
CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in Computer-Aided Process Engineering

.NET Interoperability Guidelines

www.colan.org

2

ARCHIVAL INFORMATION

Filename Interoperability.doc

Authors CO-LaN consortium

Status Internal

Date June 2006

Version version 0.70

Number of pages 43

Versioning Version 0.4 edited by Bill Barrett (US EPA)

 Version 0.5 edited by Michel Pons (CO-LaN)

 Version 0.6 edited by Lars von Wedel (AixCAPE)

 Version 0.61 edited by Lars von Wedel (AixCAPE)

 Version 0.62 proofread by Michel Pons (CO-LaN)

 Version 0.70 edited by Lars von Wedel and Bill Barrett

Additional material

Web location

Implementation

specifications version

Comments

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software

described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.

CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied

warrant or fitness for a particular purpose. The entire risk arising out of the use or performance of any

sample code --- or any other software described by the CAPE-OPEN Laboratories Network --- remains with

you.

Copyright © 2006 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as

trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a

trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and

Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

4

SUMMARY

The CAPE-OPEN middleware standards were created to allow process modelling components (PMCs)

developed by third parties to be used in any process modelling environment (PME) utilizing these standards.

The CAPE-OPEN middleware specifications were based upon both Microsoft’s Component Object Model

(COM) and the Object Management Group’s (OMG) Common Object Broker Architecture (CORBA). Since

the inception of the CAPE-OPEN project, Microsoft updated COM to the .NET Framework. This document

presents interoperability guidance and examples for .NET and provides a roadmap for the evolution of

CAPE-OPEN into the .NET environment.

5

ACKNOWLEDGEMENTS

The CO-LaN consortium would like to thank the main authors, Bill Barrett and Lars von Wedel for the main

work on the document. Further, we acknowledge Ms. Svetlana Strunjas for her help in preparing the figures

included in the document. In addition, Bertrand Braunschweig and Jean-Pierre Belaud contributed to the

document. Michel Pons supported the preparation of the standard layout. Finally, time and effort invested by

the Method and Tools SIG members for reviewing, commenting, and improving the document are

appreciated. We apologize for all remaining errors and ask for feedback to continually improve this

document.

6

CONTENTS

ACRONYMS... 9

1. INTRODUCTION.. 10

2. BACKGROUND .. 11

3. A GENTLE INTRODUCTION TO THE .NET FRAMEWORK ... 12

3.1 MANAGED CODE AND VIRTUAL MACHINES: THE ARCHITECTURE OF THE .NET FRAMEWORK 13
3.2 ASSEMBLIES – UNITS OF CODE CONTAINING METADATA .. 13
3.3 THE .NET WAY OF LANGUAGE INTEROPERABILITY .. 15
3.4 INTEROPERABILITY WITH UNMANAGED CODE ... 17
3.4.1 Platform Invocation Service ... 18
3.4.2 Interop Assemblies – Enablers for COM Integration ... 18
3.4.3 Using COM components in .NET.. 19

3.5 IMPLEMENTING COM COMPONENTS IN .NET ... 21

4. CAPE-OPEN SPECIFIC INTEROPERABILITY ... 23

4.1 DATA TYPES AND VALUES... 23
4.1.1 A Comparison of COM and .NET Data Types .. 23
4.1.2 Defining Interfaces ... 25
4.1.3 Importing and Exporting Type Libraries .. 27

4.2 ERROR HANDLING ... 28
4.2.1 Exception Handling for a COM-Based PMC in a .NET-based PME.. 28
4.2.2 Throwing Exceptions from a .NET-Based PMC in a COM-based PME... 29

4.3 IMPLEMENTATION OF COLLECTIONS .. 31
4.4 PERSISTENCE ... 32
4.4.1 Persistence of a .NET-based PMC in a COM-based PME ... 32
4.4.2 Persistence of a .NET-based PMC in a .NET-based PME.. 34
4.4.3 Persistence of a COM-based PMC in a .NET-based PME ... 34

4.5 REGISTERING OBJECTS .. 34

5. MOTIVATION AND ROADMAP FOR .NET-BASED CAPE-OPEN... 38

6. BIBLIOGRAPHY.. 40

7. APPENDIX CREATING AND THROWING .NET EXCEPTIONS.. 41

7

LIST OF FIGURES

FIGURE 1 .NET FRAMEWORK ARCHITECTURE .. 12
FIGURE 2 ASSEMBLY CONTENTS ... 14
FIGURE 3 HIERARCHY OF CORE TYPES (TROELSEN 2002) ... 16
FIGURE 4 .NET LANGUAGE INTEROPERABILITY.. 17
FIGURE 5 PLATFORM INVOKE CALL TO UNMANAGED DLL... 18
FIGURE 6 .NET RUNTIME CALLABLE WRAPPERS (BUSBY AND JEZIERKSI 2001) .. 20
FIGURE 7 .COM CALLABLE WRAPPERS (BUSBY AND JEZIERKSI 2001) ... 22

8

LIST OF TABLES

TABLE 1. COMPARISON OF CAPE-OPEN, .NET AND COM DATA TYPES. .. 23
TABLE 2. COMMON HRESULT ERROR VALUES AND CORRESPONDING .NET EXCEPTIONS ... 28

9

Acronyms

.exe Executable program

.NETMicrosoft's .NET Framework

API Application Programming Interface

ASP............................... Active Server Pages
BSTR............................ Basic String

C# C# (C-Sharp) Programming Language

C++ C++ Programming Language

C++/CLI Common Language Infrastructure extensions to the C++ Programming Language

CAPE............................ Computer Aided Process Engineering

CCW............................. COM-callable wrappers

CIL................................ Common Intermediate Language

CLI................................ Common Language Infrastructure

CLR Common Language Runtime
CLSID Class Identification GUID

CO-LaN CAPE-OPEN Laboratories Network (http://www.colan.org)

COM.............................Microsoft’s Component Object Model
CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CTS............................... Common Type System

DLL or .dll.................... Dynamic Linked Library

ECMA European Computer Manufacturers Association

FAT File Allocation Table

GAC.............................. Global Assembly Cache

GUID Globally Unique Identifier

HRESULT COM Error Result

idl.................................. Interface Definition Language
IJW "It Just Works"

IL Intermediate Langange

ISO................................ International Organization for Standardization
Java............................... Sun Microsystems’s Java Programming Language

JIT................................. Just-In-Time

MonoMono Project (http://www.java.com)

MSILMicrosoft intermediate language

NTFS NT File System

OMG............................. Object Management Group (http://www.omg.org)
P/Invoke or P/I.............. Platform Invoke Services

PDA.............................. Personal Digital Assistant

PIA................................ Primary Interop Assembly
PMC.............................. Process Modelling Components

PME.............................. Process Modelling Environment

RCW............................. Runtime-callable Wrappers
SAFEARRAY COM Array Type.

SOAP............................ Simple Object Access Protocol

STL............................... Standard Template Library

UDDI Universal Description, Discovery and Integration

VB Visual Basic Programming Language

WSDL...........................Web Services Definition Language

XML Extensible Mark-up Language

10

1. Introduction

This document addresses technical aspects of interoperating .NET and COM-based software components and
environments through CAPE-OPEN interfaces. It is mainly targeted at process modeling components (PMC)

and process modeling environments (PME) designers and developers. The "Gentle Introduction to the .Net

Framework" section can be read by anyone interested in the general principles.

The document assumes some general knowledge of the CAPE-OPEN standard and of Microsoft COM

programming, including familiarity with principles of object-oriented software and with at least one of the

programming languages used as examples (C# or C++/CLI). Developers unfamiliar with CAPE-OPEN can

start by looking at the CAPE-OPEN standard (http://www.colan.org), CAPE-OPEN’s Methods and Tools

Integrated Guidelines (http://www.colan.org/Spec 10/Methods&Tools Integrated Guidelines.pdf) and

specific CAPE-OPEN interface specifications (http://www.colan.org/index-15.html) such as Unit

Operations, Physical Properties, and Common Interfaces.

Code examples provided in this document are mostly part of existing and working .NET PMC or PME

implementations. Thus, summarizing the remainder of the document, we can act on the assumption that
interoperability between code written in .NET and existing implementations of PMEs and PMCs following

the CAPE-OPEN standard defined in COM interfaces can be achieved. Due to a lack of resources not all

interfaces existing in the CAPE-OPEN standards body have been evaluated or even tested in
implementations. However, the common interface specifications as well as important business interface

specifications have been successfully implemented in an interoperability context. Hence, the authors strongly

believe that interoperability .NET is a workable solution for the period of time in which COM and .NET

implementations will exist besides each other. Further, the authors are aware that performance may be an

issue in certain process simulation applications. Future case studies shall therefore reveal performance

behavior of interoperability solutions with COM- and .NET-based components.

The document is organized as follows: Sections 2, 3 and 5 give clues on the feasibility for CAPE-OPEN to

move to .NET; section 4 shows how to do it for knowledgeable developers. More specifically Section 2,

Motivations, explains why interoperability between .NET and COM is needed. Section 3 "a Gentle ..."

explains the principles of .NET in a few pages and can be read by everyone. Section 4 goes into the technical
details of COM/.NET CAPE-OPEN interoperability in different flavors, using the existing CAPE-OPEN

interface specifications. Section 5 examines options for developing native .NET specifications for CAPE-

OPEN and making them interoperable with the existing .COM specifications. They are followed by a list of
references.

11

2. Background

The CAPE-OPEN program was begun in 1995 to develop, test, describe and publish agreed standards for
interfaces of components of a process simulator. Its objectives are to enable native components of a

simulator to be replaced by those from another independent source or a part of another simulator with a

minimum of effort in as seamless a manner as possible (CAPE-OPEN 2000). This document is intended to
provide guidelines for implementing the agreed standard interfaces in the .NET framework not provide the

description and design details of the specific interfaces. For more information on the design of the specific

interfaces, see the CO-LaN Website (www.colan.org). Background of the CAPE-OPEN projects can be

found at (Pons 2003).

At that time, two competing object models were available, Microsoft’s Component Object Model (COM)

(Microsoft 1995) and the Object Managements Group’s Common Object Request Broker Architecture

(CORBA) (see http://www.omg.org). The advantage of using these object models in developing applications

is that the application can function as platform-independent, object-oriented system for creating binary

software components that can interact with other components in the same process space or in other processes
on remote machines. These object-oriented programming models not only allowed the insertion of third-

party objects into an application, but these models have been extended to enable objects to be accessed over

a network or even the internet.

Concurrent with the development of the CAPE-OPEN standards, there has been significant growth in the use

of the internet and distributed computing, and both COM and CORBA have evolved to meet the

requirements of distributed computing environments. Microsoft has updated COM to a framework called the

.NET Framework. In doing so, Microsoft has included a number of technologies for creating and working in

a distributed environment such as remote object access; extensible markup language (XML) tools; the

Simple Object Access Protocol (SOAP); universal description, discovery and integration (UDDI); and web

services, which use the web services definition language (WSDL), in the .NET Framework.

The .NET Framework is essentially an update of COM, and it readily interoperates with COM objects with

little problem. Indeed, the C++ compiler automatically adds the code needed for COM/.NET interoperation

through the “It Just Works” or IJW technology (Grimes 2003). The Microsoft Developers Network (MSDN)
provides detailed information regarding COM/.NET interoperation at http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/cpguide/html/cpconinteroperatingwithunmanagedcode.asp

This document will discuss interoperability issues with respect to COM and .NET-based Process Modelling
Environments (PME) and Process Modelling Components (PMC). The discussion will consider both the

insertion of a .NET-based PMC into a legacy COM-based PME, the immediate issue, and the longer term

issues of using legacy COM-based PMCs in a .NET-based PME.

12

3. A Gentle Introduction to the .NET Framework

The Microsoft .NET framework was created around the late 1990s by Microsoft with several goals in mind,
which included the following:

� Unification of the various development technologies being used to date (such as COM,

Active Server pages (ASP), etc.)

� Bringing an opponent to Sun’s Java technology on the market

� Better coverage of mobile devices

� Simplified deployment of applications (fighting so called DLL hell)

� Better response to security issues

The major difference as opposed to current software development technologies is the introduction of so

called managed code which is not executed by a physical processor in hardware, but by a virtual processor

emulated by a piece of software called a virtual machine. This will be explained in more detail in Section

3.1. The code to be executed by virtual machines resides in so-called assemblies (cf. Section 3.2) which

resemble dynamic linked libraries (DLLs) but are in addition equipped with metadata describing their
identity, locale, version number, content, and many other things. The virtual machine of the Common

Language Runtime provides a type system which permits data and classes to be shared across software

written in a variety of several programming languages (cf. Section 3.3). Finally, this chapter will describe
means of interoperability that Microsoft has made available to interoperate with legacy DLLs and COM

components (cf. Section 3.4).

Windows

Forms

Base Class Library

ADO.NET & XML

.N
ET

Fr
am
ew
or
k

.N
ET

Fr
am
ew
or
k

.N
ET

Fr
am
ew
or
k

ASP.NET

Web Forms Web Services

Common Language Runtime

.N
ET

Fr
am
ew
or
k

Operating System

H/
W
 &
 O
S

Common Language Specification

VB C++ C#

.N
ET
 C
om
pli
an
t

La
ng
ua
ge
s

.N
ET
 C
LS

Figure 1 .NET Framework Architecture

13

3.1 Managed code and virtual machines: the Architecture of the .NET Framework

The architecture of the .NET framework is based on an open specification of the Common Language

Infrastructure (CLI) that was ratified as an open standard with the European Computer Manufacturer’s

Association (ECMA) (ECMA 2005) and has been submitted to the International Organization for

Standardization (ISO) . This standard specification has not only been used as a basis for implementing the

Microsoft .NET framework, also other projects such as the Mono Project (http://www.mono-

project.com/Main_Page) development platform (for various Unix operating systems variants) or Portable

.NET (http://www.dotgnu.org/pnet.html) have been developed according to this specification.

At the heart of the .NET framework, the common language runtime (CLR) implements a virtual machine that

interprets byte code, a hardware independent intermediate format between high-level languages such as

Basic or C++ and the machine code that is executed by the central processing unit (CPU) in hardware. The

major advantage of such an approach is that changes in the underlying hardware can be accounted for by
developing or adapting a single virtual machine instead of modifying numerous existing software packages.

Use cases that come to mind is the upcoming shift towards processors using 64 bits for data and address

representation, dual core processors or mobile devices such as personal digital assistants (PDAs) or
smartphones. When an application is used on such platforms, the bytecode will remain the same, only the

processing of the bytecode on the target platform differs in that it takes into account the peculiar properties

of the platform.

The byte code that results from the compilation of an application is not interpreted directly, but run through a

Just-In-Time (JIT) compiler that executes when an application is started. The speedup of executing compiled

code vs. interpreting byte code by far outweighs the overhead of the just-in-time compilation step itself. In

summary, the performance of .NET-based applications is about the same as for applications developed using

unmanaged code.

Another advantage of executing an application in a virtual environment instead of granting access to the

physical hardware directly is the fact that the executing CLR can guard the memory usage of the application

and perform a so-called garbage collection that frees objects no longer referenced by the application. The

result is an improved stability and safety of the application as well as a reduced effort on behalf of the
developer to spend time in tedious reference counting, for example.

The byte code for the .NET framework is specified in a language called common intermediate language

(CIL), sometimes also termed Microsoft intermediate language (MSIL). Type definitions (such as data and
classes) in the intermediate language rely on the common type system (CTS) discussed further in Section

3.3.

3.2 Assemblies – Units of Code containing Metadata

Compiled code in managed form is contained within an assembly, a file with either.exe (executables) or .dll

(dynamic link libraries) extension. However, the contents have completely changed: the contained code is

byte code (see above) as opposed to machine code and metadata, a set of information that describes the

contents of the assembly.

Assemblies usually consist of four elements: the assembly metadata (also called a manifest), metadata
describing the types, the Intermediate Language (IL) code that implements the types and a set of resources.

All elements except the manifest are optional. These elements can be combined in different ways, depending

on whether a single .dll file contains an entire assembly, or the assembly content is spread across multiple
files (see Figure 2).

14

Figure 2 Assembly Contents

An important item of a manifest is the assembly identity which is more than just a filename. The assembly

identity comprises a short name (which is used for the file name), an optional culture (to permit assemblies to

come in localized versions), a version identifier, and an optional public key token which is a hash value
paired with a private key (it is used if the assembly is built for sharing). An assembly having a public key

token is said to be strongly named (or signed) and cannot be exchanged against a malicious assembly

(spoofing) without having access to the matching private key. In addition to the assembly identity, every

manifest includes the following data:

• File List: The file list includes a list of all files that make up the assembly. For each file, the

manifest records its name and cryptographic hash of its content, which is checked and verified at run

time to ensure that deployment unit is consistent.

• Referenced assemblies: Referenced assemblies store information about dependencies between

assemblies. These dependency pieces of information include a version number, that is used at run

time to ensure the correct version of dependency is loaded.

• Exported Types: Each assembly contains metadata about all of contained types and resources

within itself so that application developers can inspect the contents of the assembly by a technology

called reflection. An example use is to enumerate all types contained in an assembly to check

whether they implement a certain interface, such as ICapeUnit. This approach can effectively be

used to circumvent registration of assemblies in a central place such as the registry. Instead,
assemblies can be placed in a shared directory where applications looking for certain components

can iterate assemblies present and easily find out which assemblies contain types that are useful for

the application.

• Permission Requests: There are three type of permission requests: those required for the assembly

to run, those that are desired but the assembly will still have some functionality without them and

those that the author never wants to be granted. In addition to the reflection capabilities, metadata

can contain custom attributes which are used to flag a type with certain properties. There is a

predefined set of so-called pseudo custom attributes which is known to the CLR and controls the
way the CLR works with these types.

 Examples (relevant to this document) are attributes that control the interaction of types with COM-based

applications:

15

[

 ComVisible(true),

 ProgId("DistillationShortcutUnitAixCAPE")

]

public class DistillationShortcutUnit

{

 // …

}

The attribute ComVisible instructs the CLR to make this class available via COM (cf. 3.4 Section for more

details) and the ProgId attribute sets the ProgId of the class.

Assemblies can generally reside anywhere on the filesystem, however, the location must be known for an

application to be able to access them. Strongly-named assemblies can be placed in a central area called

global assembly cache (GAC) which is specifically designed to hold assemblies that are to be shared by
different applications. The purpose of the GAC is to avoid having different copies of a single assembly at

various location on the machine and to permit various versions of an assembly with the same name to coexist

besides each other (this is not possible within one directory of a FAT or NTFS filesystem). Assemblies can
be added to the GAC using the GAC utilities tool (gacutil.exe) contained in the .NET framework.

3.3 The .NET Way of Language Interoperability

When using COM as a means to make applications developed using different programming languages

interoperable the developer had to take care of mapping native datatypes into COM datatypes and back. As

an example C++ developers had to convert character pointers (char*) or STL strings (std::string) into a string

type defined by COM that was called BSTR. Sequences in C++ (e.g. as a simple array or a list type) had to

be mapped back and forth between a SAFEARRAY.

The .NET framework instead takes a different approach to solve this problem. The common language
runtime provides a set of types common to all programming languages that are based on .NET – this is called

the common type system (CTS). By sharing these type definitions from ground up, language interoperability

becomes a rather simple issue because no conversions are necessary any longer.

16

Figure 3 Hierarchy of Core Types (Troelsen 2002)

In addition, all languages share a representation of their code in the intermediate language (CIL/MSIL)
which basically means that all function or method definitions are present in a compatible form as well.

Hence, calling functions and methods across language or application boundaries is also a rather simple issue

and is completely taken care of by the common language runtime. In a sense, the same algorithm written in

different programming languages, such as C#, Visual Basic (VB), or C++, can be regarded as different views

on the same problem because the underlying intermediate language is basically identical.

System.Object

System.Exception

System.Array

System.Type

System.Delegate

System.MultiCastDelegate

ValueType

Any type that

derives from

ValueType is

a structure not

a class.

Byte

Boolean

Char

Decimal

Double

Int16

Int32

SByte

Int64

UInt16

UInt32

Void

UInt64

DateTime

Guid

TimeSpan

Single

Enum

17

Figure 4 .NET Language Interoperability

As a consequence, the language in which components have been constructed becomes completely
transparent to developers. They can not only call methods on behalf of a foreign component regardless of the

languages involved in the implementation, but they can even inherit from code written in other languages

(including method overloading) and issues such as serialization or exception handling (see Section 4.2 for

more detail) are handled by the CLR in a completely transparent fashion.

3.4 Interoperability with Unmanaged Code

Obviously, a lot of code was written before the .NET framework came into place and it is unrealistic to

believe that all of this code can or will be migrated in a short period of time. Hence, Microsoft has put
substantial effort into mechanisms that permit interoperability of code provided for the .NET environment

(managed code) with so-called unmanaged code – classic DLLs that were developed using C++ or Fortran in

times before .NET or COM components that have been developed to permit interoperability of applications.

Basically, there are four mechanisms to be mentioned, three of which will be explained in more detail in the

subsequent sections:

• Unsafe code permits the immediate use of pointers into the data address space of the application. It is

used in rather special cases and only listed here for the sake of completeness.

• Platform invoke services permit to call functions/procedures in unmanaged DLLs (see Section 3.4.1).

• COM-callable wrappers (CCWs) make a .NET component available to COM-based applications

(see Section 3.4.2).

• Runtime-callable wrappers (RCWs) allow a COM-based component to be called by a .NET

application (see Section 3.4.3).

18

3.4.1 Platform Invocation Service

Calling methods in an existing DLL made from C or FORTRAN is a simple task using the so-called platform

invocation services, also called P/Invoke for short. Since these DLLs do not have any metadata associated

with them, the developer has to supply a representation of the methods in a .NET-based programming
language. An example demonstrates how a routine calc_flash in the library thermo.dll can be accessed from

a .NET-based language (here C#):

class ThermoWrapper

{

 [DllImport("thermo.dll")]

 internal static extern int

calc_flash(double p, [In, Out] double[] z,

double v, IntPtr user_data);

}

Figure 5 Platform Invoke Call to Unmanaged DLL

This example introduces a class ThermoWrapper which is basically just a dummy in order to hold the

method calc_flash because C# does not permit methods to be defined outside the context of a class. The
custom attribute DllImport (cf. Section 3.2) instructs the common language runtime to look inside the

referenced DLL for the implementation of the method. The method is declared as internal (visible only inside

the assembly), static (not bound to an object instance), extern (not implemented in this assembly) and returns

an integer after terminating. The parameters the method takes are a scalar double, a double array (which

matches e.g. to a double array in C) and is input and output to/from the method, a second scalar double, and

finally a pointer to some arbitrary user data storage (which matches e.g. a void pointer in C). Attributes for

parameters (such as the [In,Out]) exert fine-granular control over the process of transforming the data back

and forth between the managed and the unmanaged execution. Similar mappings permit the interoperability

with a wide range of data types and languages.

3.4.2 Interop Assemblies – Enablers for COM Integration

Integrating .NET with COM is even simpler than the above mentioned integration through P/Invoke because

a type library for a COM object holds metadata that can be used to actually generate a suitable wrapper
instead of having to write stub methods as in the previous example.

19

Basically, there are two general approaches how to interoperate with COM applications. An existing COM

component can be used as an add-in within a .NET application or .NET can be used to develop a COM-based

plug-in. Both approaches are supported equally well by the .NET framework. In both cases, an intermediate

piece of software to translate between .NET and COM is needed and is called an interop assembly. A
particular type of interop assembly is the primary interop assembly (PIA) which is signed by the component

publisher and marked as belonging to the COM component. A PIA can be registered with the GAC and will

be used by default whenever a .NET application is going to use the COM component to which the PIA
belongs [see (Nathan 2002) or (Troelsen 2002) for details].

3.4.3 Using COM components in .NET

When a COM component is to be used in a .NET application an intermediate piece of software is needed that

translates between the .NET set of types (according to the CTS, cf. Section 3.3) and the types that are defined

in COM (SAFEARRAY, BSTR, ...) and exposes the interfaces implemented by the COM components in a

.NET-compatible way. This piece of software is termed a runtime callable wrapper (RCW for short) because

the common language runtime can natively call the wrapper around the COM component.

Luckily, this intermediate piece of software can be generated in a fully automated fashion from a type library

which is usually present for COM components that are meant to be used by other applications. The .NET

framework contains the tool tlbimp.exe which is given a type library and generates an assembly containing
the RCW from it.

This assembly becomes part of the application using the COM component. It contains all types derived from

the type library inside a namespace which is equivalent to the type library name, e.g. CAPEOPEN100. In

addition, classes are generated for CoClass entries in the type library so that instantiating and using a COM

component becomes a simple activity. The following C# code snippet exemplifies how to launch an instance

of Microsoft Excel (through the PIAs delivered by Microsoft), load a workbook from a .xls file and activate

it:

Microsoft.Office.Interop.Excel.Application excel = null;

Microsoft.Office.Interop.Excel.Workbook wb = null;

object missing = Type.Missing;

excel = new Microsoft.Office.Interop.Excel.Application();

wb = excel.Workbooks.Open("c:\\test.xls", missing, missing, missing, missing, missing,

missing, missing, missing, missing, missing, missing, missing, missing, missing);

excel.Visible = true;

wb.Activate();

The CAPE-OPEN type library however does not contain any CoClass definition (remember that CAPE-

OPEN is only about interface definitions). However, a COM-based property system for example implements

CAPE-OPEN interfaces and can easily be used with the imported interop assembly:

Type type = Type.GetTypeFromCLSID(new System.Guid("<CLSID>"));

object ts_obj = Activator.CreateInstance(type);

ICapeThermoSystem ts = ts_obj as ICapeThermoSystem;

string[] packages = (string[])ts.GetPropertyPackages();

object pp_obj = (ts.ResolvePropertyPackage(packages[0]);

string name = (pp_obj as ICapeIdentification).ComponentName;

string[] compids = (string[]) package.GetPropList();

The example (C#) demonstrates how to instantiate a property system through the registry from a given class
identifier (CLSID). Then, the obtained object is cast into a thermo system reference and the identifiers of

available property packages are obtained through a call to GetPropertyPackages. Finally, a property package

is resolved (call to ResolvePropertyPackage) and the component name is obtained via the ComponentName
property of the ICapeIdentification interface. In addition, a list of available properties (GetPropList) is

20

obtained. The same output can be achieved by any .NET-compliant language such as Visual Basic, C++ and

even less common languages.

Actually, when a COM component is used in the .NET environment the RCW consumes the interfaces

offered by the COM component and presents them in a way convenient for use within .NET. Custom
interfaces (such as ICapeUnit) are translated according to a set of well-defined rules (Troelsen 2002), which

will be further discussed below. Additionally, a number of well-known interfaces are handled in particular

ways. Important examples in this category are:

• IUnknown: The RCW makes use of the IUnknown interface to support type casting and lifecycle

management. As a result, calls to QueryInterface or AddRef/Release are never necessary from within

.NET code.

• IDispatch: Late binding to COM objects is made available through the reflection services in the

.NET world. Thus, capabilities offered through the IDispatch interface are accessible in a transparent

fashion in .NET.

• IConnectionPointContainer: Connection points in COM that are registered through the interface

IConnectionPointContainer are made available as native events in .NET through so-called delegates

(essentially callback routines).

• IErrorInfo: The COM way of transmitting error information to a client is emulated and errors are

mapped to structured exceptions in any of the available .NET languages, as described below.

• IENUMVariant: Collections made available by the COM components are also wrapped in a way that

permits their access through native .NET interfaces.

As a consequence, an object made available by a COM component looks very similar to a native .NET object

and is therefore easily integrated.

..

Figure 6 .NET Runtime Callable Wrappers (Busby and Jezierksi 2001)

.NET client

Runtime
callable
wrapper

IMyInterface

COM
Object

IMyInterface

IUnknown

Managed Code (CLR) Unmanaged Code (COM)

21

3.5 Implementing COM Components in .NET

This section gives a brief overview about the implementation of COM components using the .NET

framework which is kind of the inverse perspective described in the former section. Again, the .NET

framework reduces the effort to be spent by the developer by automatically generating an intermediate piece

of software that deals with the interaction of the .NET component code and the COM runtime system. This

generated wrapper is called a COM callable wrapper (CCW) and implements COM interfaces based on the

properties of the underlying code developed using .NET. The main contribution by the CCW is to translate

types between the common type system and the COM type definitions, to handle reference counting, type

casting, and to implement well-known interfaces already defined in COM such as IDispatch, IUnknown. In

addition, the public methods of a class in .NET are exported as methods of an interface of the corresponding

COM object. Collections will be made available through the IEnumVARIANT interface and delegates (event

callbacks) will be represented through the interface IConnectionPointContainer.

In many cases, it is not enough to make a .NET class available as an arbitrary interface. Usually, some

software has defined a COM interface that permits extensibility of an application such as Add-Ins for MS

Excel or units and property systems for a CAPE-OPEN compliant simulator. In these cases it is important
that the interfaces exposed by the CCW mirror exactly the COM interfaces expected by the application.

There are basically two ways how this can be achieved:

• The .NET component code can reference the interop assembly imported from an existing type library

(cf. former section) and implement the interfaces defined in the type library.

• The code can be written using .NET and the CCW generation is controlled by adding metada

attributes so that the interfaces exposed by the CCW mirror exactly what is expected by the COM

client application.

Let us briefly look into code example that explains how to implement the mandatory ICapeIdentification

interface using the first approach, assuming that the type library importer tlbimp.exe has been used to import

the CAPE-OPEN interface definitions into an interop assembly that provides the namespace CAPEOPEN100
with all CAPE-OPEN interface and type definitions:

[

 ComVisible(true),

 ProgId("COComponent"),

 ClassInterface(ClassInterfaceType.AutoDual)

]

public class COComponent : CAPEOPEN100.ICapeIdentification

{

 private string m_name;

 private string m_description;

 public string ComponentName

 {

 get { return m_name; }

 set { m_name = value; }

 }

 // same for component description

}

The example defines a class entitled COComponent that implements the interface ICapeIdentification

defined in the CAPEOPEN100 namespace. The class is equipped with three attributes:

• The attribute ComVisible controls whether the class is exported to the COM runtime system at all.

Even if this attribute is set to true, only public classes are visible.

• The ProgId attribute sets the program id of the component.

• The ClassInterface attribute is used to determine whether a class interface is exported. The setting

AutoDual permits early as well as late binding of COM clients to this object.

22

Within the class the string-valued property Component Name is defined. Properties are a language element

in C# and are mapped immediately to properties of COM objects.

Figure 7 .COM Callable Wrappers (Busby and Jezierksi 2001)

Unmanaged Code (COM)

Managed Code (CLR)

Component
callable
wrapper

COM
Client

.NET

component

IUnknown

IMyInterface

IMyInterface

IDispatch

_MyClass

23

4. CAPE-OPEN Specific Interoperability

Various implementation issues arise when a complex application programming interface (API) such as
CAPE-OPEN is updated from one version of middleware to another. While COM interop discussed above

generally works and handles most cases, as expected, there are some areas where .NET implementations

must be aware of the peculiarities of COM to properly interoperate. Obvious issues are data types/values,
exceptions and persistence where .NET has made significant departures from COM. While these issues are

generally well handled in COM interop, awareness of some of the implementation details can be helpful. The

following sections discuss some of these items.

4.1 Data Types and Values

As described above,.NET uses a common type system (CTS) where the type of an object is the primary

issue. Classes, interfaces, structures, and data all have a particular type defined within the assembly. While

this is similar to the COM type library and interface definition language (idl) code, some variations exist and

the differences will be discussed below.

4.1.1 A Comparison of COM and .NET Data Types

CAPE-OPEN defines a number of data types within the idl files and these types are used to define the

interfaces. Some of these types are simple C++ types such as long integer, float, or double, while others are
COM-specific such as Visual Basic strings (BSTR) and Variants. Further, CAPE-OPEN defines a number of

enumerations such as the CapeValidationStatus that need to be translated into a .NET data type.

COM interop basically translates the COM data types into their equivalent .NET data types. Table 1 provides

a list of the CAPE-OPEN data types, their COM equivalents and the data type that the interop marshaller

would provide to .NET.

Table 1. Comparison of CAPE-OPEN, .NET and COM Data Types.

CAPE-OPEN Data

Type

Description of

Data Type

COM Data Type .NET Data Type

CapeLong long long long

CapeShort short short short

CapeDouble double double double

CapeFloat float float float

CapeBoolean bool VARIANT_BOOL bool

CapeChar char char char

CapeString String or char[] BSTR System.String

CapeDate date VARIANT_DATE System.DateTime

CapeURL URL string BSTR System.String

24

CapeVariant void Variant Object

CapeInterface CO Interface LPDISPATCH Object

CapeArray(TYPE) Array of (Type) Variant containing
SafeArray(Type)

(Type) []

Of the data types listed, many are handled directly by COM interop. The CapeBoolean and CapeInterface

data types require the MarshalAs attribute to be applied to the function header to be properly marshalled, as
described below. BSTRs are automatically marshalled to/from System.String and the CapeDate data type is

automatically marshalled to System.DateTime. Values and arrays are automatically boxed (converted to

objects) and converted to the appropriate Variant types in COM interop.

While arrays are automatically boxed, COM-based CAPE-OPEN requires the array to be wrapped in a

variant. This process results in loss of type information for the array on the .NET side of the interop. What

this means is if an array of integers is desired, the .NET function header should use an Object data type, not

an int[] data type. If the int[] data type is defined, the type library exporter will create idl using the

SAFEARRAY(int) as the data type, not the CAPE-OPEN specified Variant. Below is a C++/CLI

implementation of the ICapeThermoMaterialObject::GetUniversalConstant() method showing a

CapeArrayString input parameter and the return of a CapeArrayReal:

// Get some universal constant(s)

//

// CAPE-OPEN exceptions

// ECapeUnknown, ECapeInvalidArgument, ECapeNoImpl

// [id(3), helpstring("method GetUniversalConstant")]

// HRESULT GetUniversalConstant([in] CapeArrayString props,

// [out, retval] CapeArrayVariant *propVals);

Object^ CapeOpen::CCapeThermoMaterialObject::GetUniversalConstant(Object^ props)

// input is array<String^>^, return value is array<Object^>^.

{

 array<String^>^ propList = dynamic_cast<array<String^>^>(props);

 if (!propList) return nullptr;

 int numProps = propList->Length;

 array<double>^ value = gcnew array<double>(numProps);

 for (int i = 0; i < numProps; i++){

 bool constantInList = false;

 if (!(String::Compare("avogadroConstant", propList[i]))){

 value[i] = double(6.022141995e23);

 constantInList = true;

 }

 if (!(String::Compare("boltzmannConstant", propList[i]))){

 value[i] = double(1.3806503e-23);

 constantInList = true;

 }

 if (!(String::Compare("molarGasConstant", propList[i]))){

 value[i] = double(8.314472);

 constantInList = true;

 }

 if (!(String::Compare("standardAccelerationOfGravity",

 propList[i]))){

 value[i] = double(9.80665);

 constantInList = true;

 }

 if (!(String::Compare("faradaysConstant", propList[i]))){

 value[i] = 9.64846e-19;//coulombs per mole

 constantInList = true;

 }

 if (!(String::Compare("chargeOfElectron", propList[i]))){

 value[i] = 1.60219e-19;//coulombs

 constantInList = true;

 }

 if (!constantInList) throw gcnew CapeInvalidArgumentException(

25

 String::Concat(propList[i], " is not a Universal Constant in

 CCapeThermoMaterialObject::GetUniversalConstant"), 1);

 }

 return value;

}

Empty variants are defined in .NET as null-valued objects (C# – null, C++/CLI – nullptr). CAPE-OPEN

methods that require empty variants should have the value null placed in the function call. On the .NET side,

an empty variant sent by a COM object will translate into a null valued object. In the above implementation,

the second line of code “if (!propList) return nullptr;” tests for an empty variant and returns an

empty variant if one is sent as an argument.

Enumerations such as the CapeValidationStatus also need to be defined for COM interop. The .NET

framework defines enumerations as a enum class. As a result, the CapeValidationStatus enumeration is

defined as follows in .NET:

// .NET Translation of Validation Status Values.

[

 ComVisibleAttribute(true),

 GuidAttribute("678c0b04-7d66-11d2-a67d-00105a42887f")

 // CapeValidationStatus_IID),

]

public enum class CapeValidationStatus {

 CAPE_NOT_VALIDATED = 0,

 CAPE_INVALID = 1,

 CAPE_VALID = 2

};

4.1.2 Defining Interfaces

A COM type library is basically compiled idl code, so the type library will be considered as its underlying idl

code. Further, a similar translation of the interface definition will be performed by the type library importer,

and implementing classes will need to use the .NET style-function signatures as opposed to the COM idl

function signatures. As an example, the ICapeUnit interface will be considered here as idl, and below as a

.NET interface. The COM idl code for the ICapeUnit interface is:

// This interface provides the basic functionality for a Unit

// Operation component

[

 object,

 uuid(ICapeUnit_IID),

 dual,

 helpstring("ICapeUnit Interface"),

 pointer_default(unique)

]

interface ICapeUnit : IDispatch

{

 // Get the collection of unit operation ports

 //

 // CAPE-OPEN exceptions:

 // ECapeUnknown, ECapeFailedInitialisation, ECapeBadInvOrder

 [propget, id(1), helpstring("Gets the whole list of ports")]

 HRESULT ports([out, retval] CapeInterface* ports);

 // Gets the flag to indicate unit's validation status

 //· notValidated(0),invalid(1) or valid(2)

 //

 // CAPE-OPEN exceptions

 // ECapeUnknown, ECapeInvalidArgument

 [propget, id(2), helpstring("Get the unit's validation status")]

 HRESULT ValStatus([out, retval] CapeValidationStatus *valStatus);

 // Executes the necessary calculations involved in the unit

 // operation model

 //

26

 // CAPE-OPEN exceptions raised:

 // ECapeUnknown, ECapeBadInvOrder, ECapeOutOfResources,

 // ECapeTimeOut, ECapeSolvingError, ECapeLicenceError

 [id(3), helpstring("Performs unit calculations")]

 HRESULT Calculate();

 // Validate that the parameters and ports are all valid

 //

 // CAPE-OPEN exceptions:

 // ECapeUnknown, ECapeBadCOParameter, ECapeBadInvOrder

 [id(4), helpstring("Validate the Unit")]

 HRESULT Validate([ACTUALLYout] CapeString* message,

 [out, retval] CapeBoolean* isValid);

};

A GUID assigned to the interface (ICapeUnit_IID), which is assigned a value using a #define compiler

pragma. This interface derives from IDispatch, which means that it supports late binding. The function
headers are such that the string values are returned by reference and the actual return value for the function is

an HRESULT, which is a 32-bit integer that indicates whether an error condition occurred during the

function call. The attributes preceding the function definition have the following meanings:

• Propput/Propget indicates that this function either gets or sets a property value

• id(1) is the identification number of the function in the Dispatch interface

• helpstring("…") A help string that provides information about the function

• out, retval indicates that the variable is function’s return value in Visual Basic and that the

value will be returned by reference

By comparison, the same interface defined in C++/CLI is as follows:

// This interface provides the basic functionality for a Unit

// Operation component

// CAPE-OPEN v1.0

[

 ComVisibleAttribute(true),

 Guid("678c0998-0100-11d2-a67d-00105a42887f"),//ICapeUnit_IID),

 System::ComponentModel::DescriptionAttribute("ICapeUnit Interface")

]

public interface class ICapeUnit

{

 // Get the collection of unit operation ports

 //

 // CAPE-OPEN exceptions:

 // ECapeUnknown, ECapeFailedInitialisation, ECapeBadInvOrder

 [DispIdAttribute(1), System::ComponentModel::DescriptionAttribute

 ("Gets the whole list of ports")]

 property Object^ ports

 {

 [returnvalue: MarshalAs(UnmanagedType::IDispatch)]

 Object^ get();

 };

 // Gets the flag to indicate unit's validation status

 //· notValidated(0),invalid(1) or valid(2)

 //

 // CAPE-OPEN exceptions

 // ECapeUnknown, ECapeInvalidArgument

 [DispIdAttribute(2), System::ComponentModel::DescriptionAttribute

 ("Get the unit's validation status")]

 property CapeValidationStatus ValStatus

 {

 CapeValidationStatus get();

 };

27

 // Executes the necessary calculations involved in the unit

 // operation model

 //

 // CAPE-OPEN exceptions raised:

 // ECapeUnknown, ECapeBadInvOrder, ECapeOutOfResources, ECapeTimeOut,

 // ECapeSolvingError, ECapeLicenceError

 [DispIdAttribute(3), System::ComponentModel::DescriptionAttribute

 ("Performs unit calculations")]

 void Calculate();

 // Validate that the parameters and ports are all valid

 //

 // CAPE-OPEN exceptions:

 // ECapeUnknown, ECapeBadCOParameter, ECapeBadInvOrder

 [DispIdAttribute(4), System::ComponentModel::DescriptionAttribute

 ("Validate the Unit"),

 returnvalue: MarshalAs(UnmanagedType::VariantBool)]

 bool Validate(String^ %message);

};

This .NET-based ICapeUnit interface definition provides the same information as the COM idl above. The
COMVisible attribute is required for COM interop. Without this attribute, the interface will not be made

visible to COM interop. Further, classes deriving from this interface will also not be visible to COM, even if

they are marked COMVisible. The GUID attribute is used to provide the COM interface identification GUID,
and serves the same function as the COM idl uuid attribute. The GUID attribute should be used on all

interfaces and classes exposed to COM otherwise, a GUID will be assigned to the object when it is registered

in the system registry. System.ComponentModel.Description attribute provides similar functionality to the

COM idl helpstring attribute. The DispId attribute serves the same function as the id attribute in the COM

idl.

The most obvious difference in the above interface definitions are the function definitions themselves. In the

case of the ports property, it is defined as a property with an Object return type. The other methods are

defined so that the value marked with the out, retval attribute in the COM idl file are of the actual type of the

return value for the function. Exceptions are thrown by the .NET class implementing this interface, so the

return value for the function is not an HRESULT. As discussed below, a .NET exception can be assigned an
HRESULT which is returned to COM when the exception is thrown.

For the ports property, the MarshalAs attribute tells the interop marshaller that the value is actually an

IDispatch type object. Without the MarshalAs attribute, the marshaller would make this return value a

variant. The MarshalAs attribute is also used on the Validate method to inform the marshaller that the value

is a Variant Boolean, not a C++ Boolean value.

4.1.3 Importing and Exporting Type Libraries

COM type libraries can be imported directly for use in .NET using the type library importer (tlbimp.exe).

Basically, to use the currently defined CAPE-OPEN type libraries, one simply need to import the CAPE-

OPEN version 1.0 Component Object Model (COM) type library into a .NET Primary Interop Assembly
(PIA) (Troelsen 2002). The type library can be signed with a key file, which results in a strongly-named PIA.

This process will create a CAPEOPEN100 namespace that contains all the CAPE-OPENv1.0 interface

definitions and provided a built-in marshalling of data from the CAPE-OPEN COM objects to the .NET
framework using the data types indicated above. Use of the PIA would allow CAPE-OPEN compliant .NET

based objects to be used in a COM-based flowsheeting tool directly. This route provides the quickest

mechanism to provide a .NET interop assembly.

Alternatively, as shown above, the interfaces can be defined in a .NET language and exported to COM via

the type library exporter (tlbexp.exe) facility. In this case, the interfaces will be created using .NET file

signatures. Each interface can be assigned a GUID that COM can use to identify the interface. During the

process of exporting the type library, the function signatures are converted to the format found in the idl

files. By assigning .NET-based interfaces the same GUID as the matching COM interface, .NET interfaces

with the same functions as the COM interfaces can continue to be used. Care must be taken in this approach

28

to ensure that the proper MarshalAs attributes are applied to variables and return values primarily to ensure

that objects are returned as a dispatch interface or that Boolean values are converted to variant Boolean

values.

4.2 Error Handling

COM provides an error handling API that uses an IErrorInfo interface and the GetErrorInfo API to transmit

exceptions from the object that raises them to the container application. However, because of difficulties

associated with propagating errors using this API to previous versions of Visual Basic, the CAPE-OPEN

Error Common Interface standard chose to require all objects that support the Error Common Interface to

implement all error interfaces that they are able to raise (CO-LaN 2003). As a result of the deviation of the

CAPE-OPEN error handling specification from the COM GetErrorInfo API, .NET-based objects must

deviate from using .NET exceptions as the sole mechanism to transmit and receive error information in order

to fully interoperate using the CAPE-OPEN error interfaces. This section describes implementation of PMCs
and PMEs to enable error handling in compliance with the CAPE-OPEN standards. An appendix to this

document presents an implementation of the .NET error handling mechanisms and discusses the effect of the

use of standard .NET handling mechanisms on CAPE-OPEN compliance.

.NET allows the use of structured exceptions similar to CORBA and C++. Structured exception can be

thrown by an object when an error condition occurs during a method call and the calling object can catch the

exception and handle the error causing condition. Use of exceptions is in contrast with the error handling
mechanisms of COM which uses a 32-bit integer error code, called an HRESULT, as a return for the

function call when error conditions are encountered. The advantage of using structured exceptions is that

information such as a message and the source of the exception can be included in the exception. This section

will discuss handling an HRESULT returned by a COM method and the implementation of an application

exception class that can be thrown when computation exception, such as dividing by zero, occurs in a

function.

4.2.1 Exception Handling for a COM-Based PMC in a .NET-based PME

When an error occurs in a CAPE-OPEN COM-based PMC, the current function returns an HRESULT value,

that COM interop automatically recognizes as an exception and throws a System.Runtime.InteropServices.
COMException object. The HRESULT for the exception is the same as the COM HRESULT returned by the

function call. In order to comply with the CAPE-OPEN error handling mechanisms, the object throwing the

exception must expose the appropriate CAPE-OPEN error interface(s) to access information about the
exception. When a COM-based PMC returns an error HRESULT, the runtime callable wrapper then

generates a .NET COMException which would then be caught by the PME.. The PME will then cast the

PMC to the appropriate CAPE-OPEN error interface to obtain detailed error information. If the COM-based

PME is contained in a wrapper class, the wrapper could then generate and throw a .NET based exception as

described in the appendix.

Table 2. Common HRESULT Error Values and Corresponding .NET Exceptions

HRESULT .NET exception

MSEE_E_APPDOMAINUNLOADED AppDomainUnloadedException

COR_E_APPLICATION ApplicationException

COR_E_ARGUMENT or E_INVALIDARG ArgumentException

COR_E_DIVIDEBYZERO DivideByZeroException

COR_E_INDEXOUTOFRANGE IndexOutOfRangeException

COR_E_IO IOException

29

COR_E_SECURITY SecurityException

COR_E_SERIALIZATION SerializationException

COR_E_STACKOVERFLOW,ERROR_STACK_OVERFLOW StackOverflowException

COR_E_SYSTEM SystemException

Unidentified HRESULT COMException

The following code sample shows how toihandle an exception from a COM PMC in a CAPE-OPEN

compliant manner. The code might be part of the calculation routine of a unit operation PMC while setting a

property in a material object (variable mo) connected to one of its ports. Exceptions defined in the above

table are caught by their respective .NET exception class. All errors defined in the CAPE-OPEN error

handling specification are caught through the COMException block and are then further distinguished by the

HResult code which can be read from the ErrorCode attribute of the COMException object.

virtual Calculate()

{

 // …

 try

 {

 mo.SetProp(“enthalpy”, “liquid”, empty, “mixture”, “moles”, val);

 }

 catch(DivideByZeroException dbz)

{

 // …

}

// … handle other exceptions from the above table where necessary

 catch(COMException ex)

 {

 // handle all errors of ICapeThermoMaterialObject.SetProp

 switch(ex.ErrorCode)

 {

 case (int)CapeErrorInterfaceHR.ECapeBadArgumentHR:

 {

 ECapeUser ecu = mo as ECapeUser;

 // use ECapeUser members such as ecu.code, ecu.description, …

 ECapeBadArgument ecba = mo as ECapeBadArgument;

 // access ECapeBadArgument member ecba.position

 } break;

 // …
 }

 }

}

It should be noted, that the above code does not check whether the material object actually supports the
interfaces ECapeUser and ECapeBadArgument as described by the error handling interface specification.

4.2.2 Throwing Exceptions from a .NET-Based PMC in a COM-based PME

In .NET, the application-based structured exception classes should derive from the .NET application
exception class, System.ApplicationException (DeRemer 2004) which can communicate an HResult value to

the calling COM component As indicate above, CAPE_OPEN error handling differs from the standard COM

GetErrorInfo API. This sections describes the mechanism required for objects to report error information
using the CAPE-OPEN error handling standards.

The CAPE-OPEN objects should implement the error interfaces and return the appropriate CAPE-OPEN

defined HRESULT values (CO-LaN 2003). This approach requires two steps for implementation in .NET.

30

First, an exception must be defined that contains a proper HResult value. Second, the component must

implement the error interfaces defined in the error handling specification.

A straight forward approach to define exception classes with HResults is to include the HResult definition

into the constructor of the exception class:

public class CapeBadArgumentException : CapeDataException

{

 public CapeBadArgumentException()

 {

 this.HResult = (int)CapeErrorInterfaceHR.ECapeBadArgumentHR;

 }

}

Raising this exception within some .NET-based code will transmit the defined HResult value to the calling

COM component. The caller will then try to evaluate the CAPE-OPEN error interfaces in order to find out

further information on the error. A possible implementation of some of these interfaces might look like this:

public class PropertyPackage : ICapeIdentification, ICapeThermoPropertyPackage,

ECapeUser, ECapeRoot, ECapeBadArgument // , …

{

 // ECapeRoot members

 string m_name;

 public string name

 {

 get { return m_name; }

 }

 // ECapeUser members

 string m_description, m_scope, m_more_info, m_interface_name, m_operation;

 int m_code;

 public string description

 {

 get { return m_description; }

 }

 // other members for ECapeUser

// same for other error interfaces

 // remainder of implementation

}

The last step in the process is the actual throwing of the exception by the source component. In this case, the

desired exception to be thrown is a bad argument exception. First, all members corresponding to interfaces

relevant for ECapeBadArgument must be set, finally the actual exception is thrown:

public void CalcProp(…)

{

 // …

 // raise an exception, first set all members for relevant error interfaces

 m_name = “Bad argument encountered”;

 m_description = “The phase argument is not supported”;

 // set other error members …

 // finally, raise the exception

 throw new CapeBadArgumentException();

 // …

}

The above error handling code is used in a CAPE-OPEN compliant property package and was tested against

the CAPE-OPEN based flowsheeting environment COFE (Amsterchem, http://www.amsterchem.com/) and

error information was successfully transmitted, including detail information about the errors indicated.

31

4.3 Implementation of Collections

Collection implementations need to be able to implement the CAPE-OPEN collection interface, allow COM-

based clients to enumerate the collection and provide .NET clients access to collection members as well.

.NET framework Version 1.x has two basic collection classes available, an Array and an ArrayList. Version

2.0 of the .NET framework adds a number of generic collection classes that can also be used. The advantage

to the generic collections in .NET v2.0 is the fact that the contained values are strongly typed, whereas the

arrays in .NET 1.x are not. That means that a .NET 2.0 collection of parameters could be defined at design

time to only contain elements derived from ICapeParameter. In either case, the .NET collections can be

wrapped with a class that exposes the CAPE-OPEN ICapeCollection interface. It should be noted that the

CAPE-OPEN tester uses a 1-indexed array, that is, the lowest value of the index sent is 1, as such the Item

method needs to subtract 1 from the index requested as the .NET collections are 0-indexed. A .NET version

2.0 parameter collection could be defined as follows:

[

 Serializable,

 ComVisibleAttribute(true),

 GuidAttribute("6870DFAF-746E-4dfb-A26F-1261DE7B17EE")

]

public ref class CParameterCollection : public BindingList<ICapeParameter^>,

 public ICapeIdentification,

 public ICapeCollection,

 public ICapeUnitCollection

{

private:

 String^ m_ComponentName;

 String^ m_ComponentDescription;

public:

 CParameterCollection(void)

 {

 };

 ~CParameterCollection ()

 {

 this->Clear();

 }

 // ICapeIdentification methods

 virtual property String^ ComponentName{

 String^ get()

 {

 return m_ComponentName;

 }

 void set (String^ value)

 {

 m_ComponentName = value;

 }

 }

 virtual property String^ ComponentDescription{

 String^ get()

 {

 return m_ComponentDescription;

 }

 void set (String^ value)

 {

 m_ComponentDescription = value;

 }

 }

 //These are the ICapeCollection member implementations

 virtual int CollectionCount() = ICapeCollection::Count

 {

 return this->Items->Count;

 }

32

 [returnvalue: MarshalAs(UnmanagedType::IDispatch)]

 virtual Object^ CollectionItem(Object^ index) = CapeOpen::ICapeCollection::Item

 {

 Object^ retval = nullptr;

 Type^ indexType = index->GetType();

 if ((indexType == System::Int16::typeid) ||

 (indexType == System::Int32::typeid)

 || (indexType == System::Int64::typeid)){

 int i = dynamic_cast<IConvertible^>(index)->ToInt32(

 gcnew NumberFormatInfo());

 retval = this[i-1];

 }

 if ((indexType == System::String::typeid)){

 String^ name = dynamic_cast<String^>(index);

 for (int i = 0; i < this->Count; i++){

 ICapeIdentification^ p_Id;

 p_Id = dynamic_cast<ICapeIdentification^>(this[i]);

 if (!String::Compare(p_Id->ComponentName, name)){

 retval = this[i];

 }

 }

 }

 return retval;

 }

};

One other key issue in the Item() method is the check to determine if the index is either a 16-bit, 32-bit, or

64-bit integer. The CAPE-OPEN tester actually sends both 16-bit and 32-bit integer indices to the Item
function. It is not obvious from the tester’s Visual Basic 6 code as to whether the value was a 16-bit or 32-bit

integer, so in order to prevent the Item method from failing as a result of the client application, the index is

tested to see if it is any integer type available to .NET.

4.4 Persistence

There are three persistence scenarios that need to be considered here, persistence of a .NET-based PMC in a

COM-based PME, persistence of a COM-based PMC in a .NET-based PME, and persistence of a .NET-

based PMC in a .NET based PME.

4.4.1 Persistence of a .NET-based PMC in a COM-based PME

� General Procedure

CAPE-OPEN compliant simulators (process modelling environments) expect components such as unit

operations to implement an interface called IPersistStreamInit. However, this interface has no equivalent in
the .NET framework and is not taken care of by the automatically generated wrappers. Hence, what needs to

be done is to emulate an interface with identical method names and parameters.

� Defining Required Interfaces

The interface IPersist is an interface from which other persistence interfaces inherit. It must be defined first

(all code samples here are in C#):

[

 InterfaceType(ComInterfaceType::InterfaceIsIUnknown),

 Guid("0000010c-0000-0000-C000-000000000046"),

 ComVisibleAttribute(true)

]

 public interface class IPersist

 {

 void (out Guid pClassID);

 };

33

 [

 InterfaceType(ComInterfaceType::InterfaceIsIUnknown),

 Guid("00000109-0000-0000-C000-000000000046"),

 ComVisibleAttribute(true)

]

 public interface class IPersistStream : IPersist

 {

 void GetClassID(out Guid pClassID);

 [PreserveSig]

 int IsDirty();

 void Load(System::Runtime.InteropServices.ComTypes.IStream pStm);

 void Save(System::Runtime.InteropServices.ComTypes.IStream pStm,

 [In, MarshalAs(UnmanagedType.Bool)] bool fClearDirty);

 void GetSizeMax(long %pcbSize);

 };

 [

 InterfaceType(ComInterfaceType::InterfaceIsIUnknown),

 Guid("7FD52380-4E07-101B-AE2D-08002B2EC713"),

 ComVisibleAttribute(true)

]

 public interface class IPersistStreamInit : IPersist

 {

 void GetClassID(out Guid pClassID);

 [PreserveSig]

 int IsDirty();

 void Load(System.Runtime.InteropServices.ComTypes.IStream pStm);

 void Save(System.Runtime.InteropServices.ComTypes.IStream pStm,

 [In, MarshalAs(UnmanagedType.Bool)] bool fClearDirty);

 void GetSizeMax(long %pcbSize);

 void InitNew();

 };

� Implementing IPersistStreamInit

Now, you can implement persistence on behalf of your component by fulfilling the IPersistStreamInit

interface. Arbitrary data (such as a string) can be given to the UCOMIStream interface (in Visual Studio

2005, and the .NET Framework version 2.0, the UCOMIStream interface has been replaced with the

System.Runtime.InteropServices.ComTypes.IStream interface) in the Save method and is retrieved in the

Load() method. Implementing GetSizeMax() is not strictly required. An example Save() method which first
writes the amount of data and the an actual object in binary form looks like this:

public void Save(UCOMIStream pStm, bool fClearDirty)

 {

 int cb;

 int* pcb = &cb;

 byte[] arrLen = new byte[2];

 // Convert the string into a byte array

 MemoryStream memoryStream = new MemoryStream();

 BinaryFormatter binaryFormatter = new BinaryFormatter();

 binaryFormatter.Serialize(memoryStream, data);

 byte[] bytes = memoryStream.ToArray();

 memoryStream.Close();

 // construct length (separate into two separate bytes)

 arrLen[0] = (byte)(bytes.Length % 256);

 arrLen[1] = (byte)(bytes.Length / 256);

 // Save the array in the stream

 stream.Write(arrLen, 2, new IntPtr(pcb));

 stream.Write(bytes, bytes.Length, new IntPtr(pcb));

 }

And a corresponding Load() method reading an object from a stream looks like this:

 public void Load(UCOMIStream pStm)

 {

 object data = null;

 int cb;

34

 byte[] arrLen = new Byte[2];

 // Read the length of the string

 int* pcb = &cb;

 stream.Read(arrLen, 2, new IntPtr(pcb));

 // Calculate the length

 cb = 256 * arrLen[1] + arrLen[0];

 // Read the stream to get the string

 byte[] bytes = new byte[cb];

 stream.Read(bytes, cb, new IntPtr(pcb));

 // Deserialize byte array

 MemoryStream memoryStream = new MemoryStream(bytes);

 BinaryFormatter binaryFormatter = new BinaryFormatter();

 object objectDeserialize = binaryFormatter.Deserialize(memoryStream);

 if (objectDeserialize != null)

 {

 data = objectDeserialize;

 }

 memoryStream.Close();

 return data;

 }

The implementation of the other method in the interface is trivial.

4.4.2 Persistence of a .NET-based PMC in a .NET-based PME

Of the three cases, this is the simplest, use .NET-based object serialization. In this case, all PMCs need to

implement the ISerializable interface and have the Serializable attribute applied. As long as all objects
referenced by the PMC are serializable, then the PMC can be serialized by the PME using basic .NET

serialization procedures. It is important to note that the Serializable attribute is not inheritable. All PMCs,

PMC based classes, and member variables referenced by the PMC, must be serializable. In the event that all

objects are not serializable, the PMC can mark the non-serializable objects as such and implement custom

serialization, as described in MSDN.

4.4.3 Persistence of a COM-based PMC in a .NET-based PME

The simplest method to persist COM-based PMCs in a .NET PME is to create a .NET-based wrapper class

for the COM PMC that is serializable. The wrapper needs to test the COM PMC to determine which COM

persistence mechanism it uses and then call the appropriate functions to persist the object to a serializable
stream. This will require use of custom serialization and implementation of the ISerializable interface. The

COM-based PMC can then be serialized to a class that wraps a System.IO.MemoryStream object and

implements the System.Runtime.InteropServices.ComTypes.IStream interface (Nathan 2002).

4.5 Registering Objects

The .NET object must be registered and placed in the appropriate CAPE-OPEN component categories. This

can be accomplished by instructing Visual Studio to register the class library for COM interoperation. This

process adds the classes to the .NET component category in the system registry. In order to expose the object

as a CAPE-OPEN-based PMC, the component must also be registered in the appropriate CAPE-OPEN

categories, which must be accomplished using a COM registration function that creates the appropriate

CAPE-OPEN categories and adds the object to the categories (Troelsen 2002). The following code snippet

implements the COM registration and unregistration functions for a unit operation, and populates the Cape
description key using information contained in the assemblies custom attributes.

[ComRegisterFunctionAttribute]

static void RegisterFunction(Type^ t)

{

 String^ keyname = String::Concat(L"CLSID\\{", t->GUID.ToString(),

 L"}\\Implemented Categories");

 Microsoft::Win32::RegistryKey^ key = Win32::Registry::ClassesRoot->

35

 OpenSubKey(keyname, true);

 key->CreateSubKey("{678c09a5-7d66-11d2-a67d-00105a42887f}");//UnitOp CATID

 key->CreateSubKey("{678C09A1-7D66-11D2-A67D-00105A42887F}");//CapeObject

 key->Close();

 key = Win32::Registry::ClassesRoot->OpenSubKey(String::Concat(L"CLSID\\{",

 t->GUID.ToString(), L"}"), true);

 key->CreateSubKey(L"CapeDescription");

 key->Close();

 key = Microsoft::Win32::Registry::ClassesRoot->OpenSubKey(

 String::Concat(L"CLSID\\{", t->GUID.ToString(), L"}",

 L"\\CapeDescription"), true);

 Assembly^ assembly = Assembly::GetExecutingAssembly();

 if (assembly && String::Compare(assembly->GetName()->Name, L"mscorlib")){

 //here we are parsing out copyright info attribute

 array<Object^>^ CopyrightInfo = assembly->GetCustomAttributes(

 AssemblyCopyrightAttribute::typeid,false)

 //here we are parsing out copyright info attribute

 array<Object^>^ DescriptionInfo = assembly->GetCustomAttributes(

 AssemblyDescriptionAttribute::typeid,false);

 //here we are parsing out copyright info attribute

 array<Object^>^ VersionInfo = assembly->GetCustomAttributes(

 AssemblyFileVersionAttribute::typeid,false);

 //here we are parsing out copyright info attribute

 array<Object^>^ CompanyURLInfo = assembly->GetCustomAttributes(

 AssemblyProductAttribute::typeid,false);

 String^ CopyRightInfoString = "";

 for(int j=0; j<CopyrightInfo->Length; j++)

 {

 if(j>0)

 {

 CopyRightInfoString += CopyRightInfoString + " ," +

 (dynamic_cast< AssemblyCopyrightAttribute^>(

 CopyrightInfo[j]))->Copyright;

 }

 else

 {

 CopyRightInfoString = (dynamic_cast<AssemblyCopyrightAttribute^>

 (CopyrightInfo[j]))->Copyright;

 }

 }

 //here we are parsing out title info attribute

 array<Object^>^ TitleInfo = assembly->GetCustomAttributes(

 AssemblyTitleAttribute::typeid,false);

 String^ TitleInfoString = "";

 for(int j=0; j<TitleInfo->Length; j++)

 {

 if(j>0)

 {

 TitleInfoString += TitleInfoString + " ," +

 (dynamic_cast<AssemblyTitleAttribute^>(TitleInfo[j]))

 ->Title;

 }

 else

 {

 TitleInfoString = dynamic_cast< AssemblyTitleAttribute^>

 (TitleInfo[j])->Title;

 }

 }

 //here we are parsing out company name attribute

 array<Object^>^ CompanyInfo = assembly->GetCustomAttributes(

 AssemblyCompanyAttribute::typeid, false);

 String^ CompanyInfoString = "";

 for(int j=0; j<CompanyInfo->Length; j++)

 {

 if(j>0)

 {

 CompanyInfoString += CompanyInfoString + " ," +

 (dynamic_cast< AssemblyCompanyAttribute^>(CompanyInfo[j]))

 ->Company;

 }

 else

36

 {

 CompanyInfoString = (dynamic_cast<AssemblyCompanyAttribute^>

 (CompanyInfo[j]))->Company;

 }

 }

 String^ descriptionInfoString = L"";

 for(int j=0; j<DescriptionInfo->Length; j++)

 {

 if(j>0)

 {

 descriptionInfoString += descriptionInfoString + " ," +

 dynamic_cast< AssemblyDescriptionAttribute^>(DescriptionInfo[j])

 ->Description;

 }

 else

 {

 descriptionInfoString = dynamic_cast< AssemblyDescriptionAttribute^>

 (DescriptionInfo[j])->Description;

 }

 }

 String^ versionInfoString = L"";

 for(int j=0; j<VersionInfo->Length; j++)

 {

 if(j>0)

 {

 versionInfoString += versionInfoString + " ," +

 dynamic_cast< AssemblyFileVersionAttribute^>(VersionInfo[j])

 ->Version;

 }

 else

 {

 versionInfoString = dynamic_cast<AssemblyFileVersionAttribute^>

 (VersionInfo[j])->Version;

 }

 }

 String^ companyURLInfoString = L"";

 for(int j=0; j<CompanyURLInfo->Length; j++)

 {

 if(j>0)

 {

 companyURLInfoString += companyURLInfoString + " ," +

 dynamic_cast< AssemblyProductAttribute^>(CompanyURLInfo[j])

 ->Product;

 }

 else

 {

 companyURLInfoString = dynamic_cast< AssemblyProductAttribute^>

 (CompanyURLInfo[j])->Product;

 }

 key->SetValue("Name", TitleInfoString);

 key->SetValue("Description", descriptionInfoString);

 key->SetValue("CapeVersion", "1.0");// name

 key->SetValue("ComponentVersion", versionInfoString);// name

 key->SetValue("VendorURL", CompanyInfoString);// name

 key->SetValue("HelpURL", CompanyInfoString);// name

 key->SetValue("About", CopyRightInfoString);// name

 key->Close();

 }

 }

}

[ComUnregisterFunctionAttribute]

static void UnregisterFunction(Type^ t)

{

 String^ keyname = String::Concat(L"CLSID\\{", t->GUID.ToString(),

 L"}\\Implemented Categories\\{678c09a5-7d66-11d2-a67d-

 00105a42887f}");

 Microsoft::Win32::Registry::ClassesRoot->DeleteSubKey(keyname);

 keyname = String::Concat(L"CLSID\\{", t->GUID.ToString(), L"}\\Implemented

 Categories\\{678C09A1-7D66-11D2-A67D-00105A42887F}");

 Microsoft::Win32::Registry::ClassesRoot->DeleteSubKey(keyname);

37

 keyname = String::Concat(L"CLSID\\{", t->GUID.ToString(),

 L"}\\CapeDescription");

 Microsoft::Win32::Registry::ClassesRoot->DeleteSubKey(keyname);

}

The remaining issue is the instantiation of the object by COM. This is not a trivial task as .NET registers that
the executable for this registry item as the .NET framework core library, mscorlib.dll. In order to instantiate

the object, the assembly that contains it must be placed in one of three a specific locations. These locations

are 1) the global assembly cache, 2) a code base which is specified in the registry key, or 3) a directory
located within the directory that contains the application attempting to instantiate the object (Troelsen 2002).

By selecting the register for COM interop compiler option in C# and Visual Basic, the code base registry key

is properly configured for COM interop.

It should be noted that the latest release of Visual Studio promises registration-free COM interoperation.

Registration-free COM interop uses an application manifest to provide the information required for class

instantiation. To date, this has not been tested.

38

5. Motivation and Roadmap for .NET-based CAPE-OPEN

This section is intended to provide a discussion of the options available for moving forward with the
development and ongoing extension of CAPE-OPEN interface standards given the development of the .NET

framework by Microsoft. So far, this document has provided a brief discussion of the added features

associated with .NET, and has shown that .NET objects can be readily used in a COM environment. Further,
a .NET environment can also readily use objects created in COM. This demonstrated interoperability is the

first step in moving from one object model to another – ensuring legacy objects are supported. Clearly,

interoperability, legacy support, and added features are important in this endeavour, but other issues remain,

such as whether there will be a requirement for future changes in object model and will the new object model

be robust enough to evolve as new technologies are developed and brought to bear on future problems.

As a starting point for this discussion, it should be recalled that “The first objective of the [CAPE-OPEN]

partnership was to understand how software for designing and optimising process plants could be modified

to make use more cost-effective by integrating software pieces one into another.” (Pons 2003) At present,

there stands significant experience demonstrating the success of this endeavour as COM-based PMCs can
now readily be utilized in a wide range of PMEs through the use of the CAPE-OPEN interface set. While

this effort is not complete, some interface packages require little more than fine tuning of tested interface

models while other interface packages are still in their infancy, future efforts should build upon past
accomplishment. A clear consideration is that any changes to the object model build upon this experience,

and .NET meets this criterion.

One key issue related to the continued use of COM is that COM is a proprietary technology created by

Microsoft, and Microsoft is in the process of phasing it out. Microsoft’s COM web page

(http://www.microsoft.com /com/default.mspx) clearly states: “Microsoft recommends that developers use

the .NET Framework rather than COM for new development.” At this point, it should be noted that the need

to consider a new object model is due to the reliance on a previous proprietary model and that the .NET

Framework and the Common Language Runtime (CLR) are Microsoft proprietary models. The risk that the

.NET object model will be deprecated or made obsolete is reduced by the fact that the Common Language

Infrastructure (CLI), the C# programming language, and the C++/CLI programming language are open
standards that have been accepted by the European Computer Manufacturer’s Association (ECMA).

Microsoft has implemented a Shared Source version of the CLI and C# language available at

http://www.microsoft.com/downloads/details.aspx?FamilyId=8C09FD61-3F26-4555-AE17-3121B4F51D4D
&displaylang=en. Third-party implementations of both the CLI and C# language exist, such as the Mono

Project (http://www.mono-project.com/Main_Page) and dotGNU (http://dotgnu.info/). These

implementations can run on not just in the Windows environment, but also on Linux/UNIX and Apple’s

Macintosh Operating System. The fact that open-source, shared source, and third-party implementations of

the CLI (and therefore, the .NET Framework) exist reduces the risk that a new object model will be designed

that will supplant this effort.

Another area that must be considered is the ability of the object model to evolve as new technologies are

brought to bear on CAPE-related problems. Recently, CAPE-OPEN-based process simulation tools have

been demonstrated on a parallel processing system. Technologies that one can readily expect process
simulation applications include advances in processor architecture and distributed applications.

Microprocessor manufacturers and software developers are slowly moving away from 32-bit processors to

64-bit processors, which provide more addressable memory and faster computation. Grid computing (Foster,
Kesselman et al. 2001) is focused on large scale resource sharing, innovative applications and high

performance computation. Grid computing technology is reliant on flexible, secure, coordinated resource

sharing amongst members of virtual organizations, which is likely to be required for issues such as supply

chain management and production scheduling.

At present, the .NET Framework, and ultimately the standardized CLI, appear to meet the needs of providing

a relatively stable development platform for the foreseeable future. This architecture improves on issues

related to COM development such as registration (dll Hell) and security. Given the current state of the .NET

Framework, and the third-party/cross platform implementations of the CLI, adoption of these technologies as

39

a replacement for COM is not only inevitable, but expedient. The CAPE-OPEN consortium will discuss the

following possible course of actions:

1. All current (version 1.x) COM-based type libraries will be made available as Primary Interop

Assemblies for use in .NET development. The conversion step is done automatically using the type
library importer utility (tlbimp.exe) that is part of the Microsoft .NET SDK,

2. Interface definitions currently under development must include .NET-based interface definitions in

C#, and COM idl/type libraries or a type library file exported from the .NET assembly.

3. A future version of CAPE-OPEN will consist of .NET-based assemblies, written in C#. The

corresponding COM interface definitions will be exported from the .NET assemblies. The

conversion step is done automatically using the type library exporter utility (tlbexp.exe) that is part

of the Microsoft .NET SDK, This changes the main interface specification work from COM IDL to a

.NET-based interface definition in C#.

4. All draft and final .NET-based assemblies will be strongly-named and will be formally published,

with a unique Assembly.FullName property through the CAPE-OPEN Laboratories Network’s web

site, http://www.co-lan.org. In this step, it must be considered to what extent capabilities from .NET

may be used that are not available via COM interoperability.

Interface definitions in CORBA have not been subject to discussion. Therefore, the list above does not
include changes to the COLaN’s position regarding CORBA.

40

6. Bibliography

Busby, S. and E. Jezierksi. (2001). "Microsoft .NET/COM Migration and Interoperability." from
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/cominterop.asp.

CAPE-OPEN (2000). Conceptual Design Document 2 (CDD2) for CAPE-OPEN Project, Global CAPE-

OPEN.
CO-LaN (2003). Open Interface Specifications: Error Common Interface, Version 7, CAPE-OPEN

Laboratories Network.

DeRemer, R. (2004). "Error Handling: Throwing Custom Exceptions from a Managed COM+ Server

Application." MSDN Magazine 19(3).

ECMA (2005). Standard Number 335, Common Language Infrastructure. Geneva, ECMA International.

Foster, I., C. Kesselman, et al. (2001). "The Anatomy of the Grid: Enabling Scalable Virtual Organization "

The International Journal of High Performance Computing Applications 15(3): 200-222.

Grimes, R. (2003). Programming with Managed Extensions for Microsoft Visual C++ .NET--Version 2003.

Redmond, Microsoft Press.
Microsoft (1995). The Component Object Model Specification. Remond, Microsoft Corporation.

Nathan, A. (2002). .NET and COM: The Complete Interoperability Guide. Indianapolis, Que/Sams.

Pons, M. (2003). "Industrial Implementations of the CAPE-OPEN Standard." AIDIC Conference Series 6:
253-262.

Troelsen, A. (2002). COM and .NET Interoperability. New York, Apress.

41

7. Appendix Creating and Throwing .NET Exceptions

This appendix describes the exception throwing mechanism used in .NET that would transmit error

information back to COM. This method partially complies with the CAPE-OPEN standard, but in the event

that an object throws an exception, the object itself does not expose the CAPE-OPEN error interfaces.
Rather, in accordance with the COM API, the exception in obtained using the GetErrorInfo API. This error

object would support the CAPE-OPEN error interfaces in addition to the COM IErrorInfo interface. Use of

this mechanism would be preferred in a native .NET environment.

In .NET, the application-based structured exception classes should derive from the .NET application

exception class, System.ApplicationException (DeRemer 2004). In order for the exceptions to be consistent

with the error-handling protocol defined as part of CAPE-OPEN, the exceptions should implement the error

interfaces and return the appropriate CAPE-OPEN defined HRESULT values (CO-LaN 2003).

In the current implementation of the CAPE-OPEN exception classes, all exception classes derive from a

CapeRoot object that implements the ECapeRoot interface. As described above, one of the guidelines for
custom exception classes used in an application framework is that the exception derive from the .NET

System.ApplicationException class, and the second guideline states that the class name should end in

Exception, as such the base CAPE-OPEN exception class should be called the CapeRootException class and
expose the ECapeRoot interface. As a result, All CAPE-OPEN based exceptions thrown can be caught as

either a CapeRootException or a System.ApplicationException in addition to being caught as the derived

exception type. Further, the .NET-based exception classes expose an HRESULT value that is used like an

HRESULT in COM. When a .NET exception is thrown by an object, a COM-based PME will receive the

HRESULT specified in the CAPE-OPEN Error Handling Standard. An implementation of the

CapeRootException class is shown below:

[

 Serializable,

 GuidAttribute("6727E5E4-16D0-4a88-9E4A-1607F179BC0B"),

 ComVisibleAttribute(true)

]

public ref class CapeRootException abstract: public System::ApplicationException,

 public ECapeRoot

{

protected:

 String^ m_name;

 CapeRootException () : System::ApplicationException () {}

 CapeRootException (String^ message) : System::ApplicationException (message) {}

 CapeRootException (SerializationInfo^ info, StreamingContext context):

 System::ApplicationException(info, context){}

 CapeRootException (String^ message, Exception^ inner) :

System::ApplicationException(message, inner){}

 public:

 // ECapeRoot method

 // returns the message string in the System::ApplicationException.

 virtual property String^ Name

 {

 String^ get(void)

 {

 return m_name;

 }

 }

};

As described in the CAPE-OPEN Error Handling document, the CapeRootException class is abstract.

Derived classes will set the m_name member variable in their constructor so that the ECapeRoot.Name

member can return the appropriate value. Further, the System.Exception class has four overloaded

constructors which are duplicated in the CapeRootException class. The first constructor is a default and
contains no additional information. The second constructor provides a string that is exposed as an error

42

message by the exception class. The third constructor is uses serialization information and a streaming

context which enables the exception to be sent across application domains. The final constructor allows the

inclusion of an inner exception, which will allow the thrower to include underlying exception information

such as, if division by zero was attempted, the inner exception could indicate that in addition to, for example,
a calculation error, providing more detail as to what failed and where.

The next layer in the CAPE-OPEN error handling standard is the CapeUser error. As described in the error

handling standard, the CapeUserException class is also abstract, and it implements the ECapeError
interface. The listing for the CapeUserException class is shown below. This class provides implementation

of the ECapeUser interface through mapping the information requested by the ECapeUser interface to the

equivalent information provided by the .NET base exception class.

[

 Serializable,

 GuidAttribute("AA381C62-E752-49a1-A6D2-BDD61D9177A4"),

 ComVisibleAttribute(true)

]

public ref class CapeUserException abstract: public CapeRootException,

 public ECapeUser

{

protected:

 String^ m_interfaceName;

 CapeUserException () : CapeRootException ("CapeUserException"){}

 CapeUserException (String^ message) : CapeRootException (message) {}

 CapeUserException (SerializationInfo^ info, StreamingContext context):

CapeRootException(info, context){}

 CapeUserException (String^ message, Exception^ inner) : CapeRootException(message,

inner) {}

public:

 virtual property int code

 {

 int get (void)

 {

 return this->HResult;

 }

 }

 virtual property String^ description

 {

 String^ get (void)

 {

 return this->Message;

 }

 }

 virtual property String^ scope

 {

 String^ get (void)

 {

 return this->Source;

 }

 }

 virtual property String^ interfaceName

 {

 String^ get (void)

 {

 return m_interfaceName;

 }

 }

 virtual property String^ operation

 {

 String^ get (void)

 {

 return this->StackTrace;

43

 }

 }

 virtual property String^ moreInfo

 {

 String^ get (void)

 {

 return this->HelpLink;

 }

 }

};

The actual exception to be thrown when a computation error occurs is the CapeComputationException and it

derives from the CapeUserException class, extending the System.ApplicationException class, and

implementing the ECapeRoot, ECapeUser, and ECapeComputation interfaces. Again, the constructor calls

the appropriate base class constructor with the arguments supplied and then calls the Initialize() method,

which sets the HResult value of the exception to the proper value, the name of the exception class and the

name of the interface exposed by the exception.

[

 Serializable,

 GuidAttribute("9D416BF5-B9E3-429a-B13A-222EE85A92A7"),

 ComVisibleAttribute(true)

]

public ref class CapeComputationException : public CapeUserException,

 public ECapeComputation

{

 void Initialize(void)

 {

 this->HResult = (int)CapeErrorInterfaceHR::ECapeComputationHR;

 m_interfaceName = "ECapeComputation";

 m_name = "CapeComputationException";

 }

public:

 CapeComputationException () : CapeUserException (){Initialize();}

 CapeComputationException (String^ message) : CapeUserException (message)

 {Initialize();}

 CapeComputationException (SerializationInfo^ info, StreamingContext context):

 CapeUserException(info, context)

 {Initialize();}

 CapeComputationException (String^ message, Exception^ inner) :

 CapeUserException(message, inner)

 {Initialize();}

};

The last step in the process is the actual throwing of the exception by the source unit. In this case, the desired

exception to be thrown is a divide by zero exception. A unit operation will be created that creates a variable

of type integer and initializes it to zero. This value will then be divided into a number to create a

System.DivideByZeroException that will be caught in the try…catch block. When the exception is caught, it
will be re-thrown as the inner exception in a new CapeComputationException. A message will also be added

to indicate the nature of the exception.

The final interoperability check is to place this unit operation in either the CAPE-OPEN tester or a CAPE-
OPEN based flowsheeting environment such as COFE (Amsterchem, http://www.amsterchem.com/) and see

what happens. Unfortunately, neither of these environments provides a detailed description of the error, but

both indicate that an error occurred during calculation. The CAPE-OPEN tester simply states that an error
occurred during calculation, whereas COFE indicated that the error was a computation error.

