
CAPE-OPEN

Delivering the power of component software

and open standard interfaces

in Computer-Aided Process Engineering
Open Interface Specifications
for Hydrodynamic Calculations
Version 0.1.008

[image: image20.wmf]layer1

layer2

layer3

layer3

layer1

layer2

layer3

layer3

[image: image2.emf]

www.colan.org

Archival Information

	Filename
	CO Hydro 0.1.007 Specification.doc

	Authors
	Martin Gainville, IFP Energies Nouvelles
Gilles Ferrer, IFP Energies Nouvelles
Monica Østentad , SPT Group
Pierre Duchet-Suchaux, TOTAL
Harald Miland, Kongsberg

Jon Harald Kaspersen, Sintef

Michel Pons, CO-LaN

	Status
	Internal

	Date
	May 2011

	Version
	version 0.1.007

	Number of pages
	

	Versioning
	

	
	

	
	

	
	

	Additional material
	

	Web location
	

	Implementation specifications version
	

	Comments
	

IMPORTANT NOTICes
Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind. CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied warrant or fitness for a particular purpose. The entire risk arising out of the use or performance of any sample code --- or any other software described by the CAPE-OPEN Laboratories Network --- remains with you.
Copyright © 2011 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.
CO-LaN is a non for profit organization established under French law of 1901.
Trademark Usage

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

Summary

The first part of this document describes the main scenarios of usage for a Hydrodynamic Point Model component within a Unit Operation. Then in a second part, sequence diagrams describe a conceptual model that shows how a Hydrodynamic Point Model component is used in a Unit Operation.
After this analysis the design chosen is described through references to each method in the interfaces defined. Then the available properties which can be used to describe a flow are defined.

The appendices present some examples of flow patterns which define with a very fine accuracy a flow within a Unit Operation which is a pipe. These examples are useful to clarify the description of a flow in terms of layers and fields which can be difficult to understand for a Hydrodynamic Point Model non-expert.
Acknowledgements

Many individuals and their organizations have contributed to this document. Gilles Ferrer and Martin Gainville from IFP Energies Nouvelles, Monica Østentad from SPT Group, Pierre Duchet-Suchaux from Total, Harald Miland from Kongsberg Gruppen, Jon Harald Kaspersen from Sintef, Michel Pons from CO-LaN were among the main contributors.
Contents

91.
Introduction

1.1
Context
9
1.2
Content
9
2.
Requirements
10
2.1
Textual requirements
10
2.1.1
Layers and Fields definition and description
11
2.2
Use Cases
11
2.2.1
Actors
12
2.2.2
Use Case Priorities
12
2.2.3
List of Use Cases
12
2.2.4
Use Cases maps
13
2.2.5
Use Cases
15
2.3
Sequence diagrams
32
2.3.1
HPM Reference
32
2.3.2
HPM Validate
33
2.3.3
HPM Calculation
37
2.3.4
HPM Initialization
40
3.
Analysis and design
41
3.1
Overview
41
3.2
Sequence diagrams
41
3.3
Interface diagrams
42
3.4
State diagrams
43
3.5
Other diagrams
43
3.6
Interfaces descriptions
44
3.6.1
ICapeHydroFlow
44
3.6.2
ICapeHydroFlowRoutine
60
3.6.3
ICapeHydroPhases
66
3.6.4
ICapeHydroPropertyRoutine
70
3.6.5
ICapeHydroFields
79
3.6.6
ICapeHydroContext
90
3.6.7
ICapeHydroPackageManager
92
3.7
Scenarios
95
4.
Interface specifications
96
4.1
Interface IID and registration under the appropriate categrory
96
4.2
COM IDL
97
4.2.1
Interface ICapeHydroContext : IDispatch
97
4.2.2
Interface ICapeHydroPackageManager : IDispatch
97
4.2.3
Interface ICapeHydroPhases : IDispatch
97
4.2.4
Interface ICapeHydroFlowRoutine : IDispatch
97
4.2.5
Interface ICapeHydroPropertyRoutine : IDispatch
98
4.2.6
Interface ICapeHydroFields : IDispatch
98
4.2.7
Interface ICapeHydroFlow : IDispatch
99
5.
Notes on the interface specifications
101
5.1
Convention Note on UNDEFINED
101
5.2
Correspondance thermodynamic phase property – hydrodynamic qualifier
101
5.3
Geometry identifiers
102
5.4
Flow regime Identifiers
102
5.5
Physical Property identifiers
103
5.5.1
Single-phase properties
103
5.5.2
Two-phase properties
103
5.6
Hydrodynamic Flow Properties
104
5.6.1
Mixture properties
104
5.6.2
Single Phase properties
104
5.6.3
Two-phase properties
104
5.7
Hydrodynamic Layer and Field properties
104
5.7.1
Layer pattern identifiers
104
5.7.2
Single-layer properties
105
5.7.3
Two-layer properties
105
5.7.4
Single-field properties
105
5.7.5
Phase properties
106
6.
Prototype implementation
107
6.1
Example of flow calculation with phase mixing rule done by <Unit Operation>
107
6.2
Example of flow calculation with phase mixing rule done internaly in HPM
108
6.3
Example of field retrieve property
109
7.
Specific glossary terms
110
8.
Bibliography
111
8.1
Process simulation references
111
8.2
Computing references
111
8.3
General references
111
9.
Appendices
112
9.1
Example of 2-phase flow patterns defined with Layers and Fields
112
9.2
Examples of 3-phase flow patterns defined with Layers and Fields
113

List of Figures

13Figure 1 HPM Package Configuration Use Cases

13Figure 2 HPM Package Context Use Cases

14Figure 3 HPM Package Calculation Use Cases

32Figure 4 HPM reference to a Unit Operation when selected in the PME

33Figure 5a Validation of HPM number of recognized phases

36Figure 5b Validation of HPM specifications and output properties

37Figure 5c Validation for HPM geometry and thermodynamic properties inputs

38Figure 6a HPM Calculation sequence (HPM mixing rule)

39Figure 6b HPM Calculation sequence (UO mixing rule)

40Figure 7 HPM Initialisation

101Type of Data

101Declaration and Usage

101Thermodynamic

112Figure 8 Annular flow regime defined by layers and fields

114Figure 9 Slug flow regime defined by layers and fields

116Figure 10 Slug flow regime with a stratified bed defined by layers and fields

1. Introduction

1.1 Context

For process modeling, the CAPE-OPEN standard has established programming rules and communication protocols for integrating various types of software components such as thermodynamic components and unit operations into a process modeling environment. Now major process modeling environments are CAPE-OPEN compatible and consequently offer open and flexible architectures to plug and play with process modeling components.

Since 2004, upstream applications and studies have used the CAPE-OPEN standard to simulate oil and gas production systems that require advanced thermodynamic calculations [1][2]. In these applications, pipe modules are widely used to model flows in wells, flow lines and production risers. In addition to advanced thermodynamic calculations, pipe flow models require some multiphase flow correlations for predicting phase distribution and slip velocities between present phases. These correlations are more or less complex and are often derived from literature publications and university laboratory works before being found in commercial software products.
Hydrodynamic correlations are also used for characterizing phase slippage, for example for modeling flow through a valve throat. In a way, the hydrodynamic concept can be applicable to any unit operation that requires specific hydrodynamic calculations.

Under these considerations, there is an opportunity to define a hydrodynamic calculation interface standard that specifies communications between hydrodynamic module software components, process modeling environments and unit operations.
1.2 Content

This document defines conceptual interfaces and usages for dealing with hydrodynamic calculations in a context of fluid flow within a flowsheet environment.

A Hydrodynamic Point Model (hereafter called HPM) is a model that predicts pressure drop, phase holdups, phase velocities and possibly other flow variables for a cross section at one point of a given piece of equipment. A HPM may cover a large domain of applications. It is dedicated to flows through pipe/well sections and also may be applied to flows through a valve or an annular space. The "point" – part of the name hence refers to the direction along the pipeline, i.e. normal to the cross section. Current commercial HPMs (OLGA-S [3], TACITE [4]) deliver average flow values for cross section or for pipe unit element in case of intermittent flows. Future versions may in addition predict cross sectional distributions of some variables, for instance velocity profiles and concentration profiles.

In this first iteration step of the interface design, we will focus the application domain to multiphase flow in a pipe. It means that we will focus on defining relationships between an HPM calculation server and clients which can be either a pipe module present as a Unit Operation, or the Process Modelling Environment (hereafter called PME) or the End-User.

The HPM is only in interaction with a Unit Operation; it is the responsibility of the PME and the End-User to associate the suitable HPM with a given Unit Operation: protocols are established to fulfil this requirement.

The recommendations of the Conceptual Design Document [6] within the CAPE-OPEN documentation are used. In the Analysis phase, user requirements are described and expressed as Use Cases.

2. Requirements

We formalise the description of the user requirements for Hydrodynamic Point Model (HPM) and the relationships with its different Clients: pipe module as Unit Operation, End-User and the PME. In the following, when Client is used as singular it refers to any of the different Clients defined above. Elsewhere a specific Client may be mentioned for a given requirement.
2.1 Textual requirements

Possibility to configure HPM is a user requirement. For instance, the End-User may need to select a hydrodynamic correlation from several possible ones or may need to specify emulsion viscosity curves that have to be taken into account during calculations.
End-User may also need the possibility to tune the HPM, for instance by modifying friction coefficients or some other model parameters. The tuning algorithm is considered to be outside the HPM: it means that there is a requirement for a Parameter Collection to be displayed by the HPM in order to give access to its model parameters.
A HPM calculation provides calculation results to its Client. A set of standard hydrodynamic results can be defined that will be delivered by any HPM calculation: pressure drop, phase velocities, phase holdups and flow regime. The main purpose of any HPM is to get these properties calculated. Hence, for efficiency purposes, a user requirement is to get a dedicated access by a Client to this minimum set of properties.
For performing calculation, a HPM can internally use a set of phases different from the phases given by the thermodynamic module. For example the HPM can use only gas and liquid phases in case of two-phase computation, or gas, oil and water in case of three phases computation. A HPM can have internal mixing rule to transform thermodynamic phases to "hydrodynamic" phases (remark: OLGA-S and TACITE hydro have not this implementation at the moment and mixing rule management is mainly the responsibility of the client. For OLGA-S the client needs to define two-phase or three-phase data depending on which method is called, for TACITE two-phase hydrodynamics data can be provided in three phases or twp phases and in case of three-phase data mixing rules are performed internally. In case of more than three phases, TACITE does not manage the mixing). Some Pipe Unit Operations can also propose a mixing rule to transform the thermodynamic phases in a subset of phases. The Unit Operation (Client of the HPM) should have the possibility to validate if the input HPM phases are compatible with the output thermodynamic phases.

The possibility for a Client to impose the flow regime before performing a calculation is another requirement. In this case, the final results of the HPM could be different from the results obtain with the HPM general settings that may allow for flow regime determination by the HPM.
Some additional hydrodynamic property calculations may be decoupled from the general hydrodynamic calculation. For instance, the gas/liquid shear stress can be calculated for given phase holdups and velocities and the Client may want to calculate the property for given inputs.
A validation scheme process is needed to check the validity of a HPM. In this process, the HPM may confirm to its Client that its configuration has been correctly done.
Analysis of existing HPMs shows that they may slightly differ in the list of input variables they need and output variables they deliver. A HPM has to provide information to Clients about input requirements and properties available as output. With these properties labels, a Client can deliver the requested information to the HPM which conserves flexibility in its inputs definition (not all HPMs need to have the same inputs definition).

A set of internal parameters of HPM should be possibly stored and then reloaded for initialising HPM algorithm calculations in a further calculation step. This option may be convenient for minimizing calculation time.
The HPM can propose the access to internal information: layers and fields. The layers and fields concept offer a detailed description of flow configurations; for instance it can be used for characterizing emulsion properties, intermittent flow...
2.1.1 Layers and Fields definition and description

Layers and Fields are entities which described precisely the flow configuration.

A layer is a continuous area in term of composition and properties. Properties can include dispersion. A field is a flow entity where present phases flow at the same average velocity. A field can be an emulsion or not. Layers and Fields are referenced by a unique and constant label.
The complete flow is described by a set of layers composed of fields. Each thermodynamic phase may be distributed in several fields. The sum of a given phase over present fields gives back the entire phase.

A layer is characterized by a set of fields and one of these fields is corresponding to the continuous field. One can make access to layer properties, i.e. interface perimeters, wetted perimeter,..., and configurations, i.e. stratified or annular, dispersed or not... Regarding the layer definition, a layer with more than one field should be used to define a dispersed flow.
A field is characterized by present phases, the continuous phase (one of the present phases), and the volume fractions in the field. Some properties can be accessed, i.e. field velocity, emulsion state. Regarding the field definition, a field with more than one phase should be used to define an emulsion state.
Examples of flow patterns described in term of layers and fields are presented in section 9.1: annular gas and water flow; slug gas, oil and water flow.
2.2 Use Cases
The standard defines the following primary CAPE-OPEN components:

· HPM Package <HPM Package> A software component that calculate hydrodynamic properties: pressure drop, phase holdups, velocities...

· HPM Package Manager <HPM Package Manager> A software component that manages a set of <HPM Package>. It is responsible for instantiating <HPM Packages> on request and may allow <HPM Packages> to be edited.
The main purpose of a <HPM Package Manager> is to allow a developer to implement the instantiation of a <HPM Package>. As a primary CAPE-OPEN component, a <HPM Package manager> may allow a client to edit <HPM Packages> and create new ones.

A <HPM Package Manager> is responsible for managing a set of <HPM Packages>. It implements the interface which allows a client to get the list of the names of the <HPM Packages> managed by the component and to request that a <HPM Package> be instantiated.
2.2.1 Actors

· End User <End User> The physical person who asks the Unit Operation to make use of a given <HPM Package> for calculating pressure drop and flow properties. The End-User will optionally configure the selected <HPM Package>.
· Process Modelling Environment <PME> The <PME> makes use of components, CAPE-OPEN or not, in order to model the flow within a flowsheet. In CAPE-OPEN documents the synonym COSE can be used for <PME>.

· Unit Operation <Unit Operation> [8] The component uses a <HPM Package> to calculate hydrodynamic properties. For this purpose, it checks the validity of the <HPM Package> and provides the <HPM Package> with the required pieces of information. In a first iteration step, we assume that a <Unit Operation> corresponds to a pipe.
2.2.2 Use Case Priorities

· High. Essential functionality for an HPM Package. Functionality without which the operation usability or performance of an HPM Package might be seriously compromised

· Medium. Very desirable functionality that will make HPM Packages more usable, transportable or versatile. The essence of an HPM Package is not compromised by this Use Case, although the usability and acceptance of the component can be.

· Low. Desirable functionality that will improve the performance of HPM Packages. If this Use Case is not met, usability or acceptance can decrease.

2.2.3 List of Use Cases

· UC-001: Load HPM Package

· UC-002: HPM Package Configuration

· UC-002A: Configure HPM Package

· UC-002B: HPM Package specific data

· UC-003: HPM Package association

· UC-003A: Check Unit Operation compatibility

· UC-003B: Reference HPM Package

· UC-004: Copy HPM Package

· UC-005: Delete HPM Package

· UC-006: HPM Package validation
· UC-007: Hydrodynamic calculation
· UC-008: Impose flow regime
· UC-008A: Impose locally flow regime

· UC-008B: Impose alternative flow regime

· UC-009: Hydrodynamic specific property calculation

· UC-010: Input properties

· UC-011: Delivered properties

· UC-011A: Phase delivered properties

· UC-011B: Field delivered properties

· UC-012: Calculation initialization
· UC-013: HPM Package tuning
2.2.4 Use Cases maps

[image: image3.png]o—

HPM Package Configmation Inupose Flow Regine

—

Load HPM Package

Exd User

PME

Figure 1 HPM Package Configuration Use Cases
[image: image4.png]HPM Package association Ui O

Figure 2 HPM Package Context Use Cases

[image: image5.emf]Hydrodynamic Specific Property

Calculation

Unit Operation

Calculation Initialization

Impose Flow Regime Hydrodynamic Calculation

Input Properties

Validation Scheme

Deliver Properties

Figure 3 HPM Package Calculation Use Cases
2.2.5 Use Cases

UC-001: Load HPM package

Actors: <PME> - <Unit Operation> - <End User>

Priority: <High>

Classification: <Hydro Use Case> - <HPM Package Configuration>

Context:

Several <HPM Package>s are available for the <PME>. The <End User> selects one within the list to be loaded in the <PME>.

Pre-conditions:

A <HPM Package Manager> is available in the <PME> for selecting the <HPM Package>. The <HPM Package Manager> can be part of the <PME> or a third party component available for the <PME>.

Flow of events:

Through the HPM Package Manager, the <PME> gets the list of the CAPE-OPEN compliant <HPM Package>s available. The <End User> selects one <HPM Package> and the HPM Package Manager creates an instance available for the <PME>.

A <Unit Operation> can implement this Use Case to select a locally specific <HPM Package>. The selected <HPM Package> is available only to the current <Unit Operation> and replaces the <HPM Package> possibly defined in a previous step.
At the end, the HPM Package Manager can be destroyed.
Post-conditions:

A <HPM Package> instance is defined as available to the Client. It is the responsibility of the Client to check the validity of the <HPM Package>.

Errors:

Uses:

Extends:

UC-002: HPM Package configuration
The Use Cases of <HPM Package> configuration can be exercised either at the <PME> level, when the <HPM Package> is provided to any <Unit Operation>, or at the <Unit Operation> level, when the <HPM Package> is provided for a specific <Unit Operation>.
UC-002A: Configure HPM package
The CAPE-OPEN standard does not define how the configuration stage should be performed for any CAPE-OPEN component. This Use Case is defined to inform the reader what can be a <HPM Package> configuration stage. This Use Case can be a part of a stand-alone software.
Actors: <End User>
Priority: High
Classification: <Hydro Use Case> - <HPM Package Configuration>
Context:
A <HPM Package> may be set in different configurations to compute the pressure drop and other flow variables. For instance, the 2 or 3 phase choice may be selected at this configuration stage, as well as the selection of specific correlations or options. Another configuration capacity may concern emulsion viscosities; the <HPM Package> may use default viscosities provided by its calculation client, combined with default internal mixing rules, or use emulsion curves defined at the configuration stage.
Pre-conditions:
[UC-001A Load HPM Package] has been realized.

Flow of events:
The <End User> edits the <HPM Package>
. The simulation options and parameters are defined for the <HPM Package>, i.e. selection for a 2 or 3 phase option, hydrodynamic correlations used, emulsion viscosity curves... At the end of this configuration stage, a configure <HPM Package> is available for the <PME> client. The <HPM Package> may provide a functionality to create a new <HPM Package> based on the modified one.
Example of specific parameters for a <HPM Package> configuration (from OLGAS interface): water droplet entrainment multiplier, water fraction at inversion point, switch for oil water slip calculation, input slip velocity oil/water, switch for turning on/off dispersion viscosity calculation, switch for turning on/off water correlation for air/water low pressure experiments.

Post-conditions:

A configure <HPM Package> is defined as available for the <PME>.
Errors:

Uses:
Extends:

UC-002B: HPM package specific data

Actors: <End User> - <PME>
Priority: High

Classification: <Hydro Use Case> - <HPM Package Configuration>

Context:

This Use Case is fulfilled by the "Edit" or "GetParameters" methods in the CAPE-OPEN interfaces
.

Pre-conditions:

A <HPM package> set of specific parameters values can be specified.

Flow of events:
The <End User> asks the <PME> to edit the <HPM Package>. The <PME> attempts to invoke the "Edit" method on the <HPM Package>.

For <HPM Package> which have not proprietary user interface, the <PME> should allow the <End User> to change the values of parameters
Post-conditions:

The <HPM Package> parameters values have been specified.

Errors:

<Failed to access value> data values cannot be specified.

Uses:

Extends:

UC-003: HPM Package Association
UC-003a: check Unit Operation Compatibility

Actors: <PME> - <Unit Operation>

Priority: High
Classification: <Hydro Use Case> - <HPM Package Context>

Context:

Not all <Unit Operation>s have to support the <HPM Package> interfaces. Before referencing a <HPM Package> to a <Unit Operation>, the <PME> valid the <Unit Operation> is <HPM Package> compatible.

Pre-conditions:

A new <HPM Package> instance or <Unit Operation> is present on the <PME>.

Flow of events:

Before associating the <HPM Package> to the <Unit Operation>, the <PME> needs to know if the <Unit Operation> is compatible with <HPM Package> interfaces. A compatible <Unit Operation> exposes a specific hydrodynamic interface that permits the association. The <PME> asks the <Unit Operation> for the presence of this interface.

Example for a COM software component: the <PME> asks a "QueryInterface" to the <Unit Operation> using the IID of the <HPM Package> interface.
Post-conditions:
Errors:

Uses:

Extends:

UC-003b: reference HPM package

Actors: <PME> - <Unit Operation>

Priority: High
Classification: <Hydro Use Case> - <HPM Package Context>

Context:

The <PME> allows the <Unit Operation> that implements the HPM Package interface to access the <HPM Package>.

Pre-conditions:

A <HPM Package> instance is present in the <PME> and the <Unit Operation> is <HPM Package> compatible.

Flow of events:

A <Unit Operation> is defined in the flowsheet. The <PME> associates the <HPM Package> instance to the <Unit Operation>.

Remark: the <HPM Package> instance may be local to the <Unit Operation>. It is the <Unit Operation> responsibility to create a local copy of the referenced <HPM Package>, and delete it.

If the [UC-001 Load HPM package] is realized after defining a <Unit Operation>, the connection is done for all the compatible <Unit Operation>s present in the flowsheet and implementing the required interface.

If a local <HPM Package> is present in the <Unit Operation> and the <PME> sends a new one, it is the responsibility of the <Unit Operation> to decide the replacement of the previous one.

For <Unit Operations> which use a <HPM Package> selected through the <PME>, if the <PME> asks for the reference event, the previous <HPM Package> is replaced.

Post-conditions:

A <HPM Package> instance is present on the <Unit Operation>.

Errors

<Failed to connect HPM Package> the connection interface is present on the <Unit Operation> but "not" implemented (for example if the Pipe Unit Operation uses its own hydrodynamic module than can not be overloaded).

Uses:

Extends:

UC-004: Copy HPM Package
Actors: <PME>
Priority: High
Classification: <Hydro Use Case>
Context:

Each <Unit Operation> use a specific instance of <HPM Package>. The <PME> has to create the copy before associating a <HPM Package> to a <Unit Operation>.
Pre-conditions:

A <HPM Package> instance is present in the <PME>.
Flow of events:

A new <HPM Package> is created.

The <PME> calls the <HPM Package> to generate a copy from the previous one. The new <HPM Package> copies all parameters values and properties.
Post-conditions:

Two identical <HPM Package> are present on the <PME>.

Errors:
<Failed Operation> A copy cannot be created due to an unauthorized licence problem.

Uses:
Extends:
UC-005: Delete HPM package

Actors: <End User> - <PME> - <Unit Operation>
Priority: High

Classification: <Hydro Use Case>

Context:
<HPM Package> are deleted by <PME> or <Unit Operation>

Pre-conditions:

Flow of events:

The <End User> requests the <PME> deletes the selected <HPM Package>.
The <PME> asks for the "Terminate" method to the <HPM Package>. The <PME> then deletes the <HPM Package> instance and zeroes all .references to the <HPM Package>.
Post-conditions:
<HPM Package> is deleted and no references are valid.

Errors:

Uses:

Extends:

UC-006: HPM Validation
Actors: <Unit Operation>

Priority: High
Classification: <Hydro Use Case> - <HPM Calculation>

Context:
Before flow calculation, a <HPM Package> should be validated: the necessary input properties should be available in the <Unit Operation>, calculated output properties should comply with expected <Unit Operation> properties.
Pre-conditions:

A reference to a <HPM Package> is available to the <Unit Operation>.

Some thermodynamic methods are present on the <Unit Operation> to obtain information about lists of defined phases and properties.
Flow of events:

The validation stage is divided in three main steps: validation of the <HPM Package> calculation context, validation between <Unit Operation> and <HPM Package> properties, validation between thermodynamic properties and <HPM Package> properties.

The <Unit Operation> checks if the calculation context (i.e. flow calculation using phases superficial velocities as input) is available.

To compute flow properties, a <HPM Package> will need to obtain a number of geometric properties from the <Unit Operation>. The <Unit Operation> asks the <HPM Package> which geometric properties are needed, and validates if these properties are available. The <Unit Operation> verify if the required output flow properties will be available from the <HPM Package> after the calculation.

In addition, the <HPM Package> needs a number of thermodynamic properties. Not all <HPM Packages> need the same properties. The <Unit Operation> asks which input properties will be required, and validates if the properties are available. Not all <HPM Packages> accept any thermodynamic phases. The <Unit Operation> asks the <HPM Package> if it is a full or restricted phases <HPM Package> (example of restricted <HPM Package>: two phases gas-liquid HPM). If the <HPM Package> is a restricted <HPM Package>, the <Unit Operation> needs to have internal phases mixing rule compatible with the input phases accepted by the <HPM Package>.
Post-conditions:

Errors:

<Failed to validate>: some information are not present for validation
Uses: [UC-010 Input properties] – [UC-011 Delivered properties]
Extends:
UC-007: Hydrodynamic Calculation
Actors: <Unit Operation>
Priority: High
Classification: <Hydro Use Case> - <HPM Package Calculation>
Context:

The <Unit Operation> needs a hydrodynamic calculation to resolve the conservative equations for a specific geometry, a set of thermodynamic phases and their related properties and a given set of flow parameters.
Pre-conditions:

A validated <HPM Package> is present for the <Unit Operation>. Input data for performing a <HPM Package> calculation are available. The number of present thermodynamic phases and state of aggregation are known.
One may distinguish at least three types of <HPM Package> calculation depending on flow parameters specification:
1. Set of phase superficial velocities,
2. Set of phase holdup and overall mixture velocity,
3. Set of phase holdup and overall barycentric velocity.
Flow of events:
The <Unit Operation> sends input data to the <HPM Package>: geometry, thermodynamic phases and relative properties, and flow parameters and asks for calculation.
The calculation determines overall pressure drop, phase holdups, velocities of present thermodynamic phases and flow regime. Optionally, composition and properties of present hydrodynamic fields may be calculated.
At the end of the calculation, the standard properties are available for retrieval from the <HPM Package> by the <Unit Operation>.
Post-conditions:
Overall pressure drop, phase holdups, phase velocities, flow regime are available to the <Unit Operation>.
Errors:

<Failed to access value> a needed input value is not accessed.
<Failed to calculate>

Uses:
Extends:
UC-008: Impose flow regime and Calculate
UC-008A: Impose locally flow regime
Actors: <Unit Operation>

Priority: Medium
Classification: <Hydro Use case> - <HPM Calculation>

Context:

The <Unit Operation> wants to calculate the hydrodynamic properties with a specified flow. The flow regime identifiers have to be known by the <Unit Operation>.
Pre-conditions:
The <End User> has specified to the <Unit Operation> which flow regime to consider. For instance, an imposed flow regime profiles may be defined by the <End User> along a pipe during the configuration stage of the pipe.
Flow of events:

The <Unit Operation> sends the nature of the flow regime to consider in addition to the type of calculation requested [UC-004 Hydrodynamic calculation]. The <HPM Package> performs hydrodynamic calculation [UC-004] using the imposed flow regime.

Post-conditions:
After the calculation, the imposed flow regime is turned to "Undefined".
Errors:

<Failed to access value> some necessary input value is not accessible
<Failed to calculate>

Uses: [UC-007 Hydrodynamic calculation]
Extends:
UC-008b: Impose alternative flow regime
Actors: <Unit Operation>

Priority: Medium
Classification: <Hydro Use case> - <HPM Calculation>

Context:

A hydrodynamic calculation without imposes flow regime has been realized and return an output error. A new calculation is performed with an imposed flow regime.
Pre-conditions:
Flow of events:

A hydrodynamic calculation [UC-004] is performed and return the <Failed to calculate> error. The <Unit Operation> specifies to the <HPM Package> which flow regime is to be used for the alternative calculation. The <HPM Package> performs the hydrodynamic calculation with this new specification.
For example, the specified flow regime can be a flow regime obtained during a previous calculation.

Post-conditions:

After the calculation, the imposed flow regime is turned to "Undefined".

Errors:

<Failed to access value> a necessary value is not available
<Failed to calculate>

Uses:

Extends: [UC-007 Hydrodynamic calculation] - [UC-008A Impose locally flow regime]
UC-009: Hydrodynamic specific property calculation

Actors: <Unit Operation>
Priority: High
Classification: <Hydro Use Case> - <HPM Calculation>
Context:

The <Unit Operation> needs a list of hydrodynamic properties to perform its calculation scheme. It asks the <HPM Package> to perform the property calculation by specifying the property name on the desired phase/field (or two-phase/fields in case of two field property).
Pre-conditions:

A [UC-007 Hydrodynamic calculation] or [UC-008 Impose flow regime] has been previously performed.
Remark: the flow calculation can not be realized through this sequence.
Flow of events:
The <Unit Operation> asks the <HPM Package> to perform the calculation of a property or a list of properties for a set of given phase/fields. The <HPM Package> performs the calculation.

Post-conditions:
The property value or the list of property values is available to the <Unit Operation> for retrieval.

Errors:

<Failed to calculate property> the calculation for a property failed.
<Not provided property> a property is not provided by the <HPM Package>.

<Not present phase>
Uses:
Extends:

UC-010: Input properties

Actors: <Unit Operation>

Priority: High
Classification: <Hydro Use Case> - <HPM Calculation>

Context:

<HPM Package>s differ in their list of input properties needed to perform a given calculation. There is a need to know these properties to check the <HPM Package> validity within the <Unit Operation>.
Pre-conditions:

A <HPM Package> instance is available for the Pipe <Unit Operation>.

Flow of events:

<Unit Operation> asks to <HPM Package> the list of input properties needed to perform a calculation specifying the calculation context (see [UC-0047). The input properties are geometric properties, single-phase or two-phase thermodynamic properties.

The <HPM Package> returns a list of property identifiers to be supplied by the <Unit Operation>.
Post-conditions:

<Unit Operation> knows input properties used by <HPM Package>.

Errors:

Uses:

Extends: [UC-006 HPM validation]
UC-011: Delivered properties
Delivered properties can be asked per phase or per field. All <HPM Packages> need to deliver output phases properties. Output field properties are optional.
UC-011a: Phase delivered properties
Actors: <Unit Operation>
Priority: High
Classification: <Hydro Use Case> - <HPM Calculation>
Context:

The <Unit Operation> needs the list of supported properties calculated by the <HPM Package> in order to ask the <HPM Package> only for properties that can be calculated and to check if the <HPM Package> fulfils the needs of the <Unit Operation> in terms of properties calculations.
Pre-conditions:
Flow of events:

The <Unit Operation> asks to <HPM Package> the list of supported properties.
The <HPM Package> returns the list of properties identifiers. These properties are mixture, single phase or interface properties. The available derivative properties are also returned.

Post-conditions:

Errors:

Uses:

Extends: [UC-006 HPM validation]
UC-011b: Field delivered properties
Actors: <Unit Operation>

Priority: Medium
Classification: <Hydro Use Case> - <HPM Calculation>

Context:

The <Unit Operation> needs the list of layers and fields calculated by the HPM Package. These layers, fields and properties are parameters of the <HPM Package> and are available for additional flow description to the Client.

Pre-conditions:

HPM calculation as been performed.

Flow of events:

The <Unit Operation> asks to <HPM Package> the list of present layers labels and fields labels from the layers.
 The <Unit Operation> can ask the layer and field information and properties corresponding to these labels
.

Post-conditions:

Errors:

<Not implemented function> same meaning as no layer and field properties delivered
Uses:

Extends:

UC-012: Calculation Initialisation

Actors: <Unit Operation>

Priority: Low
Classification: <Hydro Use Case> - <HPM Calculation>
Context:

It can be suitable to initialise some internal variables of a <HPM Package> to improve computational performance. Some pieces of information previously stored are sent to the <HPM Package> before performing a new calculation. An anonymous data vector is used to ensure storage and initialisation of the <HPM Package>.
Pre-conditions:

An initialisation data vector previously stored is available after the <HPM Package> first calculation. For the first calculation, an empty vector can be sent.
Flow of events:

For the <HPM Package> first calculation, the <Unit Operation> sends an empty data vector and asks for <HPM Package> calculation. After the calculation, an initialisation data vector is available on the <HPM Package>. The <Unit Operation> requests and stores the vector.

For next calculations, the sequence is the same with the previous initialisation data vector.

Remark: As an anonymous data vector, the <Unit Operation> can not perform any action on it; no data usage or modification can be done. If the data vector is empty, the <HPM Package> will use its internal initialisation values to perform the calculation (this is always the case for the first calculation). If the data vector contains values, the <HPM Package> will use it to initialise the calculation. After the calculation, a set of modified values in the data vector is available for the <Unit Operation>. If the <HPM Package> calculation fails, the available data vector still remain the input one
The data vector is anonymous, this mean that the <Unit Operation> does not have the description of the vector dimension and the values inside. The <Unit Operation> only keeps and sends it to initialise the <HPM Package> calculation. An implementation of the vector can specify a dedicated <HPM Package> key in the first value item for example which can be verified during the retrieval operation. This is a proposal of implementation which is not imposed by the standard.
Post-conditions:

A data vector resulting from calculation is available for the <Unit Operation>.
Errors:

<Initialisation error > the data vector is not compatible with the <HPM Package>.
Uses:
Extends: [UC-007 Hydrodynamic calculation]
UC-013: HPM Tuning
Actors: <End User> - <PME>
Priority: Low
Classification: <Hydro Use Case> - <HPM Calculation>

Context:
Tuning a <HPM Package> can be useful for <End User> in relation to experiments..

Pre-conditions:

A <HPM Package> tuning method is available in the <PME>.

Flow of events:

The <PME> asks for the parameter collection using the "GetParameters" method
. The <PME> changes some parameters values and asks for a new calculation. The <PME> asks for results and the <End User> decides to iterate in the flow of events if necessary.
Post-conditions:

Errors:

<Failed to access value> parameters values cannot be accessed.

Uses:

Extends:

2.3 Sequence diagrams
2.3.1 HPM Reference

Figure 4 describes the sequence diagram for a <HPM Package> implemented as a COM component which adds a valid <HPM Package> reference to a Unit Operation.

First, the <PME> asks the <Unit Operation> if the corresponding interface is present. If it is present, the <PME> send the HPM Package to be referenced by the <Unit Operation>.
[image: image6.png]a PME PME ‘& HPM HEM Tnit Operstion

[fex [OCO01] a rew
HPM i selected.

[For all <Unit Operation=
defined in the fowsheet.

Queryinferee) :

el Queattice

<

[P nteface avalihle on
the <Unit Operation.

7 Fofome

T cheqiHPM validate()

specification with the <Usit |-~
Operstions=

end Reference. 1 HPM compatible, the
HPM canbe a share

HPM or a copy.

Figure 4 HPM reference to a Unit Operation when selected in the PME
Before the add operation, the <Unit Operation> should verify if the <HPM Package> is compatible with its internal specifications (HPM Validate 2.3.2)

For example, verify the <HPM Package> delivers all necessary hydrodynamic properties to realize the <Unit Operation> calculation, <HPM Package> input geometric and physical properties are defined in the <Unit Operation>... These validations can be performed even if the thermodynamic Material Object is not present on the <Unit Operation>.
If the <HPM Package>-<Unit Operation> compatibility is validated, the <HPM Package> can be added to the <Unit Operation>; if an error occurred, the <HPM Package> is not added and the <Unit Operation> cannot perform its own calculation.
2.3.2 HPM Validate
HPM compatibility validate
A <HPM Package> can present different specifications defined by the accepted input phases. Either a <HPM Package> is defined as an "all phases" <HPM Package> (it accepts all defined thermodynamic phases and generates hydrodynamic properties for all these phases), either it is a "restricted" phases <HPM Package> (for example, the <HPM Package> accepts only two phases: gas and liquid).

A validation sequence needs to verify the compatibility on phase identifiers between the <HPM Package> and the <Unit Operation>. If the <Unit Operation> does not contain internals mixing rules, only all phases <HPM Package> may be compatible. For “restricted” phases <HPM Package>, the <Unit Operation> needs to perform mixing rules before calling the <HPM Package> calculation. In this case, the <Unit Operation> verifies that the internal phase identifiers comply with the ones used by the <HPM Package>. For example a <Unit Operation> which conserves the solid phases cannot be linked with a gas-liquid <HPM Package>.
[image: image7.emf]aPipe : Unit

Operation

aPipe : Unit

Operation

hydro : HPM hydro : HPM

GetNumPhases()

GetPhaseInfo()

If all thermodynamic

phases are used in HPM

return UNDEFINED

return Empty

if GetNumPhases is

UNDEFINED

check HPM compatibility()

For <Unit Operation> without phases mixing

rules, only HPM with UNDEFINED number of

phases can be reference.

For <Unit Operation> with mixing rules, the

generated phase identifiers have to be validate

with the HPM identifiers. All generated

identifiers need to be understoud by the HPM.

Figure 5a Validation of HPM number of recognized phases
A phase label needs to be associated to a standardized hydrodynamic phase identifier. This equivalence is done in the <Unit Operation> by using the ICapeThermoPhases::GetPhaseInfo method. An identifier can be present more than once in the present thermodynamic phases.
The correspondence between thermodynamic phase informations and hydrodynamic phase identifiers is defined in the present table. These specifications are done from the [Thermodynamic and Physical Properties v1.1] document for thermodynamic properties.
	CAPE-OPEN 1.1 Thermodynamic
	Hydrodynamic phase description

	StateOfAggregation
	
	StateOfAggregation
	

	Vapor
	
	Vapor
	

	StateOfAggregation
	KeyCompoundId
	StateOfAggregation
	Type (OfLiquid)

	Liquid
	UNDEFINED
	Liquid
	Organic

	
	Water
	
	Aqueous

	
	
	
	UNDEFINED

	StateOfAggregration
	TypeOfSolid
	StateOfAggregation
	Type (OfSolid)

	Solid
	PureSolid
	Solid
	PureSolid

	
	SolidSolution
	
	SolidSolution

	
	HydrateI
	
	Hydrate

	
	HydrateII
	
	Hydrate

	
	HydrateH
	
	Hydrate

	
	
	
	UNDEFINED

	Unknown
	
	Unknown
	

· Note for Unknown stateOfAggregation: this state of aggregation value appears according to the Thermodynamic specification. In most case, it will be the responsibility of the <Unit Operation> or of the <HPM Package> to define an hydrodynamic correspondence or to raise an error if no correspondence is available.

Example of correspondence for a thermodynamic 5 phase composition to a N-Phase hydrodynamic module. All the thermodynamics phases information have a corresponding hydrodynamic identifier, .

	Thermodynamic
	Hydrodynamic

	Phase label
	StateOfAggregation
	KeyCompoundId
TypeOfSolid
	StateOfAggregation
	Type (OfSolid)
Type (OfLiquid)

	"phaseA"
	Vapor
	
	Vapor
	

	"phaseB"
	Liquid
	UNDEFINED
	Liquid
	Organic

	"phaseC"
	Solid
	HydrateI
	Solid
	Hydrate

	"phaseD"
	Liquid
	Water
	Liquid
	Aqueous

	"phaseE"
	Solid
	HydrateII
	Solid
	Hydrate

Correspondence with the same thermodynamic 5 phases composition to a "restricted" 3-Phase (Vapor, Liquid, Solid) hydrodynamic module. Thermodynamic phase properties will be mixed by the hydrodynamic module.

	Thermodynamic
	Hydrodynamic

	Phase label
	StateOfAggregation
	KeyCompoundId
TypeOfSolid
	StateOfAggregation
	Type (OfSolid)
Type (OfLiquid)

	"phaseA"
	Vapor
	
	Vapor
	

	"phaseB"
	Liquid
	UNDEFINED
	Liquid
	UNDEFINED

	"phaseC"
	Solid
	HydrateI
	Solid
	UNDEFINED

	"phaseD"
	Liquid
	Water
	Liquid
	UNDEFINED

	"phaseE"
	Solid
	HydrateII
	Solid
	UNDEFINED

HPM delivered properties validate

Different HPM calculation contexts, i.e. [Us][], [Rk][Um], can be realized in a <Unit Operation>. The <Unit Operation> needs to validate the required calculations are present on the <HPM Package>, and then the required flow properties will be available in these contexts.

[image: image8.emf]aPipe : Unit

Operation

aPipe : Unit

Operation

hydro : HPM hydro : HPM

CheckCalcFlowSpec()

check HPM compatibility()

CheckSingleHydroPropList()

CheckTwoHydroPropList()

check HPM compatibility()

Check whether the HPM

supports a specify calculation

context (Uk, Rk-Um, Rk-Vm).

Check whether the HPM phases

properties are calculated (not

dependent of calculation context)

Get supported

output properties.

Figure 5b Validation of HPM specifications and output properties
HPM input properties validate
Compute flow calculation depends on the geometry of <Unit Operation>. The <Unit Operation> validates that the required geometric properties are defined.
A <HPM Package> needs some thermodynamic properties as inputs to compute the flow properties. One can verify if these properties are supported by the <Material Object>. To be valid, a <HPM Package> should use input thermodynamic properties which are a subset of the supported thermodynamic properties.
[image: image9.emf]aPipe : Unit

Operation

aPipe : Unit

Operation

thermo thermo hydro : HPM hydro : HPM

GetSinglePhasePropList()

check Phases properties compatibility

Check if HPM input

thermodynamic properties list

is a subset of thermodynamic

properties list.

GetTwoPhasePropList()

GetSinglePhasePropList()

GetTwoPhasePropList()

Get needed input

properties.

GetGeometryPropList()

check HPM compatibility()

 Check if required geometric

properties are defined for the

Unit Operation.

Figure 5c Validation for HPM geometry and thermodynamic properties inputs
2.3.3 HPM Calculation
Figure 6 shows a Sequence Diagram for a HPM calculation [UC-003]. To simplify the Sequence Diagrams, we do not present the way to calculate thermodynamic properties which are assumed to be available at this stage. The <Unit Operation> needs to check the relationship between thermodynamic phase labels and hydrodynamic supported phases using the correspondence table previously defined

Depends on the <HPM Package>, two implementations can be realized for calculation:
· In the first one, the <Unit Operation> converts thermodynamic phase labels to hydrodynamic identifiers. Then, the <Unit Operation> sends all phases input data to the <HPM Package>. If the HPM calculation uses a restricted number of phases, it is in charge to convert input data to internals data with its own mixing rule to realized the calculation.
· In the second one, the <HPM Package> is a "strict" number of phases <HPM Package>, without internal mixing rules to convert input data. For example, we define a sequence diagram with a <HPM Package> which uses two hydrodynamic phases: gas and liquid. The <Unit Operation> is in charge to send input data according to hydrodynamic identifiers accepted by the <HPM Package>. In this case, the <Unit Operation> needs to have a mixing rule to realize this operation.

.

[image: image10.emf]aPipe : Unit

Operation

aPipe : Unit

Operation

thermo thermo hydro : HPM hydro : HPM

 : HPM_2Phases : HPM_2Phases

Input mixing

rules

Ouput mixing

rules

GetPresentPhases()

GetOverallProp()

GetSinglePhaseProp()

GetTwoPhaseProp()

Thermodynamic phase

properties available.

Thermo phase labels to Hydro identifiers

GetPhaseInfo()

Set N Phases input data ()

CalcFlow()

N Phase to 2 Phase

Calculate 2 Phase()

Calculate 2 Phase

2 Phase to N Phase

Get N Phase flow values()

Figure 6a HPM Calculation sequence (HPM mixing rule)
[image: image11.emf]aPipe : Unit

Operation

aPipe : Unit

Operation

thermo thermo hydro :

HPM_2Phases

hydro :

HPM_2Phases

N Phase to 2 Phase

CalcFlow()

Calculate 2 Phase

2 Phase to N Phase

Input mixing

rule

Output mixing

rule

GetPresentPhases()

GetOverallProp()

GetSinglePhaseProp()

GetTwoPhaseProp()

Thermodynamic phases

properties available.

GetPhaseInfo()

Thermo phase labels to Hydro identifiers

Set 2 Phase input data()

Get 2 Phase flow values()

Figure 6b HPM Calculation sequence (UO mixing rule)
In the second diagram, a <HPM Package> which accept all thermodynamic phases can be link to the <Unit Operation>. In that case, the <Unit Operation> mixing rule will not have any effect to input data.
2.3.4 HPM Initialization
A HPM calculation can have internal Newton functions. It can be interesting to initialize these functions with values proceeding from a previous simulation. For example, for a pipe optimization simulation, the initialize values for the Newton functions can be the results of the previous optimization step.

These values depend on the internal HPM structure. The <Unit Operation> does not have to understand this. An anonymous vector is used to pass the initialization values from step i to step i+1. The <Unit Operation> can not analyze or modify this vector, only store and send it later.
[image: image12.emf] : Unit Operation : Unit Operation : HPM : HPM

CalcFlow()

SetInitState()

GetFinalState()

SetInitState()

CalcFlow()

GetFinalState()

First time HPM calculation, the

data vector is empty. The HPM

will use default values to

initialise the CalcFlow function.

At the end of the function, some

internal values are keep available

for the next initialisation step.

The <Unit Operation> ask the

HPM data vector and keep it.

Step 1

Step 2..N

The <Unit Operation> send the

data vector to the HPM which

use it for initialisation.

Figure 7 HPM Initialisation
At step 1, the <Unit Operation> sends an empty vector to the <HPM Package> by the "SetInitState" function. The <HPM Package> will used default values to initialize the next "CalcFlow" function. After this function, an anonymous vector is available to the <Unit Operation> through the "GetFinalState" function.

The anonymous vector is used to initialize the next "CalcFlow". The <Unit Operation> send this vector using "SetInitState", if the vector is correct (dimension and values) the <HPM Package> use it for initialize. In no case, the <Unit Operation> have to modify this vector.
3. Analysis and design
3.1 Overview

Interfaces are defined to realize the previous Use Cases.

· <HPM Package> implements the following interfaces:

· ICapeHydroFlow

· ICapeHydroFlowRoutine

· ICapeHydroPropertyRoutine

· ICapeHydroPhases

· ICapeHydroFields

· <Unit Operation> implements the following interface:

· ICapeHydroContext

· <HPM Package Manager> implements the following interface:

· ICapeHydroPackageManager
3.2 Sequence diagrams
3.3 Interface diagrams
IN- 000: General interface diagram
[image: image13.emf]ICapeHydroContext

SetHPM()

<<CAPE-OPEN Interface>>

ICapeHydroFlow

ClearAllProps()

CreateHPM()

CopyFromHPM()

GetFlowRegime()

GetMixtureProp()

GetSingleHydroProp()

GetTwoHydroProp()

SetGeometryProp()

SetPresentPhases()

SetOverallProp()

SetSinglePhaseProp()

SetTwoPhaseProp()

SetMixtureProp()

SetSingleHydroProp()

SetTwoHydroProp()

<<CAPE-OPEN Interface>>

ICapeHydroFlowRoutine

CalcFlow()

CheckCalcFlowSpec()

GetFinalState()

SetInitState()

<<CAPE-OPEN Interface>>

ICapeHydroPackageManager

GetHPMPackageList()

GetHPMPackage()

<<CAPE-OPEN Interface>>

ICapeHydroPhases

GetPhaseInfo()

GetNumPhases()

<<CAPE-OPEN Interface>>

ICapeHydroPropertyRoutine

CalcSingleHydroProp()

CalcTwoHydroProp()

CheckSingleHydroPropList()

CheckTwoHydroPropList()

GetGeometryPropList()

GetSinglePhasePropList()

GetTwoPhasePropList()

<<CAPE-OPEN Interface>>

ICapeHydroFields

GetFieldInfo()

GetLayerInfo()

GetPresentFields()

GetPresentLayers()

GetPresentPhases()

GetSingleFieldProp()

GetSingleLayerProp()

GetSinglePhaseProp()

GetTwoLayerProp()

<<CAPE-OPEN Interface>>

IN- 001: Added interface for HPM Package manager
[image: image14.png]HPM Packege Manager

ICapeHydioPackageManager

IN- 002: Added interface for Unit Operation

[image: image15.png]Uit Operstion

ICapeHydContext

IN – 003 Interface for HPM

[image: image16.png]HPM

L
ICopeyioFiow

O

ICapeHydoFlowRautine

apeHydroPropertyRautine

apeHydroPhases

O

ICapeHydioFilds

3.4 State diagrams

3.5 Other diagrams
3.6 Interfaces descriptions
3.6.1 ICapeHydroFlow

The following methods are exposed by this interface:

· ClearAllProps

· CopyFromHPM

· GetFlowRegime

· GetMixtureProp

· GetSingleHydroProp

· GetTwoHydroProp

· SetGeometryProp

· SetMixtureProp

· SetOverallProp

· SetPresentPhases

· SetSingleHydroProp

· SetSinglePhaseProp

· SetTwoHydroProp

· SetTwoPhaseProp

	Interface Name
	ICapeHydroFlow

	Method Name
	ClearAllProps

	Returns
	CapeError

Description

Remove all stored property values.
Arguments

	Name
	Type
	Description

	
	
	

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

CearAllProps removes all stored property values that have been set using the SetGeometryProp, SetOverallProp, SetSinglePhaseProp, SetTwoPhaseProp, SetMixtureProp, SetSingleHydroProp, SetTwoHydroProp methods. ClearAllProps does not remove the configuration information in a <HPM Package> .
Using the ClearAllProps methods results in a <HPM Package> that is in the same state as when is was first created.
	Interface Name
	ICapeHydroFlow

	Method Name
	CopyFromHPM

	Returns
	CapeError

Description

Copies all the stored properties from the <HPM Package> to the current instance of the <HPM Package>.
Arguments

	Name
	Type
	Description

	[in] source
	CapeInterface
	Source <HPM Package> from which stored properties will be copied.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	GetFlowRegime

	Returns
	CapeError

Description
Return main flow regime and qualifier evaluated after a hydrodynamic calculation.
Arguments

	Name
	Type
	Description

	[out] regime
	CapeString
	The flow regime identifier resulting from the hydrodynamic calculation. This is one of the standards identifiers listed in section 5.4..

	[out] qualifier
	CapeString
	The flow regime qualifier describing more accurately the flow regime identifier. This is one of the standards identifiers listed in section 5.4.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeBadInvOrder – The Flow regime is not available from the <HPM Package>. This exception is raised when the HPM Package is not in the proper state, if the calculation raises an error for example.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	GetMixtureProp

	Returns
	CapeError

Description
Retrieves flow values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are requested.

	[out] values
	CapeArrayDouble
	Result vector containing property flow value(s) in SI units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeBadInvOrder – The property required is not available from the <HPM Package>. This exception is raised when the HPM Package is not in the proper state, if the calculation raises an error for example.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	GetSingleHydroProp

	Returns
	CapeError

Description
Retrieves single-phase flow values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are requested.

	[in] phaseLabel
	CapeString
	Phase label of the phase for which the hydrodynamic property is required.

	[out] values
	CapeArrayDouble
	Results vector containing property flow value(s) in SI units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeBadInvOrder – The property required is not available from the <HPM Package>. This exception is raised when the <HPM Package> is not in the proper state, if the calculation raise an error for example.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	GetTwoHydroProp

	Returns
	CapeError

Description
Retrieves two-phase flow values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are requested.

	[in] phaseLabels
	CapeArrayString
	List (two values) of Phase labels for which the property is required.

	[out] values
	CapeArrayDouble
	Results vector containing property flow value(s) in SI units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeBadInvOrder – The property required is not available from the <HPM Package>. This exception is raised when the <HPM Package> is not in the proper state, if the calculation raise an error for example.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetGeometryProp

	Returns
	CapeError

Description
Set geometry values.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the geometry property which values are set.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetMixtureProp

	Returns
	CapeError

Description
Set flow values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetOverallProp

	Returns
	CapeError

Description
Set thermodynamic values for the overall mixture.

Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetPresentPhases

	Returns
	CapeError

Description
Set hydrodynamic present phases in the flow.

Arguments

	Name
	Type
	Description

	[in] phaseLabels
	CapeArrayString
	The list of Phase labels for the Phases present.

	[in] stateOfAggregation
	CapeArrayString
	Array of hydrodynamic state of aggregation corresponding to each of the Phase labels. See description below.

	[in] typeInfo
	CapeArrayString
	Array of hydrodynamic type of Liquid or Solid corresponding to each of the Phase labels. See description below.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

For HPM, the phase description is quite different of the phase information describe in the [Thermodynamic and Physical Properties v1.1] document. A correspondence table which associate a thermodynamic to a hydrodynamic phase description has been defined in the 2.3.2 section.

For HPM, the list of supported phase descriptions is defined in the following table:
	StateOfAggregation
	TypeInfo

	Vapor
	UNDEFINED

	Liquid
	Organic
Aqueous
Hydrate
UNDEFINED

	Solid
	PureSolid
SolidSolution
Hydrate
UNDEFINED

	Unknown
	UNDEFINED

	Interface Name
	ICapeHydroFlow

	Method Name
	SetSingleHydroProp

	Returns
	CapeError

Description
Set single-phase hydrodynamic property values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] phaseLabel
	CapeString
	Phase label for which the property is set. The phase label must be one of the strings used in the SetPresentPhases method of this interface.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites are not valid. The phase referenced has not been created using SetPresentPhases.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetSinglePhaseProp

	Returns
	CapeError

Description
Set single-phase thermodynamic property values for a mixture.

Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] phaseLabel
	CapeString
	Phase label for which the property is set. The phase label must be one of the strings used in the SetPresentPhases method of this interface.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites are not valid. The phase referenced has not been created using SetPresentPhases.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The basis is not defined in the set thermodynamic property function. We expect that thermodynamic values are set in the mass basis. The <Unit Operation> is in charge to ask thermodynamic properties in the correct basis before set to the HPM.
	Interface Name
	ICapeHydroFlow

	Method Name
	SetTwoHydroProp

	Returns
	CapeError

Description
Set two-phase hydrodynamic property values for a mixture.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] phaseLabel
	CapeArrayString
	Phase label for which the property is set. The phase label must be one of the strings used in the SetPresentPhases method of this interface.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites are not valid. The phase referenced has not been created using SetPresentPhases.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlow

	Method Name
	SetTwoPhaseProp

	Returns
	CapeError

Description
Set two-phase thermodynamic values for a mixture.

Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the property which values are set.

	[in] phaseLabels
	CapeArrayString
	Phase label for which the property is set. The phase label must be one of the strings used in the SetPresentPhases method of this interface.

	[in] values
	CapeArrayDouble
	Values to set for the property.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites are not valid. The phase referenced has not been created using SetPresentPhases.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The basis is not defined in the set thermodynamic property function. We expect that thermodynamic values are set in the mass basis. The <Unit Operation> is in charge to ask thermodynamic properties in the correct basis before set to the <HPM Package> .

3.6.2 ICapeHydroFlowRoutine
The following methods are exposed by this interface:

· CalcFlow

· CheckCalcFlowSpec

· GetFinalState

· SetInitState

	Interface Name
	ICapeHydroFlowRoutine

	Method Name
	CalcFlow

	Returns
	CapeError

Description
The Calculate method is used to compute the standard hydrodynamic properties: pressure drop, phase velocities and phase holdups.

Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. below for details.

	[in] flowRegime
	CapeString
	Specified flow regime identifier for calculation. May be UNDEFINED if no flow regime is specified for calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites for Flow Calculation are not valid. For example:

· The present phases in the mixture have not been send to the <HPM Package>.

· The geometry of the <Unit Operation> is not send to the <HPM Package>.

· Any other necessary property is not available.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeLicenceError – The operation can not be completed because the licence agreement is not respected.

ECapeSolvingError – The Flow Calculation could not be solved. For example if the solver has run out iterations, or has converged to a trivial solution.
ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The specification1 and specification2 arguments provide the information necessary to retrieve the values of specifications for flow calculation. The CheckCalculateFlowSpec can be used to check supported specifications. Each specification label contains a sequence of strings in the order defined in the following table:
	Hydrodynamic calculation
	specification1
	specification2
	Comments

	
	Us
	UNDEFINED
	with input phase superficial velocities

	
	Rk
	Um
	with input phase volume fractions and mixture velocity

	
	Rk
	Vm
	with input phase volume fractions and barycentric velocity

The list of the input supported flow regime attributes for calculation is defined in the following table:

	Regime for hydrodynamic calculation
	flowRegime
	Comments

	
	Separated
	The gas and liquid phase flow separately.

	
	Slug
	Gas bubbles flow separated by liquid slug.

	
	Bubble
	Small gas bubbles transported by liquid phase.

	
	UNDEFINED
	No impose flow regime in the flow calculation.

The complete flow regime definition is provided in section 5.4.

	Interface Name
	ICapeHydroFlowRoutine

	Method Name
	CheckCalcFlowSpec

	Returns
	CapeError

Description
Check if the <HPM Package> supports the specified type of calculation.

Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation.

	[in] flowRegime
	CapeString
	Specified flow regime identifier for calculation. May be UNDEFINED if no flow regime is specified for calculation.

	[out] isSupported
	CapeBoolean
	Set to True if the specifications are supported by the Package, False is not supported.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1, specification2 and flowRegime arguments is the same as for the CalcFlow method in the interface.
If a flowRegime is specified, the CheckCalcFlowSpec method can return a non supported method value. This means that the specified CalcFlow method can not be invoked within this specific context. Within an UNDEFINED flowRegime value, the same CalcFlow method can be valid.

	Interface Name
	ICapeHydroFlowRoutine

	Method Name
	GetFinalState

	Returns
	CapeError

Description
Get the anonymous vector resulting of the previous CalcFlow function.

Arguments

	Name
	Type
	Description

	[out] propvals
	CapeArrayVariant
	Anonymous vector containing the CalcFlow final state values.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidOPeration – To be used when this operation is not valid in the current context, for example if the CalcFlow function failed.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFlowRoutine

	Method Name
	SetInitState

	Returns
	CapeError

Description
Set an anonymous vector to the <HPM Package> to perform a CalcFlow initialization. If the vector is empty, default values initialization will be used.

Arguments

	Name
	Type
	Description

	[in] propvals
	CapeArrayVariant
	Anonymous vector containing the CalcFlow initial state values.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – To be used if the initialisation failed with the anonymous vector.
ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

3.6.3 ICapeHydroPhases

The following methods
are exposed by this interface:

· GetNumPhases

· GetPhaseInfo

	Interface Name
	ICapeHydroPhases

	Method Name
	GetNumPhases

	Returns
	CapeError

Description
Returns the number of supported phases.

Arguments

	Name
	Type
	Description

	[in] numberOfPhase
	CapeLong
	The number of Phases supported. Depending of the return value, the interface is considered as a all Phases or a restricted Phases HPM (see below).

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

A HPM can accept either a restricted number of phases either all phases depending of the presence of an internal mixing rules function or not.
If the return value is equal to zero, the HPM accept all thermodynamic; in other case, the HPM is restricted HPM. In that case, the accepted define phases can be identified using the GetPhaseInfo method.

	Interface Name
	ICapeHydroPhase

	Method Name
	GetPhaseInfo

	Returns
	CapeError

Description
Return the Phase description.
Arguments

	Name
	Type
	Description

	[in] numPhase
	CapeLong
	A Phase ID. The numPhase value must be in the range 0..GetNumPhases (see below)

	[out] stateOfAggregation
	CapeString
	The state of aggregation for the corresponding Phase ID.

	[out] typeInformation
	CapeString
	The type information if the state of aggregation value is "Liquid" or "Solid"

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeOutOfBounds – The numPhase value is not in the range [1,numberOfPhase].

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

numPhase must be in the range one to the value returned by the GetNumPhases methods.

In case of GetNumPhases return a null value, the method can be called with a numPhase zero value. The stateOfAggregation and typeInfo must be return with UNDEFINED.

In other case, the stateOfAggregation and typeInformation must return a value from the following table:

	StateOfAggregation
	TypeInformation

	Vapor
	UNDEFINED

	Liquid
	Organic
Aqueous
UNDEFINED

	Solid
	PureSolid
SolidSolution
Hydrate
UNDEFINED

	Unknown
	UNDEFINED

3.6.4 ICapeHydroPropertyRoutine
The following methods are exposed by this interface:

· CalcSingleHydroProp

· CalcTwoHydroProp

· CheckSingleHydroPropList

· CheckTwoHydroPropList

· GetGeometryPropList

· GetSingleHydroPropList

· GetSinglePhasePropList

· GetTwoPhaseProplist

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	CalcSingleHydroProp

	Returns
	CapeError

Description
Calculate single-phase flow properties delivered by the HPM after performing a Flow Calculation.

Arguments

	Name
	Type
	Description

	[in] props
	CapeArrayString
	The list of identifiers for the single-phase properties to be calculated. See sections 5.6.2 for the standard identifiers.

	[in] phaseLabel
	CapeString
	Phase label of the Phase for which the properties are to be calculated. The Phase label must be one of the label strings set in the SetPresentPhases on the ICapeHydroFlow interface.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeSolvingError – One of the property calculations has failed. The request of this property will return an UNDEFINED value.
ECapeLimitedImpl – At least one or more of the requested properties cannot be returned because the calculation (of the particular property) is not implemented.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example for an unrecognised value for the phaseLabel.
ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

If a client use multiple properties in a call and a ECapeLimitedImpl is returned, then the whole call should be considered to have failed. This implies that no value should be request because the call not respect the HPM validation.

If a ECapeInvalidArgument is returned, we consider not whole call should have failed. The client can request for properties values. For values which calculation failed, the <HPM Package> should returned an UNDEFINED value.

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	CalcTwoHydroProp

	Returns
	CapeError

Description
Calculate two-phase flow properties delivered by the <HPM Package> after performing a Flow Calculation.

Arguments

	Name
	Type
	Description

	[in] props
	CapeArrayString
	The list of identifiers for the two-phase properties to be calculated. See sections 5.6.3 for the standard identifiers.

	[in] phaseLabels
	CapeArrayString
	Phase labels of the Phases for which the properties are to be calculated. The Phase labels must be two of the label strings set in the SetPresentPhases on the ICapeHydroFlow interface.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeSolvingError – One of the property calculation has failed.

ECapeLimitedImpl – At least one or more of the requested properties cannot be returned because the calculation (of the particular property) is not implemented.

ECapeInvalidArgument – To be used when an invalid argument value is passed. It would be raised, for example for an unrecognised value for the phaseLabels.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

If a client use multiple properties in a call and a ECapeLimitedImpl is returned, then the whole call should be considered to have failed. This implies that no value should be request because the call not respect the HPM validation.
If a ECapeInvalidArgument is returned, we consider not whole call should have failed. The client can request for properties values. For values which calculation failed, the <HPM Package> should returned an UNDEFINED value.
	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	CheckSingleHydroPropList

	Returns
	CapeError

Description
Return the list of single-phase flow properties which can delivered after performing the specified Flow Calculation.

Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the single-phase property identifiers from hydro specification necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The property identifiers return by this method belong to the list defined in section 5.6.2.
If <HPM Package> not delivers additional properties, the returned array is empty.
	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	CheckTwoHydroPropList

	Returns
	CapeError

Description
Return the two-phase flow property which can delivered after performing the specified Flow Calculation.

Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the two-phase property identifiers from hydro specification necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The property identifiers return by this method belong to the list defined in section 5.6.3.
If <HPM Package> not delivers additional properties, the returned array is empty.

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	GetGeometryPropList

	Returns
	CapeError

Description
Return the list of the needed input geometry properties for performing the specified calculation.
Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the geometry property identifiers necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The geometry identifiers returned by this method belong to the list defined in section 5.3 of this document.

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	GetSingleHydroPropList

	Returns
	CapeError

Description
Return the list of single-hydrodynamic property for performing the specified calculation.
Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the single-property identifiers from hydro specification necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The hydro identifiers return by this method belong to the list defined in section 5.6.2 of this document.

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	GetSinglePhasePropList

	Returns
	CapeError

Description
Return the list of single-phase thermodynamic property for performing the specified calculation.
Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the single-phase property identifiers from thermo specification necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The thermo identifiers return by this method belong to the list defined in section 5.5.1 which is part of the "Thermodynamic and Physical Properties – Version 1.1" document.

	Interface Name
	ICapeHydroPropertyRoutine

	Method Name
	GetTwoPhasePropList

	Returns
	CapeError

Description
Return the list of two-phase thermodynamic property for performing the specified calculation.
Arguments

	Name
	Type
	Description

	[in] specification1
	CapeString
	First specification identifier for hydrodynamic calculation. See below for details.

	[in] specification2
	CapeString
	Second specification identifier for hydrodynamic calculation. See below for details.

	[out] props
	CapeArrayString
	The list of the two-phase property identifiers from thermo specification necessary for performing the calculation.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed. Il would be raised, for example, if a specification identifier does not belong to the list of recognised identifiers.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The meaning of the specification1 and specification2 arguments is the same as for the CalcFlow method in the ICapeHydroFlowRoutine interface.

The thermo identifiers return by this method belong to the list defined in section 5.5.2 which is part of the "Thermodynamic and Physical Properties – Version 1.1" document.

3.6.5 ICapeHydroFields

Layer and Field are used to characterize more accuracy flow configurations.
The following methods are described in this section:

· GetFieldInfo

· GetLayerInfo
· GetPresentFields

· GetPresentLayers

· GetPresentPhases

· GetSingleFieldProp

· GetSingleLayerProp

· GetSinglePhaseProp

· GetTwoLayerProp
	Interface Name
	ICapeHydroFields

	Method Name
	GetFieldInfo

	Returns
	CapeError

Description

Retrieves the field information for the defined layer.
Arguments

	Name
	Type
	Description

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method.

	[in] fieldLabel
	CapeString
	A (single) Field label. This must be one of the values return by the GetPresentFields method.

	[in] fieldAttribute
	CapeString
	One of the Field attribute identifiers from the table below.

	[out] value
	CapeString
	The value corresponding to the Field attribute identifier – see table below.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Field attribute identifier
	Supported values

	EmulsionState
	One of the following strings:

Yes
No
Unknown

	ContinuousPhase
	One of the phase label returned in the GetPresentPhases method for the current Field label.

	Interface Name
	ICapeHydroFields

	Method Name
	GetLayerInfo

	Returns
	CapeError

Description
Retrieves the layer information.
Arguments

	Name
	Type
	Description

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method.

	[in] layerAttribute
	CapeString
	One of the Layer attribute identifiers from the table below.

	[out] value
	CapeString
	The value corresponding to the Field attribute identifier – see table below.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Layer attribute identifier
	Supported values

	Pattern
	The main flow pattern associated with the Layer. This must be one of the following strings:

Continuous
Slug
Pocket
Unknown

	Pattern2
	Additional pattern for continuous Layer. This must be one of the following strings:

Annular
Stratified
Unknown

	DispersedState
	One of the following strings:

Yes
No
Unknown

	ContinuousField
	One of the Fields defined in the GetPresentFields method for the current Layer label

For slug flow regimes within a pipe element, "Pocket" term means the layer is in the stratified part of the flow whereas "Slug" term means the layer is within the liquid plug. For other flow regimes, layers are "Continuous" as the composition of the flow mixture is continuous within the pipe element.
	Interface Name
	ICapeHydroFields

	Method Name
	GetPresentFields

	Returns
	CapeError

Description
Retrieves the present fields labels in the define layer.
Arguments

	Name
	Type
	Description

	[in] layerLabel
	CapeString
	A Layer label. This must be one of the values returned by the GetPresentLayers method. If the Layer label is "Unknown" all the Field labels present in the current flow are returned.

	[out] fieldLabels
	CapeArrayString
	The Field labels associated to the Layer label define

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFields

	Method Name
	GetPresentLayers

	Returns
	CapeError

Description
Retrieves the present layers labels in the current flow.

Arguments

	Name
	Type
	Description

	[out] layerLabels
	CapeArrayString
	The list of Layer labels present in the flow

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFields

	Method Name
	GetPresentPhases

	Returns
	CapeError

Description
Retrieves the present phases labels in the defined field.
Arguments

	Name
	Type
	Description

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method

	[in] fieldLabel
	CapeString
	A (single) Field label. This must be one of the values return by the GetPresentFields method

	[out] phaseLabels
	CapeArrayString
	The list of the thermodynamic phases present in the Field.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

A same Phase label can be present in multiple Fields.
	Interface Name
	ICapeHydroFields

	Method Name
	GetSingleFieldProp

	Returns
	CapeError

Description
Retrieves single-field property value for a flow.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the Field property for which value is requested. This must be one of the single-field Property. The identifiers are listed in the section 5.6.3.

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method.

	[in] fieldLabel
	CapeString
	A (single) Field label. This must be one of the values return by the GetPresentFields method.

	[out] result
	CapeDouble
	Result value containing the Field property value in SI Units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFields

	Method Name
	GetSingleLayerProp

	Returns
	CapeError

Description
Retrieves single-layer property value for a flow.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the Layer property for which value is requested. This must be one of the single-layer Property. The identifiers are listed in the section 5.6.1.

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method

	[out] result
	CapeDouble
	Result value containing the Layer property value in SI Units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

	Interface Name
	ICapeHydroFields

	Method Name
	GetSinglePhaseProp

	Returns
	CapeError

Description
Retrieves single-phase in a field property value for a flow.

Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the Field property for which value is requested. This must be one of the single-field Property. The identifiers are listed in the section 5.6.3.

	[in] layerLabel
	CapeString
	A (single) Layer label. This must be one of the values return by the GetPresentLayers method.

	[in] fieldLabel
	CapeString
	A (single) Field label. This must be one of the values return by the GetPresentFields method.

	[in] phaseLabel
	CapeString
	A (single) Phase label. This must be one of the values return by the GetPresentLabels method.

	[out] result
	CapeDouble
	Result value containing the Field property value in SI Units.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

.
	Interface Name
	ICapeHydroFields

	Method Name
	GetTwoLayerProp

	Returns
	CapeError

Description
Retrieves interface layers property value for a flow.
Arguments

	Name
	Type
	Description

	[in] property
	CapeString
	The identifier of the Layer property for which value is requested. This must be one of the single-layer Property. The identifiers are listed in the section 5.6.2.

	[in] layerLabels
	CapeArrayString
	List of the Layer labels. The Layer labels must be two of the identifiers returned by the GetPresentLayers method

	[out] result
	CapeDouble
	Result value containing the interface Layer property value in SI Units. If the two Layers have no interface, the null value must be returned

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

3.6.6 ICapeHydroContext

This interface should be implemented by all Unit Operation component that need an ICapeHydroFlow interface in order to get the flowing properties. The following methods are described in this section:
· SetHPM

	Interface Name
	ICapeHydroContext

	Method Name
	SetHPM

	Returns
	CapeError

Description
Allows the client of a component (<Unit Operation>) that implements this interface to pass an ICapeHydroFlow interface to the component, so that it can access to the properties of a <HPM Package>.

Arguments

	Name
	Type
	Description

	[in] hpm
	CapeInterface
	The <HPM Package> interface

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

3.6.7 ICapeHydroPackageManager

The ICapeHydroPackageManager interface should only be implemented by a <HPM Package Manager> component. The interface is used to access all the <HPM Package> managed by such a component.

The following methods are described in this section:

· GetHPMPackageList

· GetHPMPackage
	Interface Name
	ICapeHydroPackageManager

	Method Name
	GetHPMPackageList

	Returns
	CapeError

Description
Retrieves the names of the <HPM Package> being managed by a <HPM Manager>.
Arguments

	Name
	Type
	Description

	[out] hpmPackages
	CapeArrayString
	The names of the managed <HPM Package>.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

If no packages are managed, UNDEFINED should be returned.
	Interface Name
	ICapeHydroPackageManager

	Method Name
	GetHPMPackage

	Returns
	CapeError

Description
Creates a new instance of a <HPM Package> with the configuration specified by the HPMName argument.

Arguments

	Name
	Type
	Description

	[in] HPMName
	CapeString
	The name of one of the <HPM Package> managed by the <HPM Package Manager>.

	[out] HPMPackage
	CapeInterface
	The ICapeHydroFlow interface of the named <HPM Package>.

Errors

ECapeNoImpl – The operation is "not" implemented even if this method can be called for reasons of compatibility with the standards. That is to say that the operation exists, but is not supported by the current implementation.

ECapeFailedInitialisation – This error should be returned if the <HPM Package> cannot be created for any reason.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are not suitable.
Notes

The <HPM Package Manager> is only a mechanism to create a <HPM Package>. After the <HPM Package> has been created, the <HPM Package Manager> can be destroyed, and this will not affect the normal behaviour of <HPM Packages>.
3.7 Scenarios

4. Interface specifications

4.1 Interface IID and registration under the appropriate categrory

From the reserved uuid number we propose for interfaces defined in the following hydro interface identifiers:

/**************************************

 Identification Interfaces

**************************************/

#define ICapeHydroContext_IID
678c09cf-7d66-11d2-a67d-00105a42887f

#define ICapeHydroPackageManager_IID
678c09d0-7d66-11d2-a67d-00105a42887f

#define ICapeHydroPhases_IID
678c09d1-7d66-11d2-a67d-00105a42887f

#define ICapeHydroFlowRoutine_IID
678c09d2-7d66-11d2-a67d-00105a42887f

#define ICapeHydroPropertyRoutine_IID
678c09d3-7d66-11d2-a67d-00105a42887f

#define ICapeHydroFields_IID
678c09d4-7d66-11d2-a67d-00105a42887f

#define ICapeHydroFlow_IID 678c09d5-7d66-11d2-a67d-00105a42887f

/**************************************

 Categories

**************************************/

// CAPE-OPEN Category

#define CapeOpenComponent_CATID 678c09a1-7d66-11d2-a67d-00105a42887f

#define CapeOpenHydroPackage_CATID 678c09d7-7d66-11d2-a67d-00105a42887f

For example in C++, the registration should be done by adding in rgs file the code below:

'Implemented Categories'

{

{678C09A1-7D66-11D2-A67D-00105A42887F}

{678C09D7-7D66-11D2-A67D-00105A42887F}

}

CapeDescription

{

val Name = s 'my component name'

val Description = s 'my component descritpion'

val CapeVersion = s 'my component version'

val Categories = s 'my component category'

val ComponentVersion = s 'my component CAPE-OPEN version'

val VendorURL = s 'my company URL'

val HelpURL = s 'my Help URL'

val About = s 'For any information please contact support....'

}
[image: image17.png]OLE/COM Obje

File Object View Help

B3 S ELE @M

Active Scripting Engine with Authoring
Active Scripting Engine with Encoding
Active Scripting Engine with Parsing
Automation Objects

Browsable Shell Extension
CAPE-OPEN Component

‘CAPE-OPEN Hydro Packages

‘CAPE-OPEN Thermo Equilibrium Server
‘CAPE-OPEN Thermo Property Package
‘CAPE-OPEN Thermo Routines
CAPE-OPEN Thermo System

Nogen MonHydro_IFP Class
AR {(§TBTETTS A3AG 4374 BDOT-ECICETAIALFS)

Regity [Implementation [Actvation | Launch Pemissions | Access Pemissions|

=
{BT8TETT5-A3A6-43F4-BDOL-BCLCETAZAIFO} = monHydro IFP Class.
TFP/Hydro server

CapeDescription [Categories] = IFP CAPE-OPEN

CapeDescription [ComponentVersion] = 100

CapeDescription [VendorURL] = hitp://www.fpen.fr

CapeDescription [HelpURL] = none.

CapeDescription [About] = For any information please contact support

Implemented Categories
{678C09A1-7D66-11D2-A67D-00105A42887F)
{678C09D7-7D66-11D2-A67D-00105A42887F)

4.2 COM IDL

4.2.1 Interface ICapeHydroContext : IDispatch
[

uuid(678c09cf-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroContext Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroContext : IDispatch

{

//Allows the client of a component (<Unit Operation>) that implements this interface to pass an

//ICapeHydroFlow interface to the component, so that it can access to the properties of a HPM.

[id(0)] HRESULT SetHPM([in] IDispatch* hpminterface);

};

4.2.2 Interface ICapeHydroPackageManager : IDispatch
[

uuid(678c09d0-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroPackageManager Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroPackageManager : IDispatch

{

//Retrieves the names of the HPM Packages being managed by a HPM Manager component.

[id(0)] HRESULT GetHPMPackageList([out] VARIANT* hpmPackages);

//Creates a new instance of a HPM Package with the configuration specified by the HPMName argument.

[id(1)] HRESULT GetHPMPackage([in] BSTR HPMName, [out]IDispatch**HPMPackage);

};
4.2.3 Interface ICapeHydroPhases : IDispatch
[

uuid(678c09d1-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroPhases Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroPhases : IDispatch

{

//Returns the number of supported phases.

[id(0)] HRESULT GetNumPhases([out] LONG* num);

//Return the Phase description

[id(1)] HRESULT GetPhaseInfo([in] LONG numPhase, [out]BSTR* stateOfAggregation, [out]BSTR* typeInfo);

};

4.2.4 Interface ICapeHydroFlowRoutine : IDispatch
[

uuid(678c09d2-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroFlowRoutine Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroFlowRoutine : IDispatch

{

//The Calculate method is used to compute the standard hydrodynamic properties: pressure drop, phase velocities and phase holdups.

[id(0)] HRESULT CalcFlow([in] BSTR specification1,[in] BSTR specification2,[in] BSTR flowregime);

//Check if the HPM Package support the specified type of calculation.

[id(1)] HRESULT CheckCalcFlowSpec([in] BSTR specification1,[in] BSTR specification2,[in] BSTR flowregime, [out]VARIANT_BOOL* isSupported);

//Get the anonymous vector resulting of the previous CalcFlow function.

[id(2)] HRESULT GetFinalState([out]VARIANT* propvals);

//Set an anonymous vector to the HPM to perform a CalcFlow initialization. If the vector is empty, default values initialization will be used.

[id(3)] HRESULT SetInitState([in] VARIANT propvals);

};

4.2.5 Interface ICapeHydroPropertyRoutine : IDispatch
[

uuid(678c09d3-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroPropertyRoutine Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroPropertyRoutine : IDispatch

{

//Calculate single-phase flow properties delivered by the HPM after performing a Flow Calculation.

[id(0)] HRESULT CalcSingleHydroProp([in] VARIANT props,[in] BSTR phaseLabel);

//Calculate two-phase flow properties delivered by the HPM after performing a Flow Calculation.

[id(1)] HRESULT CalcTwoHydroProp([in] VARIANT props,[in] VARIANT phaseLabels);

//Return the single-phase flow property which can delivered by the HPM after performing the specified Flow Calculation.

[id(2)] HRESULT CheckSingleHydroPropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

//Return the two-phase flow property which can delivered by the HPM after performing the specified Flow Calculation.

[id(3)] HRESULT CheckTwoHydroPropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

//Return the list of the needed input geometry properties for performing the specified calculation.

[id(4)] HRESULT GetGeometryPropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

// Return the list of single-hydrodynamic property for performing the specified calculation

[id(5)] HRESULT GetSingleHydroPropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

//Return the list of single-phase thermodynamic property for performing the specified calculation.

[id(6)] HRESULT GetSinglePhasePropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

//Return the list of two-phase thermodynamic property for performing the specified calculation.

[id(7)] HRESULT GetTwoPhasePropList([in] BSTR specification1,[in] BSTR specification2,[out] VARIANT *props);

};

4.2.6 Interface ICapeHydroFields : IDispatch
[

uuid(678c09d4-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroFields Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroFields : IDispatch

{

//

[id(0)] HRESULT GetFieldInfo([in] BSTR layerLabel,[in] BSTR fieldLabel,[in] BSTR fieldAttribute, [out]BSTR* value);

//

[id(1)] HRESULT GetLayerInfo([in] BSTR layerLabel,[in] BSTR fieldAttribute, [out]BSTR* value);

//Retrieves the present fields labels in the define layer.

[id(2)] HRESULT GetPresentFields([in] BSTR layerLabel,[out]VARIANT* fieldLabels);

//Retrieves the present layers labels in the current flow.

[id(3)] HRESULT GetPresentLayers([out]VARIANT* layerLabels);

//Retrieves the present phases labels in the define field.

[id(4)] HRESULT GetPresentPhases([in] BSTR layerLabel,[in] BSTR fieldLabel,[out]VARIANT* phaseLabels);

//Retrieves single-field property value for a flow.

[id(5)] HRESULT GetSingleFieldProp([in] BSTR pty,[in] BSTR layerLabel,[in] BSTR fieldLabel,[out]double* result);

//Retrieves single-layer property value for a flow.

[id(6)] HRESULT GetSingleLayerProp([in] BSTR pty,[in] BSTR layerLabel,[out]double* result);

//Retrieves single-phase in a field property value for a flow.

[id(7)] HRESULT GetSinglePhaseProp([in] BSTR pty,[in] BSTR layerLabel,[in] BSTR fieldLabel,[in] BSTR phaseLabel,[out]double* result);

//Retrieves interface layers property value for a flow.

[id(8)] HRESULT GetTwoLayerProp([in] BSTR pty,[in] VARIANT layerLabels,[out]double* result);

};

4.2.7 Interface ICapeHydroFlow : IDispatch
[

uuid(678c09d5-7d66-11d2-a67d-00105a42887f),

helpstring("ICapeHydroFlow Interface"),

dual,

pointer_default(unique)

]

interface ICapeHydroFlow : IDispatch

{

//Remove all stored property values

[id(0)] HRESULT ClearAllProps();

//Copies all the stored properties (which have been set using the ICapeHydroFlow::Set... methods) from the HPM to the current instance of the HPM.

[id(1)] HRESULT CopyFromHPM([in]IDispatch*hpmSource);

//Return main flow regime and qualifier evaluated after a hydrodynamic calculation.

[id(2)] HRESULT GetFlowRegime([out]BSTR*regime,[out]BSTR* qualifier);

//Retrieves flow values for a mixture.

[id(3)] HRESULT GetMixtureProp([in]BSTR pty,[out]VARIANT* values);

//Retrieves single-phase flow values for a mixture.

[id(4)] HRESULT GetSingleHydroProp([in]BSTR pty,[in]BSTR phaseLabel,[out]VARIANT* values);

//Retrieves two-phase flow values for a mixture.

[id(5)] HRESULT GetTwoHydroProp([in]BSTR pty,[in]VARIANT phaseLabel,[out]VARIANT* values);

//Set geometry values for a HPM.

[id(6)] HRESULT SetGeometryProp([in]BSTR pty,[in]VARIANT values);

//Set flow values for a mixture.

[id(7)] HRESULT SetMixtureProp([in]BSTR pty,[in]VARIANT values);

//Set thermodynamic values for the overall mixture.

[id(8)] HRESULT SetOverallProp([in]BSTR pty,[out]VARIANT *values);
//Set hydrodynamic present phases in the flow.

[id(9)] HRESULT SetPresentPhases([in]VARIANT phaseLabel,[in]VARIANT stateOfAggregation,[in]VARIANT typeInfo);

//Set single-phase hydrodynamic property values for a mixture.

[id(10)] HRESULT SetSingleHydroProp([in]BSTR pty,[in]BSTR phaseLabel,[in]VARIANT values);

//Set single-phase thermodynamic property values for a mixture.

[id(11)] HRESULT SetSinglePhaseProp([in]BSTR pty,[in]BSTR phaseLabel,[in]VARIANT values);

//Retrieves two-phase hydrodynamic property values for a mixture.

[id(12)] HRESULT SetTwoHydroProp([in]BSTR pty,[in]VARIANT phaseLabel,[in]VARIANT values);

//Retrieves two-phase thermodynamic values for a mixture.
[id(14)] HRESULT SetTwoPhaseProp([in]BSTR pty,[in]VARIANT phaseLabel,[in]VARIANT values);

};
5. Notes on the interface specifications
5.1 Convention Note on UNDEFINED

Throughout the document UNDEFINED refers to a NULL BSTR for string arguments. See below how to implement these values in C++ and in VB.
	Type of Data
	Declaration and Usage

	BSTR
	In C++

Acceptable

	
	
BSTR strArg = NULL;

	
	
Not Acceptable

	
	
BSTR str = ::SysAllocString(L“”);

	
	In VB

Acceptable

	
	
Dim strArg as String

strArg = vbNullString

	
	
Not Acceptable

	
	
Dim strArg as String

strArg = “”

5.2 Correspondance thermodynamic phase property – hydrodynamic qualifier

	Thermodynamic
	Hydrodynamic

	StateOfAggregation
	
	
	

	Vapor
	
	Vapor
	

	StateOfAggregation
	KeyCompoundId
	
	Type (OfLiquid)

	Liquid
	UNDEFINED
	Liquid
	Organic

	
	Water
	
	Aqueous

	
	
	
	UNDEFINED

	StateOfAggregration
	TypeOfSolid
	
	Type (OfSolid)

	Solid
	PureSolid
	Solid
	PureSolid

	
	SolidSolution
	
	SolidSolution

	
	HydrateI
	
	Hydrate

	
	HydrateII
	
	Hydrate

	
	HydrateH
	
	Hydrate

	
	
	
	UNDEFINED

	Unknown
	
	Unknown
	

5.3 Geometry identifiers

	Identifier
	Meaning
	units

	diameter
	pipe diameter
	m

	inclination
	pipe inclination with horizontal
	deg

	roughness
	absolute pipe wall roughness
	m

5.4 Flow regime Identifiers

The flow regime is described in a finite number of identifiers.

	Identifier
	Meaning

	Homogeneous
	The flow regime is defined by a single or a two liquid phase,.

	Separated
	The gas and the liquid flow separately.

	Slug
	Long bubbles flow separated by liquid slugs. These slugs can contain small bubbles.

	Bubble
	The gas phase is transported by the liquid in the form of small bubbles.

	UNDEFINED
	Not impose flow regime at the beginning calculation – Calculation error

	Flow regime: Identifier
	Flow regime: Qualifier
	Meaning

	Homogeneous
	SinglePhase
	A single phase flow

	
	TwoPhase
	A two liquid (organic and aqueous) phase flow

	
	Unknown
	

	Separated
	StratifiedSmooth
	A linear gas-liquid interface can be observed.

	
	StratfiedWavy
	Some waves appears in the gas-liquid interface.

	
	Annular
	The liquid phase forms a continuous film on the wall and the gas flow at the centre.

	
	Unknown
	

	Slug
	
	

	Bubble
	
	

5.5 Physical Property identifiers

Physical property identifiers are part of the non-constant single or two-phase mixture properties described in the CAPE-OPEN Open Interface Specifications – Thermodynamics and Physical Properties Version 1.1.

5.5.1 Single-phase properties

	Identifier
	Meaning
	units

	density
	Density
	mol/m3

	heatCapacityCp
	Heat capacity at constant pressure (Cp)
	J/K

	thermalConductivity
	Thermal conductivity
	W/(m.K)

	viscosity
	Viscosity
	Pa.S

5.5.2 Two-phase properties
	Identifier
	Meaning
	units

	surfaceTension
	Interfacial tension for a pair of phases
	N/m

5.6 Hydrodynamic Flow Properties

5.6.1 Mixture properties
	Identifier
	Meaning
	units

	pressureDropAcceleration
	Acceleration pressure drop
	Pa/m

	pressureDropFrictional
	Frictional pressure drop
	Pa/m

	pressureDropGravity
	Gravity pressure drop
	Pa/m

	pressureDropTotal
	Pressure drop (Acceleration + Frictional + Gravity)
	Pa/m

	waterCut
	Percentage of water in the liquid phase fraction. This property is available for emulsion feature.
	-

5.6.2 Single Phase properties
	Identifier
	Meaning
	units

	absoluteVelocity
	Absolute velocity
	m/s

	effectiveViscosity
	Effective viscosity including water/oil/solid dispersion effects
	Pa.s

	superficialVelocity
	Superficial velocity
	m/s

	volumeFraction
	Volume fraction (hold-up)
	-

	wallShearStress
	Mean shear stress for a phase and the wall
	Pa

5.6.3 Two-phase properties
	Identifier
	Meaning
	units

	shearStress
	Shear stress for a pair of phases
	Pa

5.7 Hydrodynamic Layer and Field properties

5.7.1 Layer pattern identifiers

	Identifier
	Meaning

	Continuous
	For Homogeneous, Separated or Bubble flow regimes, a layer is describe as a Continuous layer.

	Slug
	For Slug flow regime, a layer is a Slug if the gas bubble is not present in the layer area.

	Pocket
	For Slug flow regime, a layer is a Pocket if the gas bubble is present in the layer area.

	UNDEFINED
	If the HPM not defines the layers patterns.

5.7.2 Single-layer properties

	Identifier
	Meaning
	units

	diameter
	Hydraulic diameter of the layer.
	m

	lengthFraction
	Layer length fraction.
	-

	thickness
	Thickness for stratified or annulus layer.
	m

	volumeFraction
	Layer volume fraction in the flow. The sum of layer volume fractions must be equal to 1.
	-

	wallShearStress
	Mean shear stress for a layer and the wall.
	Pa

	waveFrequency
	Wave frequency for a stratified layer.
	

	waveHeight
	Wave height for a stratified layer.
	m

	wetPerimeter
	Perimeter in contact between the wall and the layer.
	m

5.7.3 Two-layer properties

	Identifier
	Meaning
	units

	interfacePerimeter
	Perimeter in contact for a pair of Layers.
	m

	interfaceShearStress
	Mean shear stress between two layers
	Pa

5.7.4 Single-field properties

	Identifier
	Meaning
	units

	absoluteVelocity
	Absolute velocity
	m/s

	effectiveViscosity
	Effective viscosity
	Pa.s

	superficialVelocity
	Superficial velocity
	m/s

	volumeFraction
	Field volume fraction in the Layer. In a layer, the sum of the fields volume fractions must be equal to 1.
	-

5.7.5 Phase properties

	Identifier
	Meaning
	units

	volumeFraction
	Phase volume fraction in the Field. In a field, the sum of the phases volume fractions must be equal to 1.
	-

6. Prototype implementation

6.1 Example of flow calculation with phase mixing rule done by <Unit Operation>
...

// After thermodynamic flash calculation
// 4 phaseLabels defined: {"oil", "gas", "water", "hydrate"}

// and phases properties
//
- US superficial velocity

//
- RHO density

//
- VF volume fraction
...
// Phases mixing rule to: Vapor, Liquid, Solid-Hydrate

CapeArrayString hydroLabels(3) = {"gas", "liquid", "solid"};
for (i=0 ; i<numberOfPresentPhases; ++i)
{
thermoMO.GetPhaseInfo(phaseLabels[i], "StateOfAggregation", state);

if (state == "Vapor")
{

hydroUS["gas"] = thermoUS[phaseLabels[i]];

hydroRHO["gas"] = thermoRHO[phaseLabels[i]] * thermoUS[phaseLabels[i]];

...

} else if (state == "Liquid") {

hydroUS["liquid"] += thermoUS[phaseLabels[i]];

hydroRHO["liquid"] += thermoRHO[phaseLabels[i]] * thermoUS[phaseLabels[i]];

...

} else if (state == "Solid") {

thermoMO.GetPhaseInfo(phaselabel[i], "TypeOfSolid", type);

if (type == "HydrateI" || type == "HydrateII" || ...) {

hydroUS["solid"] += thermoUS[phaseLabels[i]];

hydroRHO["solid"] += thermoRHO[phaseLabels[i]] * thermoUS[phaseLabels[i]];

...

} else {

throw exception;

}

}

}

hydroRHO["liquid"] /= hydroUS["liquid"];

...

// Set the thermodynamic properties to the HPM
hydroHPM.SetPresentPhases(hydroLabels);

hydroHPM.SetPhaseQualifier("gas", "Vapor", "UNDEFINED");

hydroHPM.SetPhaseQualifier("liquid, "Liquid", "UNDEFINED");

hydroHPM.SetPhaseQualifier("solid", "Solid", "Hydrate");

hydroHPM.SetSinglePhaseProp("Density", "gas", hydroRHO["gas"]);

hydroHPM.SetSinglePhaseProp("SuperficialVelocity", "gas", hydroUS["gas"]);

...

// Flow properties calculation

hydroHPM.CalcFlow("Us", "UNDEFINED");

// Get the standard flow properties
hydroHPM.GetSinglePhaseProp("VolumeFraction", "gas", hydroVF["gas"]);

hydroHPM.GetSinglePhaseProp("VolumeFraction", "liquid", hydroVF["liquid"]);

hydroHPM.GetSinglePhaseProp("VolumeFraction", "hydrate", hydroVF["hydrate"]);
// Set the flow properties to corresponding phases

thermoVF["gas"] = hydroVK["gas"];
thermoVF["oil"] = hydroVK["liquid"] * thermoUS["oil"] / hydroUS["liquid"];

thermoVF["water"] = hydroVK["liquid"] * thermoUS["water"] / hydroUS["liquid"];

thermoVF["hydrate"] = hydroVK["solid"];

6.2 Example of flow calculation with phase mixing rule done internaly in HPM
...

// After thermodynamic flash calculation

// 4 phaseLabels define: {"oil", "gas", "water", "hydrate"}

// and phases properties
//
- US superficial velocity

//
- RHO density

//
- VF volume fraction
...

// Set the phases qualifiers to the Flowing Object
HPM.SetPresentPhases(phaseLabels);

for (i=0 ; i<numberOfPresentPhases; ++i)
{

thermoMO.GetPhaseInfo(phaseLabels[i], "StateOfAggregation", state);
if (state == "Vapor")
{

mainQualifier = "Vapor";

subQualifier = "UNDEFINED";

} else if (state == "Liquid") {

thermoMO.GetPhaseInfo(phaseLabels[i], "KeyCompoundId", type);

if (type == "Water")
{

mainQualifier = "Liquid";

subQualifier = "Water";

} else {

mainQualifier = "Liquid";

subQualifier = "Organic";

}

} else if (state == "Solid") {

thermoMO.GetPhaseInfo(phaseLabels[i], "TypeOfSolid", type);

if (type == "HydrateI" || type == "HydrateII" || ...)
{

mainQualifier = "Solid";

subQualifier = "Hydrate";
} else {

...
}
}

hydroHPM.SetPhaseQualifier(phaselabel[i], mainQualifier, subQualifier)

}

// Set the thermodynamic properties to the Flowing Object
for (i=0 ; i<numberOfPresentPhases; ++i)
{

phase = phaseLabels[i]

hydroHPM.SetSinglePhaseProp("Density", phase, thermoRHO[phase]);

hydroHPM.SetSinglePhaseProp("SuperficialVelocity", phase, hydroUS[phase]);

...

}

// Flow properties calculation

hydroHPM.CalcFlow("Us", "UNDEFINED");

// Get the flow properties
for (i=0 ; i<numberOfPresentPhases; ++i)
{

hydroHPM.GetSinglePhaseProp("VolumeFraction", phaseLabels[i], thermoVF[phaseLabels[i]]);

...

}
6.3 Example of field retrieve property

// Flow properties calculation
...

hydroHPM.CalcFlow("Us", "UNDEFINED");
...

// Ask for layers and fields present in the flow and some properties

CapeArrayField presentLayers;
hydroHPM.GetPresentLayers(presentLayers);

int numPresentlayers = presentLayers.dim();

for (int i=0; i<numPresentLayers, ++i)

{

CapeArrayString presentFields;

hydroHPM.getPresentFields(presentLayers[i], presentFields);
double layerLengthFraction, layerVolumeFraction;

hydroHPM.getSingleLayerProp("lengthFraction", presentLayers[i], layerLengthFraction);

hydroHPM.getSingleLayerProp("volumeFraction", presentLayers[i], layerVolumeFraction);

int numFields = presentFields.dim();

for (int j=0; j<numFields, ++j)

{

CapeArrayString presentPhases;

hydroHPM.getPresentPhases(presentLayers[i], presentFields[j], presentPhases);

// Ask for the first hydrodynamic phase informations

CapeString stateOfAggregation, typeInfo;

hydroHPM.getPhaseInfo(presentPhases[0], stateOfAggregation, typeInfo);
double fieldAbsoluteVelocity, fieldVolumeFraction;

hydroHPM.getSingleFieldProp("absoluteVelocity", presentLayers[i], presentFields[j],

fieldAbsoluteVelocity);
hydroHPM.getSingleFieldProp("volumeFraction", presentLayers[i], presentFields[j],

fieldVolumeFraction);

}

}

7. Specific glossary terms

Layer characterizes a flow entity which defines a continuous area in term of composition and properties. A layer is composed by fields. The characterization of the layer and the presence of the layers in the flow are the responsibility of the hydrodynamic module.
· Layer property: composition in term of fields, layer pattern, wall shear stress, ...

· Two layer property: shear stress between present layers, heat exchange coefficient between layers, ...
Field characterizes a flow entity where present phases flow at the same average velocity. A field can be constituted by a mixture of thermodynamic phases (for instance an emulsion: water dispersed in oil), or a pure phase (for instance oil droplets or stratified water phase). The characterization of the field and the presence of these fields in a layer are the responsibility of the hydrodynamic module.

· Field property: composition in term of phase, average velocity, ...
Flow regime characterizes the state of the combination of the present layers.
· Flow parameters are set of properties: phase superficial velocities, phase fractions in cross section and the mixture velocity, phase fractions in cross section and barycentric velocity.
· Flow property for example: composition in term of field content in a cross section, shear stress between present fields, overall pressure drop, hydrostatic head, friction, acceleration pressure drop, heat exchange coefficient between fields and overall heat exchange coefficient with the wall...
Geometry: diameter, slope roughness, radius of curvature, outlet bend slope of the unit operation Pipe.
Hydrodynamic Point Model (HPM) is a model that computes pressure drop, phase holdups, phase velocities, flow regime and possibly other flow variables for a cross section at one point along a pipeline assuming fully developed flow. The "point" – part of the name hence refers to the direction along the pipeline, i.e. normal to the cross section. Current commercial HPMs deliver average values for the cross section or for pipe unit element in case of intermittent flows, but future versions may in addition compute cross sectional distributions of some variables, for instance velocity profiles and concentration profiles.
Hydrodynamic properties

· Absolute velocity

· Superficial velocity correspond to the inlet flow rate of a thermodynamic phase.
Thermodynamic phase is a homogeneous phase which name is qualified by the Physical Property Package.

· Thermodynamic phase property is a non-constant property depend on the state of the thermodynamic phase. A property can depend on the state of one phase, e.g. density, viscosity, enthalpy... , or two phase, e.g. surface tension.

8. Bibliography

8.1 Process simulation references

· [1] Gainville M., Roux P., Pons M., Ricordeau A.and Paen D., Integrated Flow Modeling Platform Using CAPE-OPEN Standard, SPE 110864, 2007.
· [2] Paen D., Roux P., Ricordeau A., Vacher A and Gainville M, Upstream simulation lifecycle, ESCAPE 18, 2008.
· [3] Bendiksen K., MalnesD., Moe R. and Nuland S., The Dynamic Two-Fluid Model OLGA: Theory and Application, SPE Production Engineering, May 1991, pp. 171-180.
· [4] Henriot V., Duret E., Heintzé E. and Courbit A., Multiphase Production Control: Application to Slug Flow, Oil&Gas Science and Technology – Rev. IFP Energies Nouvelles, Vol. 57, No. 1, pp.87-98.
8.2 Computing references

· [5] Banks P.S., K Irons and M R Woodman, Interoperability of Process Simulation Software, Oil&Gas Journal, 2005.
8.3 General references

· [6] Conceptual Design Document (CDD2) for CAPE-OPEN Project, CAPE-OPEN, 2000.

· [7] CAPE-OPEN Open Interface Specifications, Thermodynamic and Physical Properties Version 1.1, CAPE-OPEN, 2003.

· [8] CAPE-OPEN Open Interface Specifications, Unit Operations, CAPE-OPEN, 1999.

· [9] Open Interface Specification: Utilities Common Interface, CAPE-OPEN, 2003.
9. Appendices

Layer and Field identifiers are defined in [3.6.5 ICapeHydroFields].

One gives some examples of flow patterns (2-phases and 3-phases) defined in term of layers and fields. For a better understanding of the ICapeHydroFields usage, one presents the way to obtain layer and field properties within the package interfaces for the 2-phases flow example.
In the schemes, thermodynamic phases are defined with the corresponding table: white-gas, blue-liquid, yellow-water.
9.1 Example of 2-phase flow patterns defined with Layers and Fields
	[image: image1.emf]

	
Present phases

	
	water
gas

	
Layers
	
Fields in layer

	Label
layer_1
Volume fraction

value
	

	Field labels

field_1
Stratified | Annular

Annular
Slug | Pocket | Continuous
Continuous

Dispersed

No
Continuous field

field_1
Length Fraction

1
Wet perimeter

Pi . Diameter
	Label field_1
Volume fraction

value

	
	Phase labels

water
Phase volume fraction

value [1]
Absolute Velocity

value
Emulsion

No
Continuous phase

water

	Label
layer_2
Volume fraction

value
	

	Field labels

field_2
Stratified | Annular

Annular
Slug | Pocket | Continuous
Continuous
Dispersed

No
Continuous field

field_2
Length Fraction

1
Wet perimeter

0
	Label field_2
Volume fraction

value

	
	Phase labels

gas
Phase volume fraction

value [1]
Absolute Velocity

value
Emulsion

No
Continuous phase

gas

	Labels
layer_1 & layer_2
Interface perimeter

value
	

Figure 8 Annular flow regime defined by layers and fields
// In functions, one use the following conventions:
// input values: Standard
// returned values: Italic
// asked property or attribute: "Name"
// Ask for present layers

hydroHPM.GetPresentLayers(layerLabels);
// Ask for first layer properties & attributes
hydroHPM.GetSingleLayerProp("VolumeFraction", layerLabels[0], layerVF);

hydroHPM.GetSingleLayerProp("LengthFraction", layerLabels[0], lengthFraction);

hydroHPM.GetSingleLayerProp("WetPerimeter", layerLabels[0], wetPerimeter);

hydroHPM.GetLayerInfo(layerLabels[0], "Pattern", layerPattern);

hydroHPM.GetLayerInfo(layerLabels[0], "Pattern2", isStratified);
hydroHPM.GetLayerInfo(layerLabels[0], "DispersedState", isDispersed);

// Ask for layers interface properties

hydroHPM.GetTwoLayerProp("InterfacePerimeter", layerLabels[0:1], perimeter);

// Ask for present fields in first layer

hydroHPM.getPresentFields(layerLabels[0], fieldLabels);

hydroHPM.getLayerInfo(layerLabels[0], "ContinuousField", continuousFieldLabel);

// Ask for first field - first layer properties & attributes

hydroHPM.GetSingleFieldProp("VolumeFraction", layerLabels[0], fieldLabels[0], fieldVF);

hydroHPM.GetSingleFieldProp("AbsoluteVelocity", layerLabels[0], fieldLabels[0], fieldV);

hydroHPM.GetFieldInfo(layerLabels[0],], fieldLabels[0], "EmulsionState", isEmulsion);

// Ask for present phase in first field - first layer

hydroHPM.GetPresentPhases(layerLabels[0],], fieldLabels[0], phaseLabels);

hydroHPM.GetFieldInfo(layerLabels[0],], fieldLabels[0], "ContinuousPhase", continuous);

// Ask for first phase - first field - first layer properties

hydroHPM.GetSinglePhaseProp("VolumeFraction", layerLabels[0], fieldLabels[0], phaseLabels(0], phaseVF);

9.2 Examples of 3-phase flow patterns defined with Layers and Fields
	[image: image18.wmf]

layer2

layer1

layer1

layer2

layer1

layer1

	
Present phases

	
	water
liquid
gas

	
Layers
	
Fields in layer

	Label
layer_1
Volume fraction

value
	

	Field labels

field_1 – field_2
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Pocket

Dispersed

Yes
Continuous field

field_1
Length Fraction

value
Interface perimeters

values [2]
Wet perimeter

value
	Label field_1
Volume fraction

value

	
	Phase labels

water
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

water

	
	Label field_2
Volume fraction

value

	
	Phase labels

liquid
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

liquid

	Label
layer_2
Volume fraction

value
	

	Field labels

field_3
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Pocket

Dispersed

No
Continuous field

field_3
Length Fraction

1
Interface perimeters

values [2]
Wet perimeter

value
	Label field_3
Volume fraction

value

	
	Phase labels

gas
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

gas

	Label
layer_3
Volume fraction

value
	

	Field labels

field_4 – field_5
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Slug
Dispersed

No
Continuous field

field_4
Length Fraction

1
Interface perimeters

values [2]
Wet perimeter

value
	Label field_4
Volume fraction

value

	
	Phase labels

water
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

water

	
	Label field_5
Volume fraction

value

	
	Phase labels

liquid
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

liquid

	Labels
layer_1 & layer_2
Interface perimeter

value
Labels
layer_1 & layer_3
Interface perimeter

0.

Labels
layer_2 & layer_3
Interface perimeter

0.
	

Figure 9 Slug flow regime defined by layers and fields
	[image: image19.wmf]layer1

layer2

layer3

layer5

layer4

layer1

layer2

layer3

layer5

layer4

	
Present phases

	
	water
liquid
gas

	
Layers
	
Fields in layer

	Label
layer_1
Volume fraction

value
	

	Field labels

field_1
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Pocket

Dispersed

No
Continuous field

field_1
Length Fraction

value
Interface perimeters

values [1]
Wet perimeter

value
	Label field_1
Volume fraction

value

	
	Phase labels

water
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

water

	Label
layer_2
Volume fraction

value
	

	Field labels

field_2
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Pocket

Dispersed

No
Continuous field

field_2
Length Fraction

value
Interface perimeters

values [2]
Wet perimeter

0
	Label field_2
Volume fraction

value

	
	Phase labels

liquid
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

liquid

	Label
layer_3
Volume fraction

value
	

	Field labels

field_3
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Pocket

Dispersed

No
Continuous field

field_3
Length Fraction

value
Interface perimeters

values [2]
Wet perimeter

value
	Label field_3
Volume fraction

value

	
	Phase labels

gas
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

gas

	Label
layer_4
Volume fraction

value
	

	Field labels

field_4
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Slug

Dispersed

No
Continuous field

field_4
Length Fraction

value
Interface perimeters

values [1]
Wet perimeter

value
	Label field_4
Volume fraction

value

	
	Phase labels

water
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

water

	Label
layer_5
Volume fraction

value
	

	Field labels

field_5 – field_6
Stratified | Annular

Stratified
Slug | Pocket | Continuous
Slug

Dispersed

No
Continuous field

field_5
Length Fraction

value
Interface perimeters

values [1]
Wet perimeter

value
	Label field_5
Volume fraction

value

	
	Phase labels

liquid
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

liquid

	
	Label field_6
Volume fraction

value

	
	Phase labels

gas
Phase volume fraction

value [1]
Velocity

value
Emulsion

No
Continuous phase

gas

	Labels
layer_1 & layer_2
Interface perimeter

value
Labels
layer_1 & layer_3
Interface perimeter

0.

Labels
layer_2 & layer_3
Interface perimeter

value
...
	

Figure 10 Slug flow regime with a stratified bed defined by layers and fields

� The configuration user interface may be a stand-alone application which is part of the <HPM Package> (ref. for thermodynamics package: CAPE-OPEN Conceptual Design Document, 8.4.1.3)

� The "Edit" and "GetParameters" methods in the ICapeUtilities interface [9]. The "GetParameters" method returns an ICapeCollection interface. This interface contain a collection of parameters which may be modified by the <End User>.

� The layers and fields labels define more accurately a flow configuration than flow regime identifier. The used labels are unique and constant along the flow calculations.

� "GetParameters" method is defined in the ICapeUtilies interface[9].

21

_1115126184.doc
[image: image1.jpg]e
a5

COrLaN

_1115126371.doc

www.colan.org

