length,

mass, time, angle, temperature and charge).

In implementation, a number of issues have arisen regarding the use of the dimensionality of the

Parameter. These issues include format of the dimensionality of a non-dimensioned Parameter, and

absolute vs. relative Parameter values.

11.1 Expression of Parameter Dimensions as an Array

The value of all CAPE-OPEN Parameters is always returned using International System of Units (SI)

units. The SI dimensionality is expressed as a CapeArrayDouble, an array of real-valued elements

16

wrapped as a VARIANT in COM-based implementations. The use of real-valued elements allows for

situations where the dimension is expressed fractionally or as an exponential root (e.g. square root).

The array will follow the C++ convention where the index of the first element is zero (0). The array

will include up to 9 elements, which are defined as listed in Table 1.

It should be noted that the dimensionality of a Parameter does not reflect on the underlying physical

quantities. For example, surface area of packing per unit volume has a dimensionality of reciprocal

distance. Further, the dimensionalities of mass fraction, volume fractions, and mole fraction cannot

be distinguished. In addition, the dimensionality object cannot distinguish between different physical

quantities that share the same dimensionalities, such as mass transfer coefficient and velocities

sharing length per time units. Log-valued Parameters (e.g. log of vapour pressure having units that

are the logarithm of Pascal unit) may also be encountered. This clarification does not attempt to

address these shortcomings of the dimensionality array.

The absolute value flag is used to indicate whether the dimensionality of the Parameter value is

absolute or relative to a defined state. Examples include temperature and pressure where the

Parameter value can be measured using an offset scale (e.g. degrees Celsius or gauge pressure), or an

absolute scale (e.g. degrees Kelvin or absolute pressure). Using an absolute value flag of zero (0)

indicates that the Parameter value is using an absolute (e.g. degrees Kelvin), and the flag set to one

(1) indicates the use of a relative value (e.g. degrees Celsius). It should be noted that thermodynamic

properties available from objects covered under the thermodynamics specifications, such as pressure

and temperature are not Parameters using this specification; therefore, the distinction between

absolute and relative values described here does not apply to values passed using the thermodynamic

interfaces. Interested parties are directed to the Thermodynamics and Physical Properties Interface

Specification documents and documentation for the particular property model implementations for

discussion of the units of measure used.

Table 1. Dimensionality Array Specification

Index Dimension
SI Base Unit

Name Symbol

0 Length meter m

1 Mass kilogram kg

2 Time second s

3 Electrical current Ampere A

4 Temperature Kelvin K

5 Amount of Substance Mole mol

6 Luminous intensity candela cd

7 Angle radian rad

8 Absolute or Relative Flag - -

Dimensionality arrays may be encountered that have fewer than 9 elements. Trailing zeros in the

dimensionality array are optional. Should trailing zeros be omitted, the index of the element

determines the base dimensions included in the dimensionality array as indicated in the table above.

For instance, an absolute temperature Parameter will always have all array elements except index

four (4) as zero, and index four will contain the value 1 <0,0,0,0,1>. Likewise, absolute pressure

(force per area) will always have an array with the first three values of <-1, 1, -2>, and the remaining

values, if present, will be zero (0). No error condition should be raised by the client in this

circumstance.

The relative/absolute value flag can also be used to distinguish between non-dimensioned values such

as dimensionless numbers (e.g. Reynolds numbers) and fractional values (e.g. mole fractions,

17

efficiencies, yields). In the case where the value of the absolute/relative flag is zero (0), i.e.

<0,0,0,0,0,0,0,0,0>, <0,0> or an empty array, the ICapeParameter.value will be interpreted as

dimensionless. In the case where the value of the absolute/relative flag is the only non-zero value in

the array, such as <0,0,0,0,0,0,0,0,1>, the ICapeParameter.value will be interpreted as a fractional

value, for example, 90 per cent or 900,000 parts per million is represented as 0.9.

The specification for the dimensionality array is CapeArrayDouble. It should be noted that legacy

implementations of this specification may return a CapeArrayInteger for the dimensionality. No error

condition should be raised by the client in this circumstance.

11.2 Dimensionality for a Non-Dimensionable Parameter

Dimensionality applies to Parameters that represent measurable quantities, the values of which are

typically expressed using continuous, real-valued numbers. As such, integer-, Boolean-, and option

Parameters are not dimensioned. The same applies to array Parameters with elements that are of type

integer, Boolean, or option. However, according to the CAPE-OPEN specifications, the

Dimensionality property is exposed on the ICapeParameterSpec interface by all Parameters. As the

dimensionality is not supported for integer, Boolean, and option Parameters, PMEs should not call

the ICapeParameterSpec.Dimensionality method for integer, Boolean, or Option Parameters. In the

event that the PME inadvertently calls the ICapeParameterSpec.Dimensionality method for any of

the Parameter types that are not dimensioned, the recommended response is to indicate an error

condition by returning the ECapeNoImplHR (0x80040509) HRESULT value.

Legacy Parameter implementations may return an S_OK HRESULT and attempt to return the

dimensionality as an empty VARIANT (VT_EMPTY), an array indicating a non-dimensional value

as described above, or return an ECapeUnknown error, by returning an ECapeUnknownHR

HRESULT. No error condition should be raised by the Parameter client in any of these circumstances.

11.3 Missing Dimensionalities

Parameters that do not provide a properly formatted dimensionality array or return an error

HRESULT should be treated as dimensionless values. No error condition should be raised by the

client in this circumstance.

12. Expected Array Parameter Support

Issue: The existing interface for array Parameters (ICapeArrayParameterSpec) was designed to be

very general and flexible and allows amongst other things:

 definition of multi-dimensional arrays with an arbitrary number of dimensions

 definition of an array of CAPE_REALs where each element has different default value,

lower bound and upper bound and dimensionality

 definition of an array where each element is of a completely different type; rather like a

programming language structure

 two different mechanisms for defining a multi-dimensional array:

o either, explicitly by having ICapeArrayParameterSpec::NumDimensions return a

value greater than 1, or

o defining a 1D array whose elements are of ARRAY type

18

There is a consensus amongst CAPE-OPEN developers that the array Parameter is unnecessarily

‘general’ and that this generality provides too much flexibility in the implementation of the array

Parameters. In order to provide a consistent implementation of the array Parameter, what follows is

an expected structure for the array Parameter in COM-based CAPE-OPEN implementations. The

following structure allows both homogeneous arrays (arrays where all elements have the same, or

equivalent, specification), and generic, non-homogeneous arrays.

Generic Array Parameter Structure: Array Parameters will contain an array whose elements may

include real numbers, integers, strings, Boolean, and/or array values. Arrays having elements of

mixed types, and nested arrays (arrays having elements that are themselves array) are allowed. In

COM-based CAPE-OPEN implementations, the array will have the following structure:

1. ICapeParameter.value is a COM VARIANT, with variant type (VARTYPE) set to

VT_ARRAY|VT_VARIANT.

2. The VARIANT will contain a SAFEARRAY(VARIANT) stored at the VARIANT’s pArray

member.

3. The lower bound for each dimension shall be zero (0), and the number of elements of each

dimension shall be the size of the dimension obtained from the element of the array obtained

from the ICapeArrayParameterSpec.Size method corresponding to the dimension.

4. Each VARIANT element in the SAFEARRAY will have one of the following types (VARTYPE):

 VT_R8 (CapeDouble),

 VT_I4 (CapeInteger),

 VT_BSTR (CapeString),

 VT_BOOL (CapeBoolean), or

 VT_VARIANT (CapeVariant containing a nested SAFEARRAY).

5. A nested array indicated by a VT_VARIANT array element will contain a VARIANT of type

VT_ARRAY|VT_VARIANT. Contents of the array will be as described in 2, 3, and 4.

6. The ICapeArrayParameterSpec.ItemsSpecification will consist of a VARIANT having type

VT_ARRAY|VT_DISPATCH.

7. The VARIANT will contain a SAFEARRAY(LPDISPATCH) located at the VARIANT’s pArray

member.

8. Each element in the specification SAFEARRAY will be a VARIANT containing an IDispatch

pointer to a specification object exposing ICapeParameterSpec and the appropriate

ICape<TYPE>ParameterSpec interface.

9. There will be one element in the ICapeArrayParameterSpec.ItemsSpecification array for each

element in the ICapeParameter.value array. The number of dimensions and array bounds of

the specification array must match the dimensions and bounds of the value array, described in

item 2 and 3, above.

10. A nested array element in the Parameter value will have a matching

ICapeArrayParameterSpecification element in the specification array. Specifications for

nested arrays will have structures as described in 5, 6, 7, 8, and 9. All specifications shall meet

the requirements stated above in Section 3.

Parameter Client Interaction with an Array Parameter: The Parameter value will have the structure as

described above, which shall be the return value of the ICapeParameter.GetValue method. The

Parameter Client will also use this structure for calls to ICapeParameter.SetValue(). There are two

mechanism that can be used to obtain the structure of the Array Parameter:

 The Parameter Client can use the return value of a call to the ICapeParameter.GetValue

method to obtain the structure of the Array Parameter.

19

 The Parameter Client can infer the Parameter structure from metadata [e.g. number of

dimensions, size of the dimensions, and the specifications of the array items] about the array

obtained from the Array Parameter specification.

There is no mechanism to set the value of a single element of an Array Parameter. As such, the value

of an Array Parameter must be set as a whole. A Parameter Client will construct the argument to an

ICapeParameter.SetValue call using information about the Parameter structure determined using one

of the methods above.

The CAPE-OPEN specification defines the details of the array for the purpose of the

ICapeParameter.Get/SetValue method calls. The mechanism used by the Parameter Client (typically

a PME) to present the Array Parameter to the Flowsheet User to view and/or modify the Parameter’s

value is not covered by the CAPE_OPEN specification, which is consistent with scalar Parameters.

There are a number of ways that the Parameter Client can display or allow the Flowsheet User to

view or modify the values of an Array Parameter. If the PME developer chooses to display or allow

the Flowsheet User to modify the Array Parameter, the PME developer will need to consider:

 The array may be multidimensional

 Any element of the array may be an array.

 Each array element will have its own specification (whether homogeneous or not).

Likewise, the developer of the Parameter Owner (typically a PMC) will need to consider the

complexity of displaying a complex Array Parameter value. An example of a complex array structure

might be an Array Parameter for a tray mole fractions by phase of a distillation column. In this array,

the elements are a two-element array, whose elements are (1) vapor phase and (2) liquid phase array

of reals containing the composition of each phase for each tray in the column.

In contrast to the general structure, a more limited structure can be formulated as follows:

Homogeneous One Dimensional Array Parameter Structure: Homogeneous Array Parameters contain

a one-dimensional array whose elements are of the same type and are described by the same, or

equivalent Specification: upper and lower bounds, default values, dimensionality, etc. In COM-based

CAPE-OPEN implementations, the array will have the following structure:

1. ICapeParameter.value is a COM VARIANT, with variant type (VARTYPE) set to

VT_ARRAY|VT_VARIANT.

2. The VARIANT will contain a SAFEARRAY(VARIANT) with one dimension stored at the

VARIANT’s pArray member.

3. The lower bound shall be zero (0), and the number of elements of the array shall be the first

(and only) element of the array obtained from the ICapeArrayParameterSpec.Size method.

4. Each VARIANT element in the SAFEARRAY will have the same type, being one of the

following types (VARTYPE):

 VT_R8 (CapeDouble),

 VT_I4 (CapeInteger),

 VT_BSTR (CapeString),

 VT_BOOL (CapeBoolean), or

5. The ICapeArrayParameterSpec.ItemsSpecification will consist of a VARIANT having type

VT_ARRAY|VT_DISPATCH.

6. The VARIANT will contain a SAFEARRAY(LPDISPATCH) located at the VARIANT’s pArray

member.

7. Each element in the specification SAFEARRAY will be a VARIANT containing an IDispatch

pointer to a specification object exposing ICapeParameterSpec and the appropriate

20

ICape<TYPE>ParameterSpec interface. For a homogeneous array parameter, this pointer

points to the same, or equivalent, specification object.

8. There will be one specification object in the ICapeArrayParameterSpec.ItemsSpecification

array (lower bound of zero) corresponding to the element in the ICapeParameter.value array.

Although each of the elements of an Array Parameter carries a Parameter specification

(ICapeParameterSpecification), and therefore a dimensionality, the Parameter itself also has a

specification (ICapeParameterSpecification), and therefore can have a dimensionality. The

specification of the Parameter itself should only expose a dimensionality (different from

dimensionless) in case all elements of the array are of type CAPE_REAL and have the same (or

equivalent) specification. In other words, if the dimensionality provided by the Parameters itself is

present (and not dimensionless) this is a promise that the parameter is a Homogeneous One

Dimensional Array Parameter.

Clarification 1: The Parameter Client will at a minimum provide the ability to utilize a homogeneous

one-dimensional Array Parameter having the structure described above. It is expected that the

elements of such an array may be accessed, used as controller inputs or outputs, etc. to the same extent

as is supported for scalar Parameters.

Clarification 2: An Array Parameter must not expose a dimensionality (other than dimensionless) in

case its structure deviates from the homogenous one-dimensional structure described above.

13. Expected Parameter Support

Issue: Some PMEs are supporting only a limited set of Parameter types, preventing configuration of

some CAPE-OPEN Unit Operations. The requirement for support of all types was not clearly stated

in the Parameter Common Interface Specification.

Clarification: It is expected that PMEs support Parameters to aid the configuration of Unit Operations

and other PMCs. Support for Parameters means that the PME needs to provide any Parameter Client

the ability to inspect and modify the Parameter’s value. The PMEs are required to support not just

CAPE_REAL typed Parameters but also Parameters of types CAPE_INT, CAPE_BOOL,

CAPE_OPTION and type CAPE_ARRAY containing CAPE_REAL, CAPE_INT, CAPE_BOOL or

CAPE_OPTION elements. Support for CAPE_ARRAY supporting CAPE_ARRAY is optional.

However, support for Array Parameters in general is complex and the minimum level of support for

Array Parameters provided by PMEs is as described in issue 12: one dimensional homogeneous

arrays.

References:

1. Parameter Common Interface Specification Document

