



# Ontology engineering approach to support process of model and data integration

Linsey Koo, Edlira Kalemi, Franjo Cecelja



#### Background

- Increasing numbers of modelling methods using heterogeneous tools
  - Models remain implicit to whom built them
  - Limits the potential of reusability
  - Time consuming & redundant work
- Lack of complete libraries of bio-chemical processes
- > To retain the valuable models and data in biorefining
  - Systematic approach to identifying, capturing, retrieving, sharing and effectively reusing these models and data
- Need to build new models or integrate existing ones

18AIChE

#### **Existing Framework: CAPE-OPEN**

- Concept
  - Standardisation of interfaces to enable interoperability between simulator software components from different sources
  - Integration of models and tools to take advantage of characteristics that vary between simulation environments







18AIChE



#### **Ontology Engineering Approach**

**Model Representation/Description** 

Generic model representation with semantic description using ontologies: the semantic web service (SWS) description in OWL-S framework



# **Data Representation/Description**



Data uses **similar** principle to model representation and **SWS** description:

## InterCAPEmodel Ontology

Knowledge Representation in the domain of biorefining



- Expand knowledge of process models & data
- Provide a classification & characterisation of models & data
- Derive implicit information through the analysis of explicit knowledge
- Classification of Models
  - Functionality, (biorefining) Platform, Characteristics, Input & Output
- Inputs & Outputs of Models
  - No. of Inputs & Outputs
  - Type of Inputs & Outputs (i.e. material, energy, etc.)
  - Parameters of Inputs & Outputs





| ModelByFunctionality           | ModelByBiorefiningPlatform | ModelByCharacteristics            | ModelByInputType  | ModelByOutputType       |
|--------------------------------|----------------------------|-----------------------------------|-------------------|-------------------------|
| FunctionalityForEquipmentLevel | SugarPlatform              | ModellingScope                    | MaterialInput     | MaterialOutput          |
| Reaction                       | C5SugarPlatform            | ModellingAndSimulation            | FeedstockByType   | ProductType             |
| BiochemicalReaction            | C6SugarPlatform            | ProcessSynthesisAndDesign         | VirginResource    | BiochemicalProduct      |
| ThermochemicalReaction         | Bio-OilPlatform            | PlanningAndScheduling             | WasteResource     | Biofuel                 |
| ChemicalReaction               | BiogasPlatform             | ProcessMonitoringAndControl       | FeedstockBySource | Biomaterial             |
| HeatExchange                   | SyngasPlatform             | IntegratedApproach                | EnergyCrop        | ProductByIndustrySector |
| Heating                        | HydrogenIPlatform          | ComplexityOfModel                 | PrimaryResidue    | CommunicationSector     |
| Cooling                        | OrganicJuicePlatform       | Rigorous                          | Wastes            | EnvironmentSector       |
| PressureChanger                | PyrolyticLiquidPlatform    | Shortcut                          | ChemicalComponent | HealthAndHygieneSecto   |
| IncreaseInPressure             | LigninPlatform             | Conceptual                        | EnergyInput       | HousingSector           |
| DecreaseInPressure             | ElectricityAndHeatPlatform | NatureOfModel                     | Steam             | IndustrialSector        |
| Mixing                         |                            | Mechanistic                       | Heat              | RecreationSector        |
| Splitting                      |                            | Empirical                         | Electricity       | SafeFoodSupplySector    |
| Separation                     |                            | EquationFormOfModel               |                   | TextileSector           |
| HomogeneousSeparation          |                            | Dynamic                           |                   | TransportationSector    |
| HeterogeneousSeparation        |                            | SteadyState                       |                   | ChemicalComponent       |
| FunctionalityForProcessLevel   |                            | ScaleOfModel                      |                   | EnergyOutput            |
| PretreatmentProcess            |                            | IndividualOperatingUnit           |                   | Steam                   |
| SizeReduction                  |                            | FunctionalProcess                 |                   | Heat                    |
| Densification                  |                            | ProcessPlant                      |                   | Electricity             |
| Physico-chemicalProcess        |                            | SupplyChain                       |                   |                         |
| ChemicalProcess                |                            | ModellingType                     |                   |                         |
| BiologicalProcess              |                            | SequentialModularApproach         |                   |                         |
| Densification                  |                            | EquationOrientedApproach          |                   |                         |
| ConversionProcess              |                            | StatisticalModelling              |                   |                         |
| BiochemicalConversion          |                            | BlockDiagramOriented (ForControl) |                   |                         |
| ThermochemicalConversion       |                            | ComputationalFluidDynamics        |                   |                         |

# InterCAPEmodel Ontology

18ACCHE F. Cecelja, N. Trokanas, T. Raafat, and M. Yu, Semantic Algorithm for Industrial Symbiosis Network Synthesis, Journal of Computers & Chengen University of Engineering, vol. 83, pp. 248-266, 2015

#### 9

# InterCAPEmodel Ontology

#### Inputs & Outputs of Model (as data/object properties and as ontology entities)

| nput                      | Output                     | Description                                            |  |  |
|---------------------------|----------------------------|--------------------------------------------------------|--|--|
| HasInput                  | hasOutput                  | Define direction of flow                               |  |  |
| hasNumberofInputs         | hasNumberofOutputs         | Define number of port<br>required for the model by typ |  |  |
| hasNumberofMaterialInputs | hasNumberofMaterialOutputs |                                                        |  |  |
| hasNumberofEnergyInputs   | hasNumberofEnergyOutputs   | of inputs and outputs                                  |  |  |
| hasMaterialInputs         | hasMaterialOutputs         | Define value of materia                                |  |  |
| hasMaterialInput1         | hasMaterialOutput1         | composition for each stream                            |  |  |
| has Material Input 2      | has Material Output 2      |                                                        |  |  |
| has Material Input 3      | has Material Output 3      |                                                        |  |  |
| :                         | :                          |                                                        |  |  |
| hasEnergyInputs           | hasEnergyOutputs           | Define value of energ                                  |  |  |
| hasEnergyInput1           | hasEnergyOutput1           | composition for each stream                            |  |  |
| hasEnergyInput2           | hasEnergyOutput2           |                                                        |  |  |
| hasEnergyInput3           | hasEnergyOutput3           |                                                        |  |  |
| :                         | :                          |                                                        |  |  |
| hasInputParameters        | hasOutputParameters        | Define parameters of                                   |  |  |
| hasInputFlowrate          | hasOutputFlowrate          | input/output and set value                             |  |  |
| hasMassFlowrate           | hasMassFlowrate            | for each parameter in SI units                         |  |  |
| hasMolarFlowrate          | hasMolarFlowrate           |                                                        |  |  |
| hasVolumetricFlowrate     | hasVolumetricFlowrate      |                                                        |  |  |
| hasPhaseFraction          | hasPhaseFraction           |                                                        |  |  |
| hasTemperature            | hasTemperature             |                                                        |  |  |
| hasPressure               | hasPressure                |                                                        |  |  |
| :                         | :                          |                                                        |  |  |

18Al Greecelja, N. Trokanas, T. Raafat, and M. Yu, Semantic Algorithm for Industrial Symbiosis Network Synthesis, Journal of Computers & Chemical 500 SURREY of Engineering, vol. 83, pp. 248-266, 2015



Incorporate explicit knowledge of each model/data in public repository(ies)

**BAIGHE** Increase share & reuse of existing models/datasets

11

# Model Reg. by Ontology Parsing





# **Registration of Model's Input & Output**

13

# **Precondition & Restriction**





<sup>18</sup>AIC Accelja, N. Trokanas, T. Raafat et al., Optimising Environmental Performance of Symbiotic Networks Using Semantics, Journal of Computers & Chemicol Versary of Engineering, vol. submitted, 2014

## Input/Output Matching

- Graphical Method
- Functionality & Input/Output Type
- Process Synthesis Logic
- Property Matching
- Explicit Knowledge
  - Cosine Similarity



#### > Partial Matching Allowed

Trokanas, N., F. Cecelja and T. Raafat (2014). Semantic Input/Output Matching for Waste Processing in Industrial Symbiosis, Computers & Chemical Engineering, 66, pp 259 - 268..

17



#### **Model Integration**

- Candidate models and data are ranked based on semantic relevance
- Best matches that satisfy the <u>requestor's functionality</u> and output property are proposed – the user makes decision



 Enable a (semantic) flexible and user customised model integration fully coordinated by SWS



18AIChE

| Process Model                                  | #<br>Input | Required input<br>components                                                                         | FAME<br>%      |   | Main Output<br>components                                 | FAME<br>%      |
|------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|----------------|---|-----------------------------------------------------------|----------------|
| FAME Purification                              | 1          | S1. FAME, Oil                                                                                        | .852 -<br>.969 | 2 | S1. FAME<br>S2. Oil                                       | .997 -<br>.998 |
| Hexane Extraction                              | 2          | S1. FAME, Glycerol<br>S2. Hexane                                                                     | .830 -<br>.852 | 2 | S1. FAME<br>S2. Glycerol                                  | .852 –<br>.969 |
| Water Washing                                  | 2          | S1. FAME, Glycerol<br>S2. Water                                                                      |                |   |                                                           |                |
| <b>Glycerol Separation</b>                     | 1          | S1. FAME, Glycerol                                                                                   |                |   |                                                           |                |
| Methanol Recovery                              | 1          | S1. Methanol,<br>FAME, Glycerol                                                                      | .719 -<br>.830 | 2 | S1. Methanol<br>(Recycle)<br>S2. FAME, Glycerol           | .719 –<br>.830 |
| Transesterification 1<br>Transesterification 2 | 3          | S1. Waste Oil<br>S2. Methanol<br>S3. Catalyst:                                                       | .000           | 2 | S1. FAME, Glycerol,<br>Methanol<br>S2. Catalyst (Recycle) | .719           |
|                                                |            | T1 - H <sub>2</sub> SO <sub>4</sub><br>T2 - H <sub>2</sub> SO <sub>4</sub> , NaOH                    |                |   |                                                           | .830           |
| Transesterification 3<br>Transesterification 4 | 3          | S1. Virgin Oil<br>S2. Methanol<br>S3. Catalyst:<br>T1 - NaOH<br>T2 - Ca <sub>3</sub> La <sub>1</sub> |                |   |                                                           | .779           |
| hE                                             |            | 5 1                                                                                                  |                |   |                                                           |                |

#### Demonstration





21

#### **Demonstration: Backward Matching**



#### Demonstration

#### Inputs: Outputs: Material Inputs Profits Capacity Environmental Impact Material Outputs Biorefinery Types Biorefinery Transportation Types **Supply Chain** ā Conversion Rates Geo Location Cost Demand Selling Price Material Cultivation Process **Demand Centre** Transportation Storage Flowrate Geo Location Cost, Environmental Impact

#### Biorefinery supply chain model



#### Demonstration

 Representation of supply chain network using taxonomy, attribute, and relation in InterCAPE Ontology



# Demonstration

|                | Input                                                        | Output                                                       | Environment                  |
|----------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------|
| Cultivation    | <ul> <li>Material Input</li> <li>Yield of Biomass</li> </ul> | <ul> <li>Material Output</li> <li>Output Flowrate</li> </ul> | <ul> <li>Software</li> </ul> |
|                | <ul> <li>Seasonality of Biomass</li> </ul>                   | <ul> <li>Geo. Location</li> </ul>                            |                              |
|                | <ul> <li>Input Flowrate</li> </ul>                           | <ul> <li>Cost of Cultivation</li> </ul>                      |                              |
|                | <ul> <li>Land Configuration</li> </ul>                       | Coat of Collavauori                                          |                              |
|                | o Geo Location                                               |                                                              |                              |
|                | Unit Cost of Cultivation                                     |                                                              |                              |
| Transportation | Material Input                                               | <ul> <li>Material Output</li> </ul>                          | <ul> <li>Software</li> </ul> |
|                | <ul> <li>Max. Capacity</li> </ul>                            | <ul> <li>Output Flowrate</li> </ul>                          |                              |
|                | <ul> <li>Input Flowrate</li> </ul>                           | <ul> <li>Geo. Location</li> </ul>                            |                              |
|                | <ul> <li>Geo. Location</li> </ul>                            | <ul> <li>Cost of Transport</li> </ul>                        |                              |
|                | <ul> <li>Unit Cost of Transport</li> </ul>                   |                                                              |                              |
| Storage        | <ul> <li>Material Input</li> </ul>                           | <ul> <li>Material Output</li> </ul>                          | <ul> <li>Software</li> </ul> |
|                | <ul> <li>Max. Capacity</li> </ul>                            | <ul> <li>Output Flowrate</li> </ul>                          |                              |
|                | <ul> <li>Input Flowrate</li> </ul>                           | <ul> <li>Geo. Location</li> </ul>                            |                              |
|                | <ul> <li>Geo. Location</li> </ul>                            | <ul> <li>Cost of Storage</li> </ul>                          |                              |
|                | <ul> <li>Unit Cost of Storage</li> </ul>                     |                                                              |                              |
| Process        | <ul> <li>Material Input</li> </ul>                           | <ul> <li>Material Output</li> </ul>                          | <ul> <li>Software</li> </ul> |
|                | <ul> <li>Max. Capacity</li> </ul>                            | <ul> <li>Output Flowrate</li> </ul>                          |                              |
|                | <ul> <li>Yield of Product</li> </ul>                         | <ul> <li>Geo. Location</li> </ul>                            |                              |
|                | <ul> <li>Input Flowrate</li> </ul>                           | <ul> <li>Cost of Process</li> </ul>                          |                              |
|                | <ul> <li>Geo. Location</li> </ul>                            |                                                              |                              |
|                | <ul> <li>Unit Cost (CAPEX &amp; OPEX)</li> </ul>             |                                                              |                              |
|                | of Process                                                   |                                                              |                              |
| Demand         | <ul> <li>Material Input</li> </ul>                           | <ul> <li>Profit</li> </ul>                                   | <ul> <li>Software</li> </ul> |
| Centre         | <ul> <li>Min. Demand</li> </ul>                              |                                                              |                              |
|                | <ul> <li>Selling Price</li> </ul>                            |                                                              |                              |
|                | <ul> <li>Input Flowrate</li> </ul>                           |                                                              |                              |
|                | <ul> <li>Geo. Location</li> </ul>                            |                                                              |                              |

#### Key parameters of Input/Output for supply chain

```
18AIChE
```



# **Case Study**

#### Requirement of Requesting Model

|           | Model Functionality for<br>Process | Complexity | Flowrate     | Yield |
|-----------|------------------------------------|------------|--------------|-------|
| Process 3 | Co Fermentation                    | Shortcut   | 50,000 kg/hr | 0.075 |

#### List of Models in Repository

|         | Model<br>Scale | Model<br>Functionality | Model<br>Functionality   | Ethanol | Complexity | Flowrate | Yield | Software  | Reference                  |
|---------|----------------|------------------------|--------------------------|---------|------------|----------|-------|-----------|----------------------------|
| MODEL 1 | Process        | Conversion             | C6 Fermentation          | Yes     | Shortcut   | 117,233  | 0.116 | gProms    | (Siougkrou et al.<br>2016) |
| MODEL 2 | Process        | Conversion             | SSF*                     | Yes     | Shortcut   | 449,353  | 0.055 | AspenPlus | (Humbird et al. 2011)      |
| MODEL 3 | Process        | Conversion             | Transesterification      | No      | Detailed   | 1,004    | 0.000 | AspenPlus | (Zhang et al. 2003)        |
| MODEL 4 | Process        | Conversion             | Gasification             | Yes     | Conceptual | 3,967    | 0.066 | Data      | (Wei et al. 2009)          |
| MODEL 5 | Process        | Conversion             | C6 Fermentation          | Yes     | Detailed   | 74,256   | 0.121 | AspenPlus | (AspenPlus 2007)           |
| MODEL 6 | Process        | Conversion             | Gasification             | Yes     | Conceptual | 1,653    | 0.114 | Data      | (Wei et al. 2009)          |
| MODEL 7 | Process        | Conversion             | SSF*                     | Yes     | Conceptual | 10,722   | 0.016 | Data      | (Wei et al. 2009)          |
| MODEL 8 | Process        | Conversion             | C6 Fermentation          | Yes     | Conceptual | 47,191   | 0.075 | AspenPlus | (Siougkrou et al.<br>2016) |
| MODEL 9 | Process        | Conversion             | Indirect<br>Gasification | No      | Detailed   | 6,507    | 0.000 | AspenPlus | (Spath et al. 2005)        |

27

#### Elimination:

#### No Ethanol & No Cost available

|         | Model   | Model         | Model                    |         |            |          |       |           |                            |
|---------|---------|---------------|--------------------------|---------|------------|----------|-------|-----------|----------------------------|
|         | Scale   | Functionality | Functionality            | Ethanol | Complexity | Flowrate | Yield | Software  | Reference                  |
| MODEL 1 | Process | Conversion    | C6 Fermentation          | Yes     | Shortcut   | 117,233  | 0.116 | gProms    | (Siougkrou et al.<br>2016) |
| MODEL 2 | Process | Conversion    | SSF*                     | Yes     | Shortcut   | 449,353  | 0.055 | AspenPlus | (Humbird et al. 2011)      |
| MODEL 3 | Process | Conversion    | Transesterification      | No      | Detailed   | 1,004    | 0.000 | AspenPlus | (Zhang et al. 2003)        |
| MODEL 4 | Process | Conversion    | Gasification             | Yes     | Conceptual | 3,967    | 0.066 | Data      | (Wei et al. 2009)          |
| MODEL 5 | Process | Conversion    | C6 Fermentation          | Yes     | Detailed   | 74,256   | 0.121 | AspenPlus | (AspenPlus 2007)           |
| MODEL 6 | Process | Conversion    | Gasification             | Yes     | Conceptual | 1,653    | 0.114 | Data      | (Wei et al. 2009)          |
| MODEL 7 | Process | Conversion    | SSF*                     | Yes     | Conceptual | 10,722   | 0.016 | Data      | (Wei et al. 2009)          |
| MODEL 8 | Process | Conversion    | C6 Fermentation          | Yes     | Conceptual | 47,191   | 0.075 | AspenPlus | (Siougkrou et al.<br>2016) |
| MODEL 9 | Process | Conversion    | Indirect<br>Gasification | No      | Detailed   | 6,507    | 0.000 | AspenPlus | (Spath et al. 2005)        |

#### Matching & Performance Ranking Result

|         | Semantic<br>Similarity | Cosine Similarity | Euclidean<br>Similarity | Property<br>Similarity | Aggregated<br>Similarity |
|---------|------------------------|-------------------|-------------------------|------------------------|--------------------------|
| MODEL 1 | 0.833                  | 1.000             | 0.832                   | 0.916                  | 0.875                    |
| MODEL 2 | 0.750                  | 1.000             | 0.000                   | 0.500                  | 0.625                    |
| MODEL 5 | 0.667                  | 1.000             | 0.939                   | 0.970                  | 0.818                    |
| MODEL 8 | 0.667                  | 1.000             | 0.993                   | 0.996                  | 0.832                    |

18AIChE

# Acknowledgement



18AIChE