

The use of Cape Open tools in research at the University of Cape Town.

Klaus Möller,

October, 2019

Outline

Background

Research topics involving CO

- SCC conversion-energy model
 - Riser reactor
 - Integration of the energy

Carbon black furnace

- Preheat stage Gibbs reactor
- Carbon formation Gibbs reactor

• GTL: COCO

- Air supplied ATR-FT recycle system
- $_{\circ}~$ ATR-Reformer air based energy coupling

Summary

 $_{\circ}$ Work is ongoing

COCO, Scilab and Cape Open tools used for

- Teaching
- Research

The presentation is about the ongoing research work

Advantages

- Simple flexible platform, fast prototyping, integrates well
- There is prior knowledge

Limitations

- Database, performance
- Often study anomalous systems or systems with large number of species
- Need for extensive customisation, compromises needed (nice to have versus the thesis must be completed on time)
- $_{\circ}~$ We are still not experts

SCC (superflex catalytic cracking)

Schematic flow diagram for a SCC unit

- Some notes
- Energy integration
- Catalyst:fuel ratio >> 10
- Products used for regeneration, heating
- Catalyst is the energy carrier

Operational details of the SCC unit

- T>>600C
- Products: target light olefins and aromatics

SCC – reactions and NG

Reaction families that occur in the SCC

Reaction Class	Specific Reaction			
1. Cracking :				
 Paraffin cracked to olefins and smaller paraffins; 	$C_{10}H_{22} \rightarrow C_4H_{10} + C_6H_{12}$			
 Olefins cracked to smaller olefins; 	$C_9H_{18} \rightarrow C_4H_8 + C_5H_{10}$			
 Aromatic side-chain scission; 	$ArC_{10}H_{21} \rightarrow ArC_5H_9 + C_5H_{12}$			
 Naphthenes (cycloparaffins) cracked to olefins and smaller compounds 	$Cyclo-C_{10}H_{20} \rightarrow C_6H_{12} + C_4H_8$			
2. Isomerization:				
 Olefin bond shift; 	$1-C_4H_8 \rightarrow \text{trans-}2-C_4H_8$			
 Normal olefin to iso-olefin; 	$n-C_5H_{10} \rightarrow iso-C_5H_{10}$			
 Normal paraffin to isoparaffin; 	$n-C_4H_{10} \rightarrow iso-C_4H_{10}$			
3. Hydrogen transfer:				
 Cycloaromatization: Paraffin and olefins are converted to aromatics and paraffins. 	Naphthene + olefin → aromatic + paraffin			
4. Transalkylation/alkyl-group transfer	C ₆ H ₄ (CH ₃)2 + C ₆ H ₆ →2 C ₆ H ₅ CH ₃			
5. Cyclization of olefins to naphthenes	$C_7H_{14} \rightarrow CH_3$ -cyclo- C_6H_{11}			
6. Dehydrogenation	$n-C_8H_{18} \rightarrow C_8H_{16} + H_2$			
7. Dealkylation	Iso-C ₃ H ₇ -C ₆ H ₅ \rightarrow C ₆ H ₆ + C ₃ H ₆			
8. Condensation: to produce multiple- ring aromatics.	Ar-CH = CH ₂ + R1CH=CHR2 \rightarrow Ar-Ar + 2H			

NG (Temane, Mozambique)

Component	Mass (Wt %)
Methane	0.00
Ethane	0.03
Propane	0.70
i-Butane	1.36
n-butane	3.2
Neo-Pentane	0.11
i-Pentane	4.07
n-Pentane	4.58
Benzenes	0.16
Hexanes	12.66
Heptane	26.44
Toluene	0.36
Octane	26.22
Xylene	0.60
Nonane	9.38
Decane	5.07
Undecane	2.87
Dodecane	1.52
Tridecane	0.67

SCC – Feed, measured products

FEED to SCC Products, Coke(=pyrene) a				ene) added as 4wt%
Flow Hydrogen	0.0 kg / h			,
Flow Oxygen	0.0 kg / h		Hydrogen	282.94
Flow Nitrogen	0.0 kg / h		Mathana	226.35
Flow Carbon dioxide	0.0 kg / h		wethane	220.55
Flow Methane	0.0 kg / h		Ethylene	949 88
Flow Ethylene	0.0 kg / h		Ediylene	010.00
Flow Ethane	3.0 kg / h		Ethane	303.15
Flow Propylene	0.0 kg / h			0070.05
Flow Propane	70.0 kg / h		Propylene	2879.95
Flow 1,3-butadiene	0.0 kg / h		Branana	191 90
Flow 1-butene	0.0 kg / h		Flopane	101.09
Flow N-butane	456.0 kg / h		all C4s	1123.69
Flow 1 pontono	0.0 kg/h			
Flow N-pentane	1692.0 kg / h	measured	all C5s	642.68
Flow 1-hexene	0.0 kg / h	lumped		064.03
Flow N-hexane	2537.0 kg / h	lumped		904.03
Flow 1-heptene	0.0 kg / h	snecies	all C7s+Tol	321.34
Flow N-heptane	846.0 kg / h	300000		
Flow 1-octene	0.0 kg / h		all C8s+Xyl	964.03
Flow N-octane	2537.0 kg / h		Nunemene	204.24
Flow 1-nonene	0.0 kg / h		N-nonane	321.34
Flow N-nonane	846.0 kg / h		N-decane	217 26
Flow N-decane	507.0 kg / h			211.20
Flow N-undecane	287.0 kg / h		N-undecane	123.28
Flow N-dodecane	152.0 kg / h			05.00
Flow N-tridecane	67.0 kg / h		N-dodecane	65.68
Flow Benzene	0.0 kg / h		NI tride como	28.20
Flow Toluene	0.0 kg / h		N-Indecane	20.29
Flow M-xylene	0.0 kg / h	coke 🚃	Pyrene	404 20
Flow Pyrene	0.0 kg / h		r yrene	707.20
Flow Water	0.0 kg / h			

Matrix method – COCO fixed conversion

IF reactions are independent

Missing species, lumped species

Least squares method used

$$\Psi(X) = \sum_{i} \epsilon_{i}^{2}$$
$$\epsilon_{i} = F_{out,i}^{measured} - F_{out,i}^{model}$$

- Error based on species
- Cannot fit uniquely for more conversions (extents) than there are reactions

When there are lumps

$$\epsilon_i = F_{out,lump1}^{measured} - \sum_{j=lump1} F_{out,j}^{model}$$

- Works as long as the number of errors > number of equations
- More species measured (lump=species) than equations

Need to regress data to obtain product species Approach 1

- Use elementary reactions
- System does not solve uniquely,
- complicated by series reaction steps
 Approach 2
- Premise: It does not matter what happens inbetween, as long as the input and output are correctly represented, this ensures
 - Mass balance correct
 - $_{\circ}~$ Energy correctly accounted for
- 2 stage reactor system

SCC - Two stage riser section

Feed converted to propene + H2

Reaction i	Stag	e 1 Rea	ctions
Reaction 1	C ₂ H ₆	→ 2/	$/3C_{3}H6 + H_{2}$
Reaction 2	C ₃ H ₈	→ C	$_{3}H_{6} + H_{2}$
Reaction 3	C4H10	→ 4/	$/3C_{3}H_{6} + H_{2}$
Reaction 4	C5H12	→ 5	$/3C_{3}H_{6} + H_{2}$
Reaction 5	C6H14	→ 6	$/3C_{3}H_{6} + H_{2}$
Reaction 6	C7H16	→ 7.	$/3C_{3}H_{6} + H_{2}$
Reaction 7	C_8H_{18}	→ 8	$/3C_{3}H_{6} + H_{2}$
Reaction 8	C9H20	→ 9/	$/3C_{3}H_{6} + H_{2}$
Reaction 9	C10H22	→ 1	$0/3C_{3}H_{6} + H_{2}$
Reaction 10	C11H24	→ 1	$1/3C_{3}H_{6} + H_{2}$
Reaction 11	C12H26	→ 1	$2/3C_{3}H_{6} + H_{2}$
Reaction 12	C13H28	→ 13	$/3C_{3}H_{6} + H_{2}$

Propene + H2 converted to all assumed products N reactions < N measured species

Reaction i		Sta	ge 2 Reactions
Reaction 1	$C_3H_6 + 3H_2$	\rightarrow	3CH4
Reaction 2	C ₃ H ₆	\rightarrow	3/2C ₂ H ₄
Reaction 3	$C_{3}H_{6} + 3/2H_{2}$	\rightarrow	3/2C ₂ H ₆
Reaction 4	$C_3H_6 + H_2$	\rightarrow	C3H8
Reaction 5	C ₃ H ₆	\rightarrow	$1/16(C_4H_6 + 10C_4H_8 + C_4H_{10})$
Reaction 6	C ₃ H ₆	\rightarrow	$1/20(C_5H_8 + 10C_5H_{10} + C_5H_{12})$
Reaction 7	C ₃ H ₆	\rightarrow	$1/12(4C_6H_6 + C_6H_{12} + C_6H_{14}) + 11/12H_2$
Reaction 8	C ₃ H ₆	\rightarrow	$1/14(4C_7H_8 + C_7H_{14} + C_7H_{16}) + 11/14H_2$
Reaction 9	C ₃ H ₆	\rightarrow	$1/16(4C_8H_{10} + C_8H_{16} + C_8H_{18}) + 11/16H_2$
Reaction 10	$C_{3}H_{6} + 1/6H_{2}$	\rightarrow	1/6(C ₉ H ₁₈ + C ₉ H ₂₀)
Reaction 11	$C_{3}H_{6} + 3/10H_{2}$	\rightarrow	3/10C10H22 Assumptions about
Reaction 12	$C_{3}H_{6} + 3/11H_{2}$	\rightarrow	3/11C11H24 the products made
Reaction 13	$C_{3}H_{6} + 1/4H_{2}$	→	1/4C ₁₂ H ₂₆
Reaction 14	$C_{3}H_{6} + 3/13H_{2}$	\rightarrow	3/13C ₁₃ H ₂₈
Reaction 15	C ₃ H ₆	→	3/16C ₁₆ H ₁₀ + 33/16H ₂

All reactions parallel, easy to tune selectivity

SCC – regression, stage 2 conversions

Prediction of the data

Conversions

i	name	Measured(kg/h)	Predicted(kg/h)
1	Hydrogen(!)	283	282.9
2	Methane	226.3	226.4
3	Ethylene	949.9	949.9
4	Ethane	303.1	303.2
5	Propylene	2879.9	2880
6	Propane	181.9	181.9
7	all C4s	1123.7	1123.7
8	all C5s	642.7	642.7
9	all C6s+Bz	964	964
0	all C7s+Tol	321.3	321.3
1	all C8s+Xyl	964	964
2	N-nonane	321.3	321.3
.3	N-decane	217.3	217.3
4	N-undecane	123.3	123.3
.5	N-dodecane	65.7	65.7
.6	N-tridecane	28.3	28.3
.7	Pyrene	404.2	404.2

Conversion of reaction i
X(1)= 0.02022
X(2)= 0.09707
X(3)= 0.0289
X(4)= 0.01774
X(5)=0.11483
X(6)= 0.06568
X(7)= 0.10304
X(8)= 0.03412
X(9)=0.10187
X(10)= 0.03258
X(11)= 0.02189
X(12)= 0.01244
X(13)= 0.00663
X(14)= 0.00286
X(15)= 0.04583

- 1	name	Mout(kg/ff)
1	Hydrogen	283
2	Methane	226.3
3	Ethylene	949.9
4	Ethane	303.1
5	Propylene	2879.9
6	Propane	181.9
7	1,3-butadiene	90.3
8	1-butene	936.4
9	N-butane	97
10	Isoprene	52
11	1-pentene	535.6
12	N-pentane	55.1
13	1-hexene	168
14	N-hexane	172.1
15	1-heptene	55.7
16	N-heptane	56.8
17	1-octene	166.1
18	N-octane	169.1
19	1-nonene	159.4
20	N-nonane	161.9
21	N-decane	217.3
22	N-undecane	123.3
23	N-dodecane	65.7
24	N-tridecane	28.3
25	Benzene	623.9
26	Toluene	208.9
27	M-xylene	628.8
28	Pyrene	404.2

The unpacking of the lumped analysis

- Based on assumed product distributions
- Prior knowledge from the process

SCC - COCO

SCC – COCO, energy integration

- The "circulating catalyst" as energy carried
- Catalyst:oil >20
- Assume near isothermal (T=625)
- Coke (pyrene) separated and combusted with tail gas
- Q preheat feed (Q1) and stage 1 (Q2)
- Stage 1 Endothermic,
- Stage 2 Exothermic
- TControl 1: Feed preheater via split (Q1=0.286Q)
- Tcontrol 2: Tout riser via air flowrate
- Tout,stage1 = 490C

SCC – the whole flow sheet

MSc Thesis, University Eduardo Mondlane, Maputo, Mozambique

Carbon Black furnace simulations

Carbon black furnace model

Carbon Black furnace simulations

Carbon black furnace model

Process Modelling & Optimisation Group

UNIVERSITY OF CAPE TOWN

YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

Carbon Black – COCO and Gibbs

Stream	Cool air	Nap 1	4	5	Nap 2	6	7	Water	9	Unit
Pressure	1.97385	1	1	1	1.97385	1	1	1.97385	1	atm
Temperature	700	25	611.765	1660.21	20	1114.6	1315.33	25	714.71	°C
Flow rate	67	1	68	73.1711	4	77.1711	95.6012	33	128.601	mol/h
Mole frac Carbon dioxide	0	0	0	0.0409269	0	0.0388056	3.12585e-07	0	2.32373e-07	
Mole frac Carbon monoxide	0	0	0	0.0957391	0	0.0907767	0.294346	0	0.218815	
Mole frac Water	0	0	0	0.0363969	0	0.0345103	7.04314e-07	1	0.256608	
Mole frac Oxygen	0.21	0	0.206912	0.0852942	0	0.0808732	8.96192e-16	0	6.66223e-16	
Mole frac Hydrogen	0	0	0	0.0182696	0	0.0173226	0.137679	0	0.10235	
Mole frac Nitrogen	0.79	0	0.778382	0.723373	0	0.685879	0.553654	0	0.411582	
Mole frac Naphthalene	0	1	0.0147059	1.33356e-18	1	0.0518329	7.62535e-05	0	5.66863e-05	
Mole frac Pyrene	0	0	0	4.00069e-18	0	3.79332e-18	0.0142435	0	0.0105885	
Flow Carbon dioxide	0	0	0	2.99467	0	2.99467	2.98835e-05	0	2.98835e-05	mol / h
Flow Carbon monoxide	0	0	0	7.00533	0	7.00533	28.1399	0	28.1399	mol / h
Flow Water	0	0	0	2.6632	0	2.6632	6.73333e-05	33	33.0001	mol / h
Flow Oxygen	14.07	0	14.07	6.24107	0	6.24107	8.56771e-14	0	8.56771e-14	mol / h
Flow Hydrogen	0	0	0	1.3368	0	1.3368	13.1623	0	13.1623	mol / h
Flow Nitrogen	52.93	0	52.93	52.93	0	52.93	52.93	0	52.93	mol / h
Flow Naphthalene	0	1	1	9.75782e-17	4	4	0.00728992	0	0.00728992	mol / h
Flow Pyrene	0	0	0	2.92735e-16	0	2.92735e-16	1.3617	0	1.3617	mol / h

approximated as carbon black

Gibbs solutions oscillate

Gibbs minimisation

• Ideal gases
$$f(x) = \min\left(\frac{G}{RT}\right)_{x_i} = \sum_i x_i \left(\frac{\Delta G_{f,i}^0}{RT}\right) + \sum_i x_i ln\left(\frac{y_i P}{P_0}\right)$$
$$g_i(x) = 0 = |a_{i,k}| \cdot x_i - A_k, \quad i = 1 : n, k = 1 : m$$
with *m* elements and n species and *x_i* moles of each species, $y_i = \frac{x_i}{\sum x_i}$.
• Analytical derivatives $\frac{\partial f}{\partial x_i} = \left(\frac{\Delta G_{f,i}^0}{RT}\right) + ln\left(\frac{y_i P}{P_0}\right)$
$$\frac{\partial g_i}{\partial x_k} = a_{i,k}$$

Adiabatic operation

- External loop, energy balance to get T and properties
- Maintains the simplicity of the minimisation
- Only few iterations (typically <5) needed.

Gibbs minimisation, with solid carbon

- Solid activity = 1, thus ln(activity)=0, f modified as follows, n=solid
- Ideal gases $f(x) = min\left(\frac{G}{RT}\right)_{x_i} = \sum_i x_i \left(\frac{\Delta G_{f,i}^0}{RT}\right) + \sum_i x_i ln\left(\frac{y_i P}{P_0}\right), \quad y_i = \frac{x_i}{\sum_{i=1}^{n-1} x_i}, \quad y_n = \frac{1}{P_0}$ $g_i(x) = 0 = |a_{i,k}| \cdot x_i - A_k, \quad i = 1:n, k = 1:m$
- Analytical derivatives $\frac{\partial f}{\partial x_i} = \left(\frac{\Delta G_{f,i}^0}{RT}\right) + \ln\left(\frac{y_i P}{P_0}\right), \quad \frac{\partial f}{\partial x_n} = \left(\frac{\Delta G_{f,n}^0}{RT}\right)$ $\frac{\partial g_i}{\partial x_k} = a_{i,k}$
- Properties using ThermoImport
- Robust method

Need to build ScilabUnitOperation

Carbon Black – Scilab-Gibbs-test

Total flow rates including carbon

Total flow rates of gases only

UNIVERSITY OF CAPE TOWN

VESITHI YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

Carbon Black – Scilab-Gibbs-test

Isothermal, 1000C

Adiabatic

DEAL GAS CHEMICA	REACTION EQUI	LIBRIUM	
ibbs energy minin	nisation with I	Popt solver ========	
=2480.3 [C] P=:	101325.0 [atm]		
i species	moles	molefrac	
1 Carbon dioxid	de 10.0000	0.14493	
2 Water	4.0000	0.05797	
3 Carbon monox:	ide 0.0000	0.00000	
4 Oxygen	2.0700	0.03000	
5 Nitrogen	52.9300	0.76710	
6 Naphthalene	0.0000	0.00000	
7 Hydrogen	0.0000	0.00000	
o Pyrelle	0.0000	0.00000	
1 475638.285 2 280065.038 3 342714.174 4 321146.851 POpt iterations	7		
tatus = 0 teration count =	7		
umber of objectiv	ve function eva	luation	= 8
umber of gradient	t of objective	function evaluation	= 8
umber of constra:	int function ev	aluation	= 8
umber of gradient	t of constraint	function evaluatio	n = 8
umber of hessian	function evalu	ation	= 0
lual infeasibility	/ = 0.000000		
constraint violat:	ton = 0.000000		
complementarity	= 0.000000		
kt error	= 0.000000		

Carbon Black – Scilab-Gibbs-test

Isothermal, 2480C

====				
IDE/	AL GAS CHEMICAL R	EACTION EQUI	LIBRIUM	
Gib	os energy minimisa	ation with I	Popt solver	
===:				
T=24	180.0 [C] P=101	325.0 [atm]		
1	species	moles	moletrac	
1	Carbon diovido	6 6095	0 00326	
2	Water	3 6746	0.09320	
2	Carbon monovide	3 3015	0.03180	
4		3 9285	0.04700	
5	Nitrogen	52,9300	0.74698	
6	Nanhthalene	0.0000	0.00000	
7	Hydrogen	0.3254	0.00459	
8	Pvrene	0.0000	0.00000	
tota	al moles at equil:	ibrium 70.	858	
lag	range multipliers	a anticipation in the model and the second second		
1	20.259			
2	12.991			
3	16.416			
4	14.174			
IPO	ot iterations 1	5		
-				
stat	tus = 0			
ite	ration count = 15			
cpu	time $= 0.0$	933000	240.0575540540	
num	per of objective	function eva	luation	= 16
num	per of gradient o	f objective	function evaluation	= 16
num	per of constraint	function ev	aluation	= 16
num	per of gradient of	f constraint	function evaluation	= 16
num	per of hessian fu	nction evalu	ation	= 0
dua.	l infeasibility	= 0.000000		
cons	straint violation	= 0.000000		
com	Diementarity	= 0.000000		
KKt	error	= 0.000000		

Adiabatic

IDE	AL GAS CHEMICAL RE	ACTION EQUI	LIBRIUM	
G1b	bs energy minimisa	tion with I	Popt solver	
T=2	480.3 [C] P=1013	25.0 [atm]		
i	species	moles	molefrac	
1 2	Carbon dioxide Water	10.0000 4.0000	0.14493 0.05797	
3 4	Carbon monoxide Oxygen	0.0000 2.0700	0.00000 0.03000	
5 6	Nitrogen Naphthalene	52.9300 0.0000	0.76710 0.00000	
7 8	Hydrogen Pyrene	0.0000	0.00000 0.00000	
tot	al moles at equili	brium 69.	000	
lag 1 2 3 4 IPO	range multipliers 475638.285 280065.038 342714.174 321146.851 pt iterations 7			
sta ite cpu	tus = 0 ration count = 7 time = 0.0	20000		
num	ber of objective f	unction eva	luation	= 8
num	ber of gradient of	objective	function evaluation	= 8
num	ber of constraint	function ev	function evoluation	= 8
num dua con com	ber of gradient of ber of hessian fun l infeasibility straint violation plementarity	ction evalu = 0.000000 = 0.000000 = 0.000000	ation	= 0

ATR-SR-syngas-energy coupling

Objective:

- Combined autothermal reforming and steam-reforming
- Using air as a oxygen source
- Energy coupling between the ATR and SR
- Maximising formation of Syngas for Methanol and ammonia production
- Sensitivity of the operating conditions of the ATR-SR on syngas and energy

MSc

University Eduardo Mondlane, Maputo, Mozambique

ATR-SR-syngas-energy coupling

Heat exchanged reformers

- A,B are standalone, while C is integrated
- C is the target, energy for the SR is supplied by the ATR
- Conceptual COCO design

ATR-SR-syngas-energy coupling

Summary Remarks

Research

- On Going
- Good vehicle for process modelling
- Other languages, Fortran, OpenFoam,...
- We are not yet experts!

Acknowledgements

• The students at UCT and UEM

