
Proprietary Information 1

Development of the Multiflash
CAPE-OPEN Interface

Behnam Salimi
Richard Szczepanski

CAPE-OPEN Annual Meeting October 2019

Proprietary Information 2

Overview

Some history

Current release: Multiflash 7.0

Development for future versions

October 25, 2019

Proprietary Information 3

Multiflash CO Development

Started in 2000 as part of Global CAPE-OPEN project
▪ MF 3.0/3.1 supported Thermo 1.0 specification
▪ VB6

First public release 2002 with MF 3.2

2006 MF 3.5: Added Thermo 1.1 support

2008 MF 3.8
▪ Completely re-written in C++ by Jasper van Baten
▪ Single dll supports Thermo 1.1 and 1.0 and all useful interfaces (Persistence, Edit…)

2014 MF 4.4: 64 bit implementation added

2015 First threadsafe prototype demonstrated with CO

2017 MF 6.2: first release version of threadsafe Multiflash dll

October 25, 2019

Proprietary Information 4

Multiflash 7.1

Release by end of 2019

Multiflash dll
▪ Almost all calculations and models work in threadsafe mode

▪ Updated mercury model, new options for cubic eos and CPA, EOS-CG

▪ Better compatibility of models with other simulators

▪ Python interface

▪ Many other developments mostly concerning GUI

CAPE-OPEN Interface
▪ CO Type Libraries installed with CO-LaN installer

▪ Uses threadsafe (MT) API for improved handling of multiple property packages

October 25, 2019

Proprietary Information 5

Future Developments

Multiflash 7.2
▪ COBIA

▪ Themo 1.0 support by COM interface

CO Thermo – my personal view
▪ Focus on efficiency of implementation and ease of implementation

▪ Aim to make CO Thermo as fast as a native implementation

▪ New features
Properties and derivatives at specified V, T, n

Derivatives of phase equilibrium calculations

Support for parameter regression

Critical points

October 25, 2019

Proprietary Information 6

Why COBIA

October 25, 2019

Proprietary Information 7

Why COBIA

Multiplatform / No dependence on operating system

No dependence on commercial products

Easier on programmers:
▪ Data handling

▪ Strong data typing

▪ Less error prone

More efficient

Better error handling

Support for legacy COM-based CAPE-OPEN

October 25, 2019

Proprietary Information 8

COBIA Interfaces Implementation Requirements

COBIA Software Development Kit (SDK):
▪ Stand-alone installation package

▪ Set of tools to create and test software that utilises COBIA

▪ To compile the source code of interfaces developed using COBIA IDL

▪ To register COBIA components

▪ To test developed software

▪ It also includes examples, code generators, portions of the COBIA source code, etc.

COBIA_CodeGen.exe (Command line app)

or

AmsterCHEM COBIA Class Wizard Add-in for Visual Studio

October 25, 2019

Proprietary Information 9

AmsterCHEM COBIA Class Wizard

Add-in for Visual Studio to help develop COBIA PMC

Based on COBIA Code Generation Interface

Generates classes and the definitions for all the functions in the classes.

The COBIA Wizard does NOT generate ready to run PMCs!

It provides a skeleton with Interfaces and Methods.

The actions in the methods still have to be provided by the developer.

Help from example document for creation of Unit Operation using the Class Wizard.

October 25, 2019

Proprietary Information 10

Visual Studio Configuration

In Visual Studio start an empty C++ project

October 25, 2019
Visual Studio >= 2015

Proprietary Information 11

Visual Studio Configuration

In the project properties set configuration type to DLL Configuration

October 25, 2019

Configuration DLL is
required to give the
PME access to the

library

Proprietary Information 12

Creation of primary PMC object

October 25, 2019
Visual Studio >= 2015

Proprietary Information 13

Creation of primary PMC object

This will generate the following files:

COBIAEntryPoints.cpp

Holds the interface to the entry points and registration setting

MF_CO_COBIA.h

Includes function that returns a description of the current object for error handling

Registration info

MF_CO_COBIA.cpp

Source file for the MF_CO_COBIA

October 25, 2019

Proprietary Information 14

PMC registration

#include <COBIA.h>

#define COBIA_PMC_ENTRY_POINTS

#define COBIA_PMC_DEFAULT_DLLMAIN

#include <COBIA_PMC.h>

//! Define registration scope

/*!

PMC module must implement this function to indicate whether object

registration must be for all users or for the current user.

Return true if registration is for all users, false if registration is for current user only

*/

bool isPMCRegistrationForAllUsers() {

return false;

}

October 25, 2019

Proprietary Information 15

PMC registration

PMC Registration:

COBIA has its own registry

COBIA API for direct access to registry

COBIA API provides PMC registrar component
▪ Just fill out the details

▪ Takes care of PMC registration

COBIA PMC registration also registers a COM object (on Windows)

October 25, 2019

Proprietary Information 16

Visual Studio Configuration

The COBIA SDK installer creates an environment variable COBIA_Include pointing to the
Include folders.

In the project properties set C/C++ Additional Include Directories to: $(COBIA_Include)

October 25, 2019

Proprietary Information 17

Creation of CO PropertyPackage(PP) and PPManager objects

October 25, 2019
Visual Studio >= 2015

Proprietary Information 18

PropertyPackage Interfaces

Right-click PropertyPackage.h

Select Implement CAPE-OPEN Interface on COBIA Class

October 25, 2019

Click add and select the following interfaces:
CAPEOPEN110::ICapeIdentification

CAPEOPEN110:: ICapeUtilities
CAPEOPEN110:: ICapeThermoMaterialContext

CAPEOPEN110:: ICapeThermoCompounds
CAPEOPEN110:: ICapeThermoPhases

CAPEOPEN110:: ICapePropertyRoutine
CAPEOPEN110:: ICapeThermoEquilibriumRoutine
CAPEOPEN110:: ICapeThermoUniversalConstant

CAPEOPEN110:: ICapePersist

Proprietary Information 19

PropertyPackageManager Interfaces

Right-click PropertyPackageManager.h

Select Implement CAPE-OPEN Interface on COBIA Class

October 25, 2019

Click add and select the following interfaces:

CAPEOPEN110::ICapeIdentification
CAPEOPEN110:: ICapeThermoPropertyPackageManager

CAPEOPEN110:: ICapeUtilities

Proprietary Information 20

Remarks on CO PP and PPM creation using Class Wizard

Easier on Programmers: Interface adapter

class PropertyPackage :

public CapeOpenObject<PropertyPackage>,

public CAPEOPEN110::CapeIdentificationAdapter<PropertyPackage>,

public CAPEOPEN110::CapeUtilitiesAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoMaterialContextAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoCompoundsAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoPhasesAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoPropertyRoutineAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoEquilibriumRoutineAdapter<PropertyPackage>,

public CAPEOPEN110::CapeThermoUniversalConstantAdapter<PropertyPackage>,

public CAPEOPEN110::CapePersistAdapter<PropertyPackage> {

October 25, 2019

Proprietary Information 21

Remarks on CO PP and PPM creation using Class Wizard

Easier on Programmers: Generating Stub Code

//CAPEOPEN110::ICapeIdentification

void getComponentName(/*out*/ CapeString name) {

}

void putComponentName(/*in*/ CapeString name) {

}

void getComponentDescription(/*out*/ CapeString desc) {

}

void putComponentDescription(/*in*/ CapeString desc) {

}

October 25, 2019

Proprietary Information 22

Remarks on CO PP and PPM creation using Class Wizard

Easier on Programmers: Error handling

//CAPEOPEN110::ICapeIdentification

void getComponentName(/*out*/ CapeString name) {

name = this->name;

}

void putComponentName(/*in*/ CapeString name) {

If (name.empty()){

throw cape_open_error(COBIAERR_InvalidArgument)

packageName = name;

}

void getComponentDescription(/*out*/ CapeString desc) {

}

void putComponentDescription(/*in*/ CapeString desc) {

}

October 25, 2019

Proprietary Information 23

Remarks on BasePropertyPackage (MF PP)

Started with existing COM-based code (BasePropertyPackage)

Getting rid of COM specific code and reuse the rest of it

//allocate constant BSTR values

STR_MOLECULARWEIGHT=SysAllocString(L"molecularWeight");

Conversion of data types and use COBIA Unified data types:

COM: LONG, BOOL, BSTR, OLECHAR, …

COBIA: CapeInteger, CapeBoolean, CapeCapeStringImpl, ..

Thread safe coding

Interface class to Lock/Unlock

October 25, 2019

Proprietary Information 24

Overall Experience

The Positive
▪ AmsterCHEM COBIA Class Wizard makes it easy to generate the skeleton and framework for the

classes selected
▪ The available adapter classes are easy to use
▪ Easier error handling
▪ Less error prone and more efficient
▪ Reusing the existing COM based code for many methods

The challenges
▪ Which interfaces should be selected
▪ Conversion of COM based code to COBIA (type conversion, data allocation, …)
▪ Documentation and examples on COBIA such as the one to develop a Unit Operation
▪ Multithreading
▪ Test and checking interoperability (future)

October 25, 2019

Proprietary Information 25October 25, 2019

