
TRIZ and the evolution of CAPE tools
From FLOWTRAN® to CAPE-OPEN¬® and beyond

Bertrand.Braunschweig@ifp.fr Kerry Irons (ironsk@dow.com)
Institut Français du Pétrole, France The Dow Chemical Company

TRIZ
Last century, Genrich Altshuller, a Russian engineer, analysed hundreds of thousands of patents
and scientific publications. From this analysis, he developed TRIZ, the theory of inventive
problem solving, together with a series of practical tools for helping engineers solve technical
problems. Among these tools and theories, The 40 Principles describe common ways of improving
technical systems. For example, if you want to increase the strength of a device, without adding
too much extra weight to it, TRIZ tells you that you can use principle 1, segmentation, or
principle 8, counterweight, or principle 15, dynamicity, or principle 40, composite materials. TRIZ
is now used by a wealth of Fortune 500 companies in support of their innovation processes.

When Atshuller developed TRIZ, he could not think of software components. These objects just
did not exist. But software are technical objects too. They are in fact some of the most complex
technical objects produced by man. Many of the TRIZ tools and theory elements only relate to
concrete objects (e.g. principle 11, prior counteraction, or principle 32, change the colour). But
some of the principles can be applied to software. Among these we outline principles 1 and 15.

Principle 1, Segmentation, shows how systems evolve from an initial monolithic form into a set of
independent parts, then eventually increasing the number of parts until each part becomes small
enough that it cannot be identified anymore, such as in a powder. Further evolution based on this
principle leads to similar functions obtained with liquids, gases or fields. Think of a bearing with
balls suspension, replaced by microballs, then by gas suspension and finally by magnetic field.

Principle 15, Dynamicity, introduces flexibility and adaptation by allowing the characteristics of
an object, of an environment, or of a process, to be altered in order to find an optimal
performance at each stage of an operation. Think of a traffic light that adapts its period
depending on the traffic.

The evolution of CAPE tools
The first CAPE software developed in the sixties and seventies e.g. FLOWTRAN were large
monolithic systems. They remained as such until recently when developers started to cut those
systems into smaller pieces that would fit together. Modularity, object-oriented programming,
component software, n-tier architectures are the current paradigm for CAPE software
development, and can be considered as the second stage of evolution. The CAPE-OPEN
interoperability architecture, based on object orientation and middleware, is the best
representative of this stage. The third stage will be the one of dynamicity, as the needs for
self-adaptation become increasingly important, in order to match the increasing diversity in
usage. Self-adaptation can be obtained using current software technologies, such as JINI or
Enterprise Java Beans, that allow software components to discover their environment at runtime
and to seamlessly integrate within these environments. But this is not enough. Another dimension
of self-adaptation is that software should behave correctly when faced with new situations, new
data, new usage modes.

Beyond CAPE-OPEN
Current architectures, even though they allow distributed computing on heterogeneous hardware
platforms, share the same paradigm for control and co-ordination: a central piece of software
controls and coordinates execution of all software modules and components that together
constitute the model and the solving mechanism of a system. One example is the central piece of
software that is usually called "simulation executive", or "COSE" in CAPE-OPEN architectures.
Its tasks are numerous: it communicates with the user; it stores and retrieves data from files
and databases; it manages simulation cases; it helps building the flowsheet and checks model
topology; it attaches physical properties and thermodynamic systems to parts of the flowsheet;
it manages the solving and optimisation algorithms; it launches and runs simulations; etc. All
other modules (e.g. unit operations, thermodynamic calculation routines, solvers and optimisers,
data reconciliation algorithms, chemical kinetics, unit conversion systems etc.) are under control
of the simulation environment and communicate with it in a hierarchical manner, as disciplined
soldiers will execute their assignments and report to their superiors.

COGENTS
Future CAPE tools will involve distributed architectures based on multi-agents technology where
control and co-ordination are decentralized. Instead, each piece of software, each module, each
component, generically called "agent", lives its own life, is able to negociate and co-ordinate with
other components in order to solve problems such as process design, fault diagnosis, or supply
chain management. The second part of the paper will show how CAPE-OPEN interfaces can be
extended towards decentralised architecures of adaptive process modeling agents nicknamed
“COGENTS” (CAPE-OPEN Agents). These adaptive cogents will implement the third stage of
CAPE tools, following the evolution process defined by Altshuller in TRIZ.

References
TRIZ : The Right Solution at the Right Time. A Guide to Innovative Problem Solving. Yuri
Salamatov, Insytec B.V., 1999

40 Principles : Triz Keys to Technical Innovation by Genrich Altshuller, Uri Fedoseev, Steven
Rodman (Translator), Lev Shulyak (Translator)

www.colan.org CAPE-OPEN Laboratories Network web portal

B. Braunschweig, R. Gani (editors), Software Architectures and Tools for Computer Aided
Process Engineering, Elsevier (in print).

Keywords
TRIZ, interoperability, CAPE-OPEN, Software Components, multi-agent systems, adaptation,
cogents.

http://www.colan.org/

