
CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in Computer-Aided Process Engineering

Open Interface Specification:
Identification Common Interface

 www.colan.org

2

ARCHIVAL INFORMATION

Filename Identification Common Interface.doc

Authors CO-LaN consortium

Status Public

Date August 2003

Version version 3

Number of pages 24

Versioning version 3, reviewed by Jean-Pierre Belaud, August 2003

 version 2, Methods & Tools group, September 2000

Additional material

Web location www.colan.org

Implementation
specifications version

CAPE-OPENv1-0-0.idl (CORBA)

CAPE-OPENv1-0-0.zip and CAPE-OPENv1-0-0.tlb (COM)

Comments

http://www.colan.org/

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software
described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.
CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied
warrant or fitness for a particular purpose. The entire risk arising out of the use or performance of any
sample code --- or any other software described by the CAPE-OPEN Laboratories Network --- remains with
you.

Copyright © 2003 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a
trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and
Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation

4

SUMMARY

This document describes a Common Interface proposed by the Methods & Tools group: the Identification
Common Interface. The Common Interfaces are interfaces and implementation models for handling concepts
that may be required by any CO interface specification.

The Identification interface was already used by the Unit Operation and SMST interface specifications
and implementation of the UNIT and SMST prototypes, and proved to be useful.

5

CONTENTS

1. INTRODUCTION.. 7

2. REQUIREMENTS... 8
2.1 TEXTUAL REQUIREMENTS .. 8

2.1.1 General requirements ... 8
2.1.2 Requirements from the existing CO interface specifications .. 8

2.2 USE CASES... 9
2.2.1 Actors.. 9
2.2.2 List of Use Cases... 10
2.2.3 Use Cases Map ... 10
2.2.4 Use Cases.. 11

2.3 SEQUENCE DIAGRAMS.. 13
2.3.1 Exchanging Identification information between two clients (ref. SQ 001) ... 13

3. ANALYSIS AND DESIGN ... 14
3.1 OVERVIEW ... 14
3.2 SEQUENCE DIAGRAMS.. 14
3.3 INTERFACE DIAGRAMS ... 15
3.4 STATE DIAGRAMS... 15
3.5 INTERFACES DESCRIPTIONS.. 16

3.5.1 ICapeIdentification ... 16
3.6 SCENARIOS .. 18

3.6.1 Browse Unit Ports (ref. SC-001)... 18
4. INTERFACE SPECIFICATIONS ... 19

4.1 COM IDL .. 19
4.2 CORBA IDL ... 19

5. NOTES ON THE INTERFACE SPECIFICATIONS .. 20
5.1 COM SPECIFICATIONS ... 20
5.2 CORBA SPECIFICATIONS .. 20

6. PROTOTYPES IMPLEMENTATION ... 21

7. SPECIFIC GLOSSARY TERMS... 22

8. BIBLIOGRAPHY.. 23

9. APPENDICES.. 24

6

LIST OF FIGURES

FIGURE 1 GENERAL PURPOSE .. 10
FIGURE 2 EXCHANGING IDENTIFICATION INFORMATION BETWEEN TWO CLIENTS.. 13
FIGURE 3 SETTING THE IDENTIFICATION OF A COMPONENT... 14
FIGURE 4 GETTING THE IDENTIFICATION FROM A COMPONENT ... 14
FIGURE 5 ICAPEIDENTIFICATION INTERFACE DIAGRAM.. 15
FIGURE 6 ICAPEIDENTIFICATION STATE DIAGRAM ... 15

7

1. Introduction

This document sets out a proposal for a cross work package concept: Identification. This interface will be
used by those CAPE-OPEN components that wish to expose its name and description. This information
refers to an instance of the component, not to the software class.

As illustration of requirements, the CAPE-OPEN Unit Interface Specification document states that
within the scope of Unit component: What follows, as a corollary, is that every registered CAPE-OPEN
standard component, used to deliver the CAPE-OPEN interfaces has to support the ICapeIdentification
interface.

Please refer to Methods & Tools Integrated Guidelines in order to have an introduction to the
Common Interfaces within the CO standard.

8

2. Requirements

2.1 Textual requirements

2.1.1 General requirements

A particular Use Case in a system may contain several CAPE-OPEN components of the same class. The user
should be able to assign different names and descriptions to each instance in order to refer to them
unambiguously and in a user-friendly way. Since not always the software components that are able to set
these identifications and the software components that require this information have been developed by the
same vendor, a CAPE-OPEN standard for setting and getting this information is required.

So, the component will not usually set its own name and description: the user of the component will do it.

2.1.2 Requirements from the existing CO interface specifications

As illustration, we remind requirements coming from the existing interface specification and being
connected with the Identification concept:

The Unit Operations Interfaces have the following requirements:

 If a flowsheet contains two instances of a Unit Operation of a particular class, the COSE
needs to provide the user a textual identifier to distinguish each of the instances. For
instance, when the COSE requires to report about an error occurred in one of the Unit
Operations.

 When the COSE shows the user its GUI to connect the COSE’s streams to the Unit
Operation ports, the COSE needs to request the Unit for its list of available ports. For the
user to identify the ports, the user needs some distinctive textual information for each of
them.

 When the COSE exposes to the user its interfaces to browse or set the value of an internal
parameter of a Unit Operation, the COSE needs to request the Unit for its list of available
parameters. No matter if this COSE’s interface is a GUI or a programming interface, each
parameter must be identified by a textual string.

The ICapeThermoMaterialObject (used by both Unit and Thermo interfaces):

 If a Unit Operation has encountered an error accessing a stream
(ICapeThermoMaterialObject), the Unit might decide to report it to the user. It would be
desirable the stream to have a textual identifier for the user to be able to quickly know which
stream failed.

The Thermodynamic Interfaces have the following requirements:

 The ICapeThermoSystem and the ICapeThermoPropertyPackage interfaces don’t
require an identification interface, since both of them have been designed as singletons (a
single instance of each component class is required). That means that there is no need to
identify this instance: its class description would be enough. However, the user might decide
anyway to assign a name or a description to the CAPE-OPEN property systems or property
packages used in her/his flowsheet. Furthermore, if these interfaces evolve, the singleton
approach could be removed. In this case, identifying each instance will be a must.

9

The Solvers Interfaces have the following requirements:

 Many objects should provide the functionality coming from the Identification Common
Interface.

The SMST Interfaces have the following requirements:

 The CO SMST component package depends on the Identification Interface package. The
interface ICapeSMSTFactory must provide the Identification capabilities.

2.2 Use Cases

This section and the following present the requirements in a more formal way using UML models: Use
Cases, Use Case Maps and Sequence Diagrams. Mandatory information is the definition of actors
participating in the use cases and the use cases themselves. Optional items are priorities for use cases, further
categorization of use cases.

Most of the use cases will make no reference to any other CO interfaces, since the Identification Interface is
of general purpose. However, a few use cases have been added as concrete examples of how this interface
has been used by the Unit Interfaces.

Use Case Categories

 General Purpose Use Cases. Use Cases that express in a general way the functionality of
the interface.

 Specific Use Cases. Use Cases that show concrete examples of how the CO Identification
Interface has been used by other CO Interfaces.

Use Cases Priorities

 High. Essential functionality for a Flowsheet Unit. Functionality without which the

operation usability or performance of a Flowsheet Unit might be seriously compromised

 Low. Desirable functionality that will improve the performance of Flowsheet Units. If this
Use Case is not met, usability or acceptance can decrease.

2.2.1 Actors

• Client. Any person or software component that decides to browse or modify the name or description
of a CAPE-OPEN component. As concrete examples under the CO scope, the client could be:

o Physical Properties Developer. The human being who is notionally a physical properties
expert and will set up the physical property options for use by the normal simulator end user.
In principle, the Physical Properties developer is responsible for physical properties quality
assurance in the organization using simulation.

o Unit Operation Developer. The human being who is notionally a Unit Operation expert.
This person will develop the code of the simulation of a Unit Operation, exposing the
required CAPE-OPEN interfaces.

o Flowsheet Builder. The person who sets up the flowsheet, the structure of the flowsheet,
chooses thermo models and the unit operation models that are in the flowsheet. This person

hands over a working flowsheet to the Flowsheet User. The Flowsheet Builder can act as a
Flowsheet User.

o Flowsheet User. The person who uses an existing flowsheet. This person will put new data
into the flowsheet, rather than change the structure of the flowsheet.

2.2.2 List of Use Cases

 UC-001 : Get Component Name

 UC-002 : Set Component Name

 UC-003 : Get Component Description

 UC-004 : Set Component Description

 UC-005 : Set Identification for Unit Ports

 UC-006 : Browse Identified Ports

2.2.3 Use Cases Map

As can be seen in the figure, different clients of a CO component can request or set its name or description. It
might seem that having a single type of actor (client) is too simplistic. However, trying to define more
concrete types of actors would induce thinking on the Identification Interface in a less flexible way. On the
contrary: any clients can access any Use Case, in any order and for any purpose.

Set Component
Name

Get Component
Name

Actor: Client 1
Set Component

Description

Get Component
Description

Actor: Client 2

Exchanging Identification Information

Figure 1 General Purpose

10

11

2.2.4 Use Cases

This subsection lists all the Use Cases.

UC-001 : GET COMPONENT NAME

Actors: Client

Priority: <High>

Classification: <General Purpose Use Cases >

Context: The component name is so general that it can be used under any context.

Pre-conditions: The component must assign an initial value for its component name.

Flow of events: The component retrieves the value of its name, as it was set by the last <Set Component Name> use-
case. This value is returned.

Post-conditions: The state of the component does not change.

Errors:

Uses:

Extends:

UC-002 : SET COMPONENT NAME

Actors: Client

Priority: <High>

Classification: <General Purpose Use Cases >

Context: The component name is so general that it can be used under any context.

Pre-conditions:

Flow of events: The component stores the passed name.

Post-conditions: Subsequent calls to the <Get Component Name> use-case will return the passed name..

Errors:

Uses:

Extends:

UC-003 : GET COMPONENT DESCRIPTION

Actors: Client

Priority: <Low>

Classification: <General Purpose Use Cases >

Context: The component description is so general that it can be used under any context.

Pre-conditions: The Component must assign an initial value for its component description.

12

Flow of events: The component retrieves the value of its description, as it was set by the last <Set Component
Description> use-case. This value is returned.

Post-conditions: The state of the component does not change.

Errors:

Uses:

Extends:

UC-004 : SET COMPONENT DESCRIPTION

Actors: Client

Priority: <Low>

Classification: <General Purpose Use Cases >

Context: The component description property is so general that it can be used under any context.

Pre-conditions:

Flow of events: The component stores the passed description..

Post-conditions: Subsequent calls to the <Get Component Description> use-case will return the passed argument.

Errors:

Uses:

Extends:

UC-005 : SET IDENTIFICATION FOR UNIT PORTS

Actors: Unit Operation Developer

Priority: <Low>

Classification: <Specific Use Cases>

Context: The Unit Operation Developer is creating the ports of a Unit Operation.

Pre-conditions: <The Unit Operation Developer has created at least one port of a Unit Operation.>

Flow of events: After creating a port, the UO developer will set the values of its name and description.

Post-conditions: Subsequent calls to <Get Component Description> use-case and <Get Component Name> use-case
will return the values set by the Unit Operation Developer.

Errors:

Uses: <Set Component Description>, <Set Component Name>

Extends:

UC-006 : BROWSE IDENTIFIED PORTS

Actors: Flowsheet Builder

Priority: <Low>

Classification: <Specific Use Cases>

Context: The Flowsheet Builder is browsing or editing the ports configuration of a Unit Operation.

Pre-conditions: The Flowsheet Builder has inserted a Unit Operation in a flowsheet.

Flow of events: The COSE accesses the ports collection of the selected Unit Operation. For each of the elements of the
collection, the COSE obtains its Identification object. Now the COSE can show the name and/or description of each of
the Unit Operation’s ports.

Post-conditions: The state of the component does not change.

Errors:

Uses: <Get Component Description>, <Get Component Name>

Extends:

2.3 Sequence diagrams

2.3.1 Exchanging Identification information between two clients (ref. SQ 001)

Create
Component

Client 1

Set Component
Name

Set Component
Description

Client 2

Get Component
Name

Get Component
Description

Figure 2 Exchanging Identification information between two clients

13

3. Analysis and design

3.1 Overview

This chapter introduces the analysis models developed for the Identification Interface. These models are
described by a combination of text and UML diagrams, to show the solutions derived for the requirements
expressed in the Use Cases. The UML diagrams presented are the interface, state and component diagrams,
as well as some explanatory sequence diagrams.

3.2 Sequence diagrams

This section lists the sequence diagrams.

SQ-002: SETTING THE IDENTIFICATION OF A COMPONENT

SetComponentName(name)

Component

SetComponentDescription(description)

Client

Figure 3 Setting the identification of a Component

SQ-003: GETTING THE IDENTIFICATION FROM A COMPONENT

GetComponentName

Component

GetComponentDescription

Client

name

description

Figure 4 Getting the identification from a Component

14

3.3 Interface diagrams

This section presents the interface diagram. It contains one interface.

IN-001: ICAPEIDENTIFICATION INTERFACE DIAGRAM

<<interface>>
ICapeIdentification

name:CapeString
description: CapeString

Figure 5 ICapeIdentification Interface Diagram

3.4 State diagrams

This section presents the State Diagram.

ST-001: ICAPEIDENTIFICATION INTERFACE DIAGRAM

Name non initialized

Name initialized

/Internal Name Initialization /SetComponentName

/GetComponentName

/GetComponentName/SetComponentName

Description non initialized

Description initialized

/Internal Description Initialization /SetComponentDescription

/GetComponentDescription

/GetComponentDescription/SetComponentDescription

Figure 6 ICapeIdentification State Diagram

15

16

It has not been possible to design a single state diagram for the identification interface. Since the name and
description attributes are completely independent, it does not make any sense to try to cross-link their states.

The only difference between the ‘Name non initialized’ and the ‘Name initialized’ states is that the first one
returns an undetermined value to the GetComponentName action.

3.5 Interfaces descriptions

3.5.1 ICapeIdentification

Interface Name ICapeIdentification

Method Name GetComponentName

Returns CapeString

Description

Gets the name of the component.

Arguments

None

Errors

ECapeUnknown

17

Interface Name ICapeIdentification

Method Name GetComponentDescription

Returns CapeString

Description

Gets the description of the component.

Arguments

None

Errors

ECapeUnknown

 Interface Name ICapeIdentification

Method Name SetComponentName

Returns --

Description

Sets the name of the component.

Arguments

Name Type Description

[in] name CapeString The name of the component

Errors

ECapeUnknown, ECapeInvalidArgument

18

Interface Name ICapeIdentification

Method Name SetComponentDescription

Returns --

Description

Sets the description of the component.

Arguments

Name Type Description

[in] desc CapeString The description of the component

Errors

ECapeUnknown, ECapeInvalidArgument

3.6 Scenarios

This section describes the scenario of actions that was used to validate the set of Identification Common
Interface. This scenario exercises all the methods of the ICapeIdentification interface. The scenario is
focused in a requirement of the Unit Operation interfaces.

3.6.1 Browse Unit Ports (ref. SC-001)

One of the steps that a COSE must follow to integrate a CO Unit Operation into a flow-sheet, is to connect
the COSE’s streams to the Unit Operation ports. For doing that, the COSE needs to request the Unit for its
list of available ports. For the user to identify the ports, the user needs some distinctive textual information
for each of them.

Set identification of the Unit Ports.

 The Unit Operation creates at least one port and adds it to its Ports collection.

 For each of the created ports, the Unit Operation set the values of its name and description
setting the component name and component description..

Browse Identified ports

 The Flowsheet Builder has inserted a Unit Operation in a flowsheet.

 The Flowsheet Builder is browsing or editing the ports configuration of the Unit Operation.

 The COSE accesses the Unit Operation’s ports collection attribute. For each of the elements
of the collection, the COSE obtains its ICapeIdentification interface. Now the COSE can
show the name and/or description of each of the Unit Operation’s ports.

19

4. Interface specifications

4.1 COM IDL

// You can get these intructions in Common.idl file from CAPE-OPENv1-0-0.zip

4.2 CORBA IDL

// You can get these intructions in CAPE-OPENv1-0-0.idl within the
CAPEOPEN100::Common::Identification module

20

5. Notes on the interface specifications

5.1 COM Specifications

5.2 CORBA Specifications

21

6. Prototypes implementation
'this implementation can be used in the implementation of the following 'classes...

Private m_portID As String
Private m_description As String

Implements ICapeIdentification

'**
'* *
'* ICapeIdentification Interface Implementation *
'* *
'**

Private Property Get ICapeIdentification_ComponentDescription() As String
 ICapeIdentification_ComponentDescription = m_description
End Property

Private Property Get ICapeIdentification_ComponentName() As String
 ICapeIdentification_ComponentName = m_portId
End Property

22

7. Specific glossary terms

23

8. Bibliography

(i) Methods and Tools Integrated Guidelines

(ii) Error Handling Strategy: Error Common Interface

24

9. Appendices

