

CAPE-OPEN 2019 Annual Meeting Amsterdam 22-23 October

National Technical University of Athens School of Chemical Engineering Laboratory of Thermodynamics & Transport Phenomena

UMR-PRU thermodynamic model: application to natural gas processing

V. Koulocheris, N. Novak, A. Plakia, E. Petropoulou, Ch. Boukouvalas, V. Louli, G. Pappa, E. Voutsas

CAPE-OPEN 2019 Annual Meeting, 22-23 October 2019, Amsterdam

Outline

Introduction	UMR thermodynamic modelMotivation
Cape-Open property package	 UMR CAPE-OPEN application UMR Property Package Setup
Simulation examples	 Offshore natural gas processing TEG dehydration CPE in acid gas systems
Challenges	SpeedRobustness

• New applications

UMR-PRU thermodynamic model

UMR-PRU is an advanced cubic Equation of State (EoS)

- EoS-G^E model, combining Peng-Robinson EoS with UNIFAC
- Thermodynamic properties of fluids (Density, Enthalpy, Heat Capacity, etc)
- Phase equilibria between fluids (Vapor-Liquid, Liquid-Liquid)

Predictive model applicable to the Oil & Gas Industry

- Phase envelope, flash calculations, liquid dropout, and thermodynamic properties of natural gas and other petroleum fluids
- Mercury, water, acid gases, MEG, TEG, etc.

Motivation

Chemical thermodynamics for process optimization

- ✓ Expand research activity
- \checkmark Attract interest from the industry

UMR CapeOpen application

Process Modelling Component (PMC) CAPE-OPEN

Process Modelling Environment (PME)

PMC :

- 1. UMR.dll : Fortran library for thermodynamic calculations
- 2. Wrapper : C# library acting as a medium between UMR.dll and PME

UMR Property Package Setup

	PLANT	UNISIM em	bedded flash : eThermo
ADVANCEI UniSim 2017 Honeyw Set Up Parameters Parameters Parameters Parameters	ty Package Filter Types Ss CAPE-OPEN 1.1 CAPE-OPEN 1.1 CAPE-OPEN 1.1 CAPE-OPEN 1.1 CAPE-OPEN 1.1 CAPE-OPEN 1.1)	ty Package: Provider: Umr CapeOpen Package: <please select=""> Description: Umr CapeOpen e: test-1 Model Phase © Vapor O Liquid SchlumbergerBlackOilF PolymerFlash @ Vapor O Liquid SchlumbergerBlackOilF C PolymerFlash @ ThermoFlash Extended PropPkg Setup t Selection st - 2 View arameters Parameters2 Binary Coeffs Stab</please>	× SOPEN Model Descriptions System Umr CapeOpen p Package test ustom View odel Options -Advanced Thermodynamics -Advanced Thermodynamics -Advanced Thermodynamics Test Phase Order Rxns Tabular Notes Vapor: CAPE-OPEN Liquid: Edit Properties

CAPE-OPEN 2019 Annual Meeting, 22-23 October 2019, Amsterdam

Offshore NG processing

- Real, relatively simplified, topside process of a natural gas platform
- Gas condensate well stream for the production of rich gas and stabilized condensate

E. Voutsas, N. Novak, V. Vouli, G. Pappa, E. Petropoulou, Ch. Boukouvalas, E. Panteli, E. Skouras, Thermodynamic modelling of natural gas and gas condensate mixtures, in Natural Gas Processing from Midstream to Downstream. 2019.

Feed fluid

		Mole Eractions	Vapour Phase	Liquid Phase	
Vorksheet	Nitrogen	0.002600	0.002875	0.000324	
Conditions		0.031600	0.033452	0.016252	
Properties	Methane	0.739799	0.803674	0.210513	
Composition	Ethane	0.082400	0.084471	0.065239	
Composition	Propane	0.040000	0.038391	0.053330	
K Value	i-Butane	0.007800	0.006854	0.015642	
User Variables	n-Butane	0.014100	0.011755	0.033530	
Notes	i-Pentane	0.005100	0.003635	0.017239	
Cost Parameters	n-Pentane	0.005100	0.003426	0.018971	
	n-Hexane	0.007600	0.003761	0.039409	
	8001*	0.009762	0.003605	0.060778	
	8002*	0.008438	0.002030	0.061534	
	8003*	0.007422	0.001082	0.059954	
	8004^	0.005005	0.000545	0.055562	
	8005"	0.005895	0.000261	0.052582	
	8006" 9007×	0.000303	0.000118	0.048260	
	0007"	0.004707	0.000043	0.043330	
	8008	0.004203	0.000013	0.030323	
	8010×	0.003700	0.000004	0.034303	
	8011*	0.002692	0.000000	0.024998	
	8012*	0.001962	0.000000	0.018220	
		0.001002	0.000000	0.010220	
		i i i i i i i i i i i i i i i i i i i			
	Total	1 00000			
	rotar	1			
	Edit Edit Pro	perties Basis			
	obmente Dunamice				
Mild Alla	criments				
			OK		

Feed fluid contains pseudocomponents!

TEG dehydration

- UMR-PRU yields identical results in HYSYS and Unisim
- Comparison with HYSYS Glycol package (TST/NRTL)
 - Better prediction of thermodynamic properties with UMR-PRU implies more accurate simulation results

Acid gas/alkanolamine/water mixtures

- Extended UMR-PRU (PR + extended UNIQUAC)
- ➤ Acid gases: CO₂, H₂S
- > Amines: MEA, MDEA
 - ✓ Phase equilibrium
 - ✓ Chemical equilibrium
 - ✓ Simultaneous chemical & phase equilibrium
 - Chemical equilibrium solved in two sequential flash drums
 - ✓ Comparison of UMR-PRU with Acid-Gas model
 - Better prediction of VLE with UMR-PRU

Challenges

• Speed

✓ The CAPE-OPEN simulation is tiresome compared to built-in thermodynamic models

- Simulation robustness
 - ✓ 3 phase flash and phase stability may return artifacts
 - ✓ False labeling of phases as Liquid or Vapor
- New applications
 - ✓ Trace components
 - ✓ 4 phase flash
 - ✓ Hypothetical solids

Thank you for your attention

Questions?

CAPE-OPEN 2019 Annual Meeting, 22-23 October 2019, Amsterdam