
Presentation of „MOSAIC“ for the CAPE-OPEN Annual Meeting 2013. This slides

from the TU Berlin (Faculty of Process Sciences) were presented by Gregor 

Tolksdorf, M.Sc. 

The presentation focuses on the modeling and code generation aspects of

MOSAIC, so the title is: „MOSAIC – A modeling and code generation tool“

1



MOSAIC emphasises the modeling on the documentation level, i.e. the model of

a process is created by defining the descriptions of all model elements. This 

approach has been implemented using web based technologies. 

Additional information, account requests and tutorials can be accessed using our

main MOSAIC website „www.mosaic-modeling.de“.

2



The development is supervised by Prof Günter Wozny who is the head of the

chair of Process Dynamics and Operation (in german: „Fachgebiet für Dynamik 

und Betrieb technischer Anlagen“, dbta) at the TU Berlin. Currently four

developers are working on MOSAIC inprovements.

3



This presentation covers two main topics: 

1. The MOSAIC modeling approach containing the modular concept, the

symbolic notation, the code generation, and the usage of external ports.

2. Integration of CAPE-OPEN functionality in MOSAIC, especially physical

properties and unit operations.

4



The idea of modeling with MOSAIC: 

When creating a new equation based model, the user has more or less to define

the documentation of all parts of the model. This includes mainly the equations

and the notation for the used symbols (i.e. variables and parameters) of the

model. To enter the symbols and equations LaTeX is preferred, but it is also 

possible to use e.g. the MS Word formular editor. After specifying the full model

(such that the degree of freedom of the equation system is equal to zero) the

user can use MOSAIC to generate the program code of the model. As the

implementation is done automatically the user won‘t have to write code manually. 

MOSAIC supports code generation for different programming languages and

target platforms, e.g. C++, gPROMS, and Matlab. 

After compilation and running the user gets execution results that usually lead to

conceptual changes of the model (e.g. different starting values or new intial

values). To apply these changes to the program code the user shouldn‘t modify

the program code manually, because it is an error prone task and will lead to an 

outdated documentation. When using MOSAIC the user just has to update the

documentation of the model and the code once again will be created

automatically to avoid errors occuring when coding manually. 

MOSAIC is designed to cover the (update of the) platform independent

documentation of the model and the generation of platform specific code.

5



The goals of the MOSAIC modeling approach are

- to avoid errors of manually implemented code,

- reduce the effort to for code generation, and

- facilitate the cooperative work by an improved reusability and portability

This approach results in

- a highly modular modeling concept

- the usage of an enhanced symbolic notation to define platform independent

models (PIM) based on Java and XML in the documentation level

- automatic code generation to convert PIM to platform specific models (PSM)

- the support of web cooperation by storing and sharing all model elements in a 

web database

On the next slides the modular concept, the symbolic notation, and the code

generation will be shown in more detail.

6



On this slide a part of a screenshot of the MOSAIC graphical user interface (GUI) 

is shown. The main editors are highlighted by colored squares. Each editor is an 

own module to create a distinct part of the whole model. 

There are four main editors needed to define a fully specified model: 

- The „Notation Editor“ defines which symbols / variables are allowed inside the

model

- The „Equation Editor“ uses mainly LaTeX to enter each equation that shall be

part of the model

- The „Equation system Editor“ combines equations and equation systems to

new equation systems

- The „Evaluation Editor“ specifies not only the design, state, and iteration

variables but also the start values, and initial values (depending on the type of

the equation system, e.g. NLE or ODE). Additionally the code will be created

inside this editor.

7



At the bottom of this slide an example for a variable in MOSAIC is shown. The 

user has to use the „Notation editor“ in order to define what the meaning of this

variable is. Therefore all base names, superscripts, subscripts, and indices have

to be specified including a human readable desciption to clearify the meaning of

the symbols.

8



Another example for the enhanced symbolic notation is shown on this slide. After 

entering the LaTeX-Code for the equation inside the „Equation editor“ the user

can immediately see what the equation would look like on/in a paper by clicking

the „Render“ button.

9



In the „Equation system editor“ all combined equations of an equation system are

displayed together.

10



In the „Evaluation editor“ MOSAIC provides a panel to take a look at all 

instantiated equations. In contrast to generic equations the instantiated equations

use indices with specific values, e.g. generic: x_{i} vs. instantiated: x_{i=1}, 

x_{i=2} .

11



In order to generate the programming code for the model the user has to chose

one of the programming languages provided by MOSAIC. The screenshot shows

an example for an algebraic equation system. In this case MOSAIC supports e.g. 

gPROMS, Matlab, Scilab, ACM, GAMS, AMPL, Fortran and Python.

After selecting the preferred language/target platform the code will be created by

clicking on the „Generate Code“ button in the MOSAIC GUI.

12



The „View Code“ panel of the „Evaluation editor“ is used to take a llok at the

generated code. By selecting, copying and pasting the code into the respective

local environment (e.g. gPROMS, Matlab) the model can be evaluated. Of course

the user has to have an installation of the preferred target platform as MOSAIC 

can not provide the specific software and it will otherwise not be possible to

execute the code.

13



MOSAIC can use the concept of „Ports“. Ports can be used to encapsulate an 

equation system meant to be a unit operation such that only specific variables 

are visible from the outside of this equation system. In the example shown on this

slide the equation system contains three variables. The variable „Y“ is only used

internally, whereas the variable „A“ is connected to the input „T“ and the variable 

„B“ is connected to the output „P“. From outside of the system boundaries the

unit is a black box with in input „T“ going in and an ouput „P“ coming out. The 

variable „Y“ is hidden and can be directly accessed from inside the equation

system describing the unit.

14



To specify a MOSAIC external Port three attributes have to be set:

1. Each port has to have a direction, i.e. either „In“ or „Out“.

2. Each port needs an interface describing the type of the variable presented to

the outside. The example on the slide shows the mandatory fields „naming“, 

„dimension“, „engineering unit“, and „direction“.

3. Each port uses a connector to define the connection between an internal

variable and an external interface variable. In the example shown on this slide

the two connectors link „A“ with „T“ (input) and „B“ with „P“ (output).

The concept of „Ports“ should be a basis to create or import CAPE-OPEN unit

operations with MOSAIC.

15



MOSAIC supports code generation with CAPE_OPEN physical properties for two

target platforms so far:

Matlab (NLE,ODE,DAE) and gPROMS (NLE).

NLE – Non Linear Equation system

ODE – Ordinary Differential Equation system

DAE – Differential Algebraic Equation system

16



In order to use the CAPE-OPEN physical properties in MOSAIC the user has to

create a MOSAIC function that implements the CO interface. In the example on 

this slide a function for liquid molar enthalpy is used inside an equation system.

17



In the generated code (in this case for Matlab) the MOSAIC function is converted

into a platform specific function that uses the predefined property manager and

property packages to calculat the physical property via the CAPE-OPEN 

interface.

18



Summarizing what has been mentioned so far in this presentation it can be said

that MOSAIC

- Is a modular equation based modeling tool

- Is implemented in Java using XML/MathML to store the models

- Provides automatic code generation for specific platforms (C++, 

Fortran,Matlab, gPROMS, ACM, M)

- Can use the „Ports“ concept

- Supports CO physical properties in code generation for Matlab and gPROMS

Additionally it is important to state that MOSAIC is neither a programming

language nor a computer algebra system (CAS) . As MOSAIC is not designed to

be a process simulator the term „Process Modeling Environment“ in the sense of

CAPE-OPEN is not the appropriate notion. Referring to the title of this

presentation: MOSAIC is modeling and code generation tool.

19



Regarding the next steps of MOSAIC to include CAPE-OPEN unit operations

many questions occur. Some of them are listed on this slide.

20



Additional information, account requests and tutorials can be accessed using our

main MOSAIC website „www.mosaic-modeling.de“.

The MOSAIC project is supported by the Cluster of Excellence ‚Unifying

Concepts in Catalysis‘ (unicat), coordinated by the Technical University of Berlin, 

and funded by the German Research Foundation.

21


