## **Thermo SIG Progress Report 2015**

Sergej Blagov, BASF / Germany
Jasper van Baten, AmsterCHEM / Spain
Michel Pons, CO-LaN / France



### **Thermo SIG Annual Report: Charter**

#### Task:

Develop, maintain and promote Thermodynamic and Physical Properties interface specifications

### Key Responsibilities:

- **♦** Maintain and manage existing interface specifications
- **♦** Assess expansions of interface specifications
- Manage the development of expansions
- ♦ Help organizations to develop implementations



### **Thermo SIG Annual Report: Membership**

- ♦ As of October 2015
  - Andrew Lintern,
  - Jasper van Baten,
  - Michel Pons,
  - Murugesh Palanisamy,
  - Paul Zhou,
  - Rafael Lugo,
  - Richard Szczepanski,
  - Sergej Blagov,
  - Suphat Watanisiri,
  - Xiaozheng-Sara Wang,

HTRI

**AmsterCHEM** (SIG co-leader)

**CO-LaN** 

Honeywell

Honeywell

**IFP** 

**Infochem Computer Services** 

**BASF** (SIG co-leader)

AspenTech

Honeywell



# **Thermo SIG Annual Report: Activities 2014-2015**

- ♦ Efforts concentrated on finalizing the Chemical Reactions interface specification v1.1
  - Main ideas first presented on CO-LaN Annual Meeting, 2012, Lyon, France
- ♦ Ongoing work in a small group
  - Jasper van Baten, Michel Pons, Sergej Blagov
  - 2 hours weekly remote desktop sessions
- ♦ Still not finished



### **Chemical Reactions Interface v1.1: Motivation**

- ♦ Several issues exist with current v1.0 Reactions specification
  - Reaction basis is not clearly defined
  - Units of measure require revision (non-SI)
  - Several concepts not well defined
- ♦ Large overlap with v1.1 Thermodynamic and Physical Properties
  - Compound definitions
  - Material contexts
- ♦ CO-LaN Annual Meeting, 2012, Lyon, France:
  - First draft presented
  - Major drawbacks recognized:
    - Formulation only based on the true species
    - Not well suited for oligomers, electrolytes, etc.
    - No reactive phase equilibrium calculator defined



### **Chemical Reactions Interface v1.1: Key Features**

### Generality

- Phases for reactants and products on a per-component basis
- Reaction domains: single phase, interfacial, homo-/hetero-geneous, etc.

### **♦** Compactness

- Only 4 reaction properties supported
  - Reaction Rate / Compound Reaction Rate
  - Chemical Equilibrium Deviation
  - Chemical Equilibrium Deviation tolerance
  - Enthalpy of Reaction

### **♦** Flexibility

- Reaction hierarchy
- Multiple Compound Slates (for different sets of apparent compounds)
- Material Object Delegates in addition to Material Object



# **Chemical Reactions Interface v1.1: Main concepts**

- **♦ Chemical Reaction Server**
- **♦** Reactive Phase Equilibrium
- **♦ Compound Slate**
- **♦** Custom Data storage on Material Object



## Main concepts: Chemical Reaction Server

- ♦ Either a Property Package or a Reaction Package
  - Concept already presented in 2013
- **♦** Levels of configuration
  - Chemical Reaction Server private configuration
    - Outside of PME or via ICapeUtilities::Edit if supported
  - Association with Material Template
    - Matching of compounds and phases
    - Selection of reactions supported by the Material Object
  - Association with Unit Operation
    - Via Material Object representing feed or product stream
    - Possible selection of reaction subset by Unit Operation
    - Selection must be consistent with reaction hierarchy



### Main concepts: Chemical Reaction Server

#### ♦ New:

- Reorganization of reactions into a hierarchy
  - Individual Reactions
  - Reaction sets
    - Groups of individual Reactions that must be evaluated together
  - Exclusive sets
    - Groups of mutually exclusive Reaction sets at alternative conditions
  - Reaction groups
    - Arbitrary grouping of Exclusive sets related to each other
- Advantages of the generic approach proposed
  - Ease of analysis by the PMCs using CRS
  - Complex reaction systems are easily defined



## Internal representation





# **Example of GUI representation**





# **Equilibrium reactive systems**



# Main concepts: Reactive Phase Equilibrium

- **♦** Reactive Phase Equilibrium changes overall composition
- ♦ Unit Operation must be aware of this change
  - Molecular weight changes
  - ICapeThermoReactiveEquilibriumRoutine
    - As discussed last year



# Main concepts: Multiple compound slates

Material Object (Master Compound Slate)

Delegate 1 (Compound Slate A)

Delegate 2 (Compound Slate B)



# Main concepts: Multiple compound slates



# True composition internal to Property Package

- **♦** Typical sequence of events
  - True composition calculated as part of phase equilibrium
  - Phase equilibrium often followed by property calculation
  - Property calculation requires true composition



# True composition internal to Property Package

- **♦** Recalculate true composition
  - CPU intensive
- **♦ True composition cached on Property Package** 
  - Inconvenient
    - no knowledge of life-span of each Material Object
    - no knowledge on number of Material Objects
- ♦ Storage of true composition on Material Object
  - New interface: Custom Data



# Main concepts: Custom Data on Material Object

- **♦** Generic or specific interface design
  - Format not known to Material Object: specific to PMC
  - Other usages: for example EOS solutions

#### ♦ Rules

- PMC must store data along with applicable conditions
- PME must remove data when thermo configuration changes
- PME not required to persist data
  - PMC must be able to recalculate data
- Guidelines for multithreading and sharing data between Material Objects



## **Points progressed**

- **♦** Formalized all requirements
  - Ensured consistency with the design chosen
    - Revised most of the requirements
  - Split into three sections
    - Chemical Reaction Server
    - Reactive phase equilibrium
    - Multiple compound slates
- **♦ Working on Use Cases** 
  - Remains finalizing Use Cases and interfaces
- ♦ Separate document on Custom Data storage
  - To be distributed along with Chemical Reaction



### **Questions?**



