
©CO-LaN 2001-2014 1

CAPE-OPEN
Expanding Process Modelling Capability

through Software Interoperability Standards

Errata and Clarifications

Identification Common Interface v1.0

www.colan.org

©CO-LaN 2001-2014 2

ARCHIVAL INFORMATION

Filename Identification_Errata_and_Correction_1.0_1.012.docx

Authors CO-LaN consortium

Status Public

Date December 2014

Version version 1.0.014

Number of pages 11

Versioning Version 1.0.000 edited by Bill Barrett (USEPA)

 Version 1.0.012 approved by M&T SIG June 6, 2014

 Version 1.01.014 approved by M&T SIG Nov 5, 2014

Additional material

Web location

Implementation

specifications version

1.0

Comments

©CO-LaN 2001-2014 3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any

kind. CO-LaN and its partners and suppliers disclaim any warranties including without limitation an

implied warrant or fitness for a particular purpose. The entire risk arising out of the use or performance

of any sample code --- or any other software described by the CAPE-OPEN Laboratories Network ---

remains with you.

Copyright © 2001-2014 CO-LaN. All rights are reserved unless specifically stated otherwise.

CO-LaN is a not for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of

a trademark claim, the designations have been printed in caps or initial caps.

Microsoft, and the Component Object Model (COM) are registered trademarks of Microsoft

Corporation.

©CO-LaN 2001-2014 4

SUMMARY

This document describes clarification to, and new requirements for the implementation of the CAPE-

OPEN Identification Common Interface specification version 1.0. In particular, this document

addresses the requirement of all CAPE-OPEN objects to implement the ICapeIdentification interface,

places the burden of ComponentName uniqueness for Collection members on the Collection owner,

and provides guidance on the minimum length of the ComponentName, as well as character sets and

use of white space in both the ComponentName and ComponentDescription.

©CO-LaN 2001-2014 5

ACKNOWLEDGEMENTS

Many individuals and their organizations have contributed to this document.

©CO-LaN 2001-2014 6

CONTENTS

1. INTRODUCTION .. 7

2. AUDIENCE ... 7

3. CLARIFICATIONS ... 7

4. BIBLIOGRAPHY .. 10

 7

1. Introduction

This document lists errata and clarifications that have been raised and added after the formal approval

process for the CAPE-OPEN Identification Common Interface specification version 1.0.

The intent is to clarify the interface specification where needed and to pinpoint what is missing in the

specification document.

2. Audience

This document is intended primarily for software developers who want to build CAPE-OPEN PMEs.

It is also intended for the developers of other software components, such as Unit Operations and

Reaction Packages, which make use of these interfaces.

This document is not intended for end-users of CAPE-OPEN software components or process

simulation software.

3. Clarifications

Context 1: The ICapeIdentification interface provides a means to identify each CAPE-OPEN

object. Each CAPE-OPEN object is required to implement ICapeIdentification

interface, and provide a value for the ICapeIdentification.ComponentName property

for the CAPE-OPEN object.

Issue 1: The ICapeIdentification.ComponentName property is used by the Collection

Common Interface to identify and return objects (such as Parameters or Ports) from

these Collections. There is no mechanism within either the Collection Common

Interface specification or the Identification Common Interface specification to

ensure that each object within a Collection has a unique

ICapeIdentification.ComponentName property.

Requirement 1: The Collection owner will ensure that the ICapeIdentification.ComponentName

property of each object within the Collection is unique. This includes Unit Operation

and Material Object Collection owned by the Process Modeling Environment

(PME), as well as the Port Collection of a unit operation and the Parameter

Collection of primary PMCs access through the ICapeUtilities interface. The

requirement for the Collection owner to ensure uniqueness of item names is also

conveyed in an Errata and Clarifications document for the Collection Common

Interface Specification.

Context 2: There is a need to have an identification of various objects that implement CAPE-

OPEN interfaces. For example, material and simulation context objects are not

explicitly required to implement ICapeIdentification, although many PMEs do

provide implementations. Future use cases, such as the proposed Flowsheet

Monitoring interface, will require these objects to implement ICapeIdentification.

Issue 2: The ICapeIdentification interface is not available on all objects that need to be

identified by name.

Discussion 2: The specifications provide inconsistent guidance on which objects must support the

ICapeIdentification interface. The level of support has been discussed elsewhere,

which indicated that both ComponentName and ComponentDescription are

 8

supported, and minimum requirements for a name or description. In particular,

Section 9.2.2 of the M&T Guidelines indicates that all PMC objects implement

ICapeIdentification. There was no requirement placed on PME objects, including

Material Objects to implement ICapeIdentification. The ability to obtain the name of

a PME object was deemed useful, especially for flowsheet monitoring.

Requirement 2: All objects that support CAPE-OPEN interfaces must expose the

ICapeIdentification interface. This includes secondary objects, such as Port

Collection and Parameter Collection, as well as PME-owned objects such as

individual Material Objects and the Simulation Context.

Issue 3: There are no guidelines for the characters that can be used in the

ICapeIdentification.ComponentName and ICapeIdentification.

ComponentDescription properties.

Discussion 3: The ICapeIdentification.ComponentName and ICapeIdentification.

ComponentDescription properties are CapeString-valued. In general, the character

set and encoding will follow the rules established for the middle-ware platform used

for the specific CAPE-OPEN implementation.

In the current Microsoft Component Object Model (COM)-based CAPE-OPEN

implementation, the CapeString data type used for ComponentName and

ComponentDescription properties is defined as a BASIC String, or BSTR. The

BSTR is a composite structure that consists of a four-byte integer length prefix, the

UTF-16 encoded Unicode string data, and a two-byte, wide character null terminator

(http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=

vs.85).aspx). Internally, Microsoft Windows applications use the UTF-16

implementation of Unicode (http://msdn.microsoft.com/en-us/library/windows/

desktop/dd317743 (v=vs.85).aspx). Any character that can be entered by a user and

encoded by the application into the UTF-16 encoded version of Unicode would be a

valid character for use as part of the value of the ICapeIdentification.

ComponentName and ICapeIdentification.ComponentDescription properties in

COM-based CAPE-OPEN.

A BSTR can contain null characters, either an 8-bit null char/byte or a 16-bit UTF-

16 encoded Unicode zero-valued wide character. However, in the context of CAPE-

OPEN, embedding null characters into the string is disallowed; the BSTR data is not

to be interpreted as a generic information container (which can even have an odd

byte count) as in COM, but rather as a null-terminated character string.

Issue 4: No minimum or maximum length is specified for the

ICapeIdentification.ComponentName property.

Discussion 4: Any limit on the maximum length of the ICapeIdentification.ComponentName

property string imposed by CO-Lan would be arbitrary. Middleware platforms may

have limits imposed on the length of a string that can be transported in a data

structure, which may place an upper bound on the length of the string. In the case of

COM, the specification of the CapeString data type as a BSTR data type contains a

string length expressed as a four-byte (32 bit) integer, which provides the upper

bound for the length of the string as greater than 4 billion letters.

PMEs may limit the length of a ComponentName that can be assigned to a PMC for

practical reasons associated with display of the name. This limitation will likely also

restrict the length of a ComponentName that can be set through the PME as well.

As the ICapeIdentification.ComponentName property is to be unique within the

collection containing the PMC, the string must contain at least one character.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317743(v=vs.85).aspx)
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317743(v=vs.85).aspx)

 9

Requirement 4: The minimum length of the string returned by the

ICapeIdentification.ComponentName property will be one (1) character.

Issue 5: There are no guidelines for the use of white space (blank characters) in the

ICapeIdentification.ComponentName and

ICapeIdentification.ComponentDescription properties.

Discussion 5: Use of whitespace in component names or descriptions aid readability, and should

not be unnecessarily restricted.

There are various types of whitespace characters that can be used, including tabs,

line feed, carriage returns, new lines, and form feeds. Different character set

encodings and middleware platforms may display or treat whitespace differently.

As component names are used by the ICapeCollection.Item method to access a

Collection member by name, limitations of middleware specific string comparison

methods may limit the use of whitespace in the component name. Any such middle-

ware specific rule should be noted in the CAPE-OPEN specification for use of the

middleware, and enforced in the CAPE-OPEN implementation of the specific

middleware. In general, the ComponentName property should only use the blank

space (ASCII 0x20, or equivalent Unicode whitespace) character for word-dividing

whitespace.

Since the ComponentDescription property is used to provide information about a

PMC to the Flowsheet User, greater flexibility in the use of whitespace should be

allowed. In particular, horizontal tabs, end-of-line, new line, and carriage return

characters should be allowed. PMEs should provide as much flexibility as possible

in the entry and display of ComponentDescription property values, including the use

of scrolling, word-wrapped, multi-line edit and display controls.

There is no minimum length to the CapeDescription property, and an empty string is

a valid CapeDescription value. Visual Basic and COM utilizes a NULL-valued

BSTR pointer (vbNullString) as an empty string. Alternatively, Microsoft .NET

provides a String.Empty constant, that is a zero-length string (“”). Both the

vbNullString and String.Empty are valid ComponentDescription values. PMEs

should recognize that a NULL string (vbNullString) is a possible value and take

actions to avoid potential memory access errors associated with accessing NULL

values. Note that according to BSTR rules, NULL and L”” are semantically equal,

and in case of CAPE-OPEN, are an UNDEFINED string.

Requirement 5: Use of whitespace in component names or descriptions aid readability, and should

not be unnecessarily restricted. Both the first and last character of a component

name or description must not be a blank character (white space). A component name

must contain at least one non-whitespace character. The component description can

be an empty (zero-length) string or a null string, depending upon middleware

specifications. Control characters (carriage return, line feed, tab, escape, delete, form

feed, etc…) must not be used in ComponentName.

Issue 6: Default component names and descriptions.

Discussion 6: The owner of the PMC is responsible for ensuring that the name of the PMC is

unique. During initialization, a CAPE-OPEN component shall name itself with a

default component name and description. Possible initial names include either the

 10

PMC’s COM registry CapeDescription key ‘Name’ named-value or the PMC’s

ProgID. This string can then be concatenated with an incremented static integer

value to form a unique name. Alternatively, the PMC developer may use defined

string can be used as a basis for the name, however, uniqueness is not assured. After

this, the PMC owner is responsible for ensuring that the ComponentName remains

unique within the context.

 The component shall also provide a generic description for itself. This generic

description can match the value in the CapeDescription registry key ‘Description’

named-value pair. As described above, a NULL or zero-length string is an

acceptable description. There are no restrictions on modifying the

ComponentDescription value.

Requirement 6: During initialization, a CAPE-OPEN component shall name itself with a default

component name and description. The owner of the PMC is responsibility for name

uniqueness, but the PMC should attempt to create a unique name for itself during

instantiation.

Issue 7: Changes to the ComponentName during a call to ICapeUtilities.Edit.

Discussion 7: PMC’s implementing the ICapeUtilities.Edit method typically allow changes to the

ComponentName property of the PMC object. Changes to the ComponentName

during edit may result in the ComponentName not being unique. Collection owners

need to be aware of this possibility and verify that ComponentName changes during

Edit do not result in loss of ComponentName uniqueness.

Requirement 7: The Collection owner managing a Collection of CAPE-OPEN objects will verify

that the ComponentName of a Collection member is unique following a call to

ICapeUtilities.Edit.

Issue 8: Ability to make calls on ICapeIdentification prior to initialization by calling

ICapeUtilities.Initialize.

Discussion 8: All initialization steps that can fail are placed in the ICapeUtilities.Initialize step,

which could include allocation of the string storage for the ComponentName and

ComponentDescription fields. Prior to initialization of a PMC, there is no guarantee

that the storage for the ComponentName or ComponentDescription has been

allocated. For this reason, calls to ICapeIdentification are not supported until after

the call to ICapeUtilities.Initialize.

Requirement 8: The ComponentName or ComponentDescription properties are not accessible on a

PMC prior to a call to the ICapeUtilities.Initialize method on PMC Primary Object.

The call to the ICapeUtilities.Initialize method will initialize the ComponentName

and ComponentDescription properties for all PMC objects owned by the PMC

Primary Object.

4. Bibliography

1. “Whitespace Character”, Wikipedia, retrieved May 12, 2014.

http://en.wikipedia.org/wiki/Whitespace_(computer_science)

2. “Identification Common Interface Specification” v3.0, CO-LaN, 2003.

http://en.wikipedia.org/wiki/Whitespace_(computer_science)

 11

3. Windows DevCenter – Desktop, BSTR, retrieved August 14, 2013. http://msdn.microsoft.com/en-

us/library/windows/desktop/ms221069(v=vs.85).aspx

4. Microsoft Developers Network, “Character Sets,” retrieved May 13, 2014.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd317743(v=vs.85).aspx

5. Lippert, Eric (2003). “Eric's Complete Guide To BSTR Semantics”, retrieved May 12, 2014.

http://blogs.msdn.com/b/ericlippert/archive/2003/09/12/52976.aspx?PageIndex=2#comments

6. Microsoft Developer Network, “BSTR Data Type,” retrieved May 13, 2014.

http://msdn.microsoft.com/en-us/library/ms221069.aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317743(v=vs.85).aspx
http://blogs.msdn.com/b/ericlippert/archive/2003/09/12/52976.aspx?PageIndex=2#comments
http://msdn.microsoft.com/en-us/library/ms221069.aspx

