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SUMMARY

This document describes a Common Interface proposed by the Methods & Tools group: the Collection

Common Interface. The Common Interfaces are interfaces and implementation models for handling
concepts that may be required by any Business Interfaces specification.

The interface representing collections was already used by the UNIT specification (CO-CUNIT-1 Version
2.0), where this was included as an internal interface. The fact that the interface was used to hold two
different types of entities (parameters and ports) and the generality of the collections concept shows that it
can be re-used by any other CO packages requiring similar services.
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1. Introduction

The aim of the Collection interface is to give a CAPE-OPEN component the possibility to expose a list of
objects to any client of the component. The client will not be able to modify the collection, i.e. removing,
replacing or adding elements. However, since the client will have access to any CAPE-OPEN interface
exposed by the items of the collection, it will be able to modify the state of any element.

CAPE-OPEN Collections don’t allow exposing basic types such as numerical values or strings. Indeed, using
CapeArrays is more convenient here.

Not all the items of a collection must belong to the same class. It is enough if they implement the same
interface or set of interfaces. A CAPE-OPEN specification a component that exposes a collection interface
must state clearly which interfaces must be implemented by all the items of the collection.



2. Requirements

2.1 Textual requirements

The requirement is basic in the case of this common interface: any client who has reached a CO collection
wants

a to know the number of items the collection has,

Q and to get a specific item using the name or the index of this item.
The collection (number of items, state of each item) can be changed at any time by any operation of any
object within the PMC, such as by connecting a port etc. The only operations that are guaranteed not to

modify the contents of a collection are ICapeCollection’s operations.

This issue may be addressed later through the CAPE-OPEN event handling mechanism; for the moment the
calling client is supposed to refresh its collection every time it wants to use it.

2.2 Use cases

Resulting from the previous requirement the straightforward UML Use-Cases are showed.

2.2.1 Actors

a Client. Any person or software component that decides to manage a collection.

2.2.2 List of Use Cases
Q UC-001: Get the number of items

a UC-002: Get an item



2.2.3 Use Cases Maps

Get the number of
items

A

Client

Figure 1 Use-Case map

2.2.4 Use Cases

This subsection lists the two Use Cases.

UC-001: GET THE NUMBER OF ITEMS

Actors: client
Priority: high
Classification:

Context: the client deals with any objects which expose a collection. These objects identify clearly the nature of items
the collection provides.

Pre-conditions: the client has got the collection successfully from an object.

Flow of events: the collection returns the number of items. If there is no item, the zero value is returned.
Post-conditions:

Errors:

Uses:

Extends:

UC-002: GET AN ITEM

Actors: Client
Priority: High

Classification:

10




Context: The client deals with any objects which expose a collection. These objects identify clearly the nature of items
the collection provides.

Pre-conditions: The client has got the collection successfully from an object.

Flow of events: An item is returned according to a criterion. The client gives a criterion which characterises the item.
The collection that uses its own searching procedure returns the resulting item.

Post-conditions:
Errors: Any item is found.
Uses:

Extends:

2.3 Sequence diagrams

None.
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3. Analysis and Design

This chapter introduces the analysis models. That is independent from the distributed platform.

3.1 Overview

3.2 Seguence diagrams

None.

3.3 Interface diagrams

Basically the interface diagram exposes one interface called ICapeCollection.

<<CO Interface>>
ICapeCollection

Count
Item

Figure 2 ICapeCollection interface

Within the following picture we can visualise the relations between implementation objects and CO
interfaces.

|
<<interface>>
ICapeldentification

name descripton b

<<interface>>

<<interface>> N
Collectionlteminterface

ICapeCollection

Count
Item

j

Server ServerExposedCollection Collectionltem

Implements

Figure 3 Interface diagram

When a server wants to expose a collection of items, it must have a property (let’s call it in this document
getCollection) that returns an object that implements the ICapeCollection interface

12



Similarly, the Item method in ICapeCollection can be used to obtain a pointer to each of the items of the
collection. Since the client will know the meaning and type of the items of the exposed collection, it will
convert this object to the desired interface. Normally, the client will also want to query to
ICapeldentification, in order to obtain information about the identity of a specific item.

3.4  State diagrams

This section presents one State Diagram.

I Create Collection

Non Initialized

/Set Collection Attributes

N

[Initialization failed] [Initialization not completed]

Initializing
Do/Add Item

[Initialization completed]

/ Ready \

Item requested [Item exists]

[Maximum number
not reached)]
/Add Item

Running [Item delivered]

Do/Wait

[ Delivering Item
Do/Initiate Deliver

Adding
Dol/Create Item
Do/Add Item
Do/Set Item [New Item Added
Attributes

[Item removed]

Number of Items
requested

Removal requested .
Removing

DolInitiate
Removal

[Number of Items
requested delivered]

Counting
Dol/Initiate Count

Terminate requested J

v [Recoverable Error]

[Unrecoverable Error]

N

Handling Error Terminating

Figure 4 State diagram
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3.5 Other diagrams

3.6 Interfaces descriptions

The ICapeCollection interface provides a means of collecting together lists of CAPE-OPEN items/entities
(eg. parameters, ports, ...).

3.6.1 ICapeCaollection

Interface Name ICapeCollection

Method Name

Item

Returns

Capelnterface

Description

Return an element from the collection. The requested element can be identified by its actual name (e.g. type
CapeString) or by its position in the collection (e.g. type CapeLong). The name of an element is the value
returned by the ComponentName() method of its ICapeldentification interface. The advantage of retrieving
an item by name rather than by position is that it is much more efficient. This is because it is faster to check
all names from the server part than checking then from the client, where a lot of COM/CORBA calls would

be required.
Arguments
Name Type Description
[in]id CapeVariant Identifier for the requested item:
name of item (the variant contains a string)
position in collection (it contains a long)
Errors

ECapeUnknown, ECapeFailedlInitialisation, ECapeOutOfBounds, ECapelnvalidArgument
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Interface Name ICapeCollection

Method Name Count
Returns CapeLong
Description

Return the number of items in the collection.

Arguments

No arguments required

Errors

ECapeUnknown, ECapeFailedlnitialisation

3.7 Scenarios

None.
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4. Interface Specifications

41 COMIDL

// You can get these intructions in Common.idl file from CAPE-OPENv1-0-0.zip

42 CORBA IDL

// You can get these intructions in CAPE-OPENv1-0-0.idl within the
CAPEOPEN100: :Common: :Col lection module

16



5. Notes on the interface specifications

On the CORBA side, in order to avoid working with CapeVariant (type any), two operations corresponding
to Item() are specified: temByIndex(CapelLong) and itemByName (CapesString).

So we get the following codes:

interface ICapeCollection : ldentification::ICapeldentification{

Types: :CapeLong Count() raises (Error::ECapeUnknown,
Error: :ECapeFailedInitialisation);

Types: :Capelnterface ItemBylndex(in Types::CapelLong index) raises
(Error::ECapeUnknown, Error::ECapelnvalidArgument, Error::ECapeFailedlnitialisation,
Error: :ECapeOutOfBounds);

Types: :Capelnterface ItemByName(in Types::CapeString name) raises
(Error::ECapeUnknown, Error::ECapelnvalidArgument, Error::ECapeFailedlnitialisation,
Error: :ECapeOutOfBounds);

¥
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