

Università degli Studi di Trieste

www.units.it Tel. +39-040.558.7111 Piazzale Europa, 1 I-34127 Trieste, ITALIA

A CAPE OPEN Unit Operation for the Evaluation of Environmental Impact of a Chemical Process

CAPE OPEN European Conference, Heidelberg, Germany, 7-9 March 2007

> Maurizio Fermeglia mauf@dicamp.units.it Gennaro Longo longo@ics.trieste.it Letitia Toma toma@ics.trieste.it

Agenda

- Goal and importance of the project
- The Waste Reduction Algorithm (WAR)
- The implementation of WAR in a CAPE OPEN Unit Operation
- Case study
- Conclusions

Sustainability

"Sustainability in Chemical Engineering means continuous effort to protect and improve ecosystems, social balance and economic prosperity by a systematic and integral improvement of

Environmental protection

- Raw material exploitation
- Energy efficiency
- Safety and health protection

in all kinds of material conversion processes and material production" (*EFCE definition*)

Goal of the project

To introduce the concept of sustainability in the process design

Importance of the project

- Industry is an important factor for the economical growth
- Many factors go into investment decisions
- To evaluate the environmental impact of the chemical plants, situated in the developing countries, is essential because:
- The old polluting industries are situated in the developing countries
 The decision to invest and build a factory into a virgin area is very tempting because the developing countries offer facilities at a very low cost

The role of ICS-UNIDO

Promotion of and assistance in the development, selection, transfer and use of technology in favor of developing countries.

General Conference Vienna 3/7 December 2001-GC. 9/12/Add.1

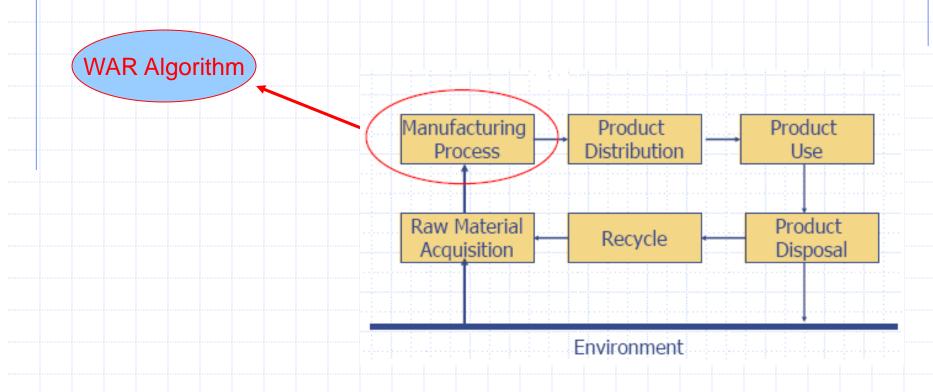
Photo by: Luca D'Agostino

www.ics.trieste.it

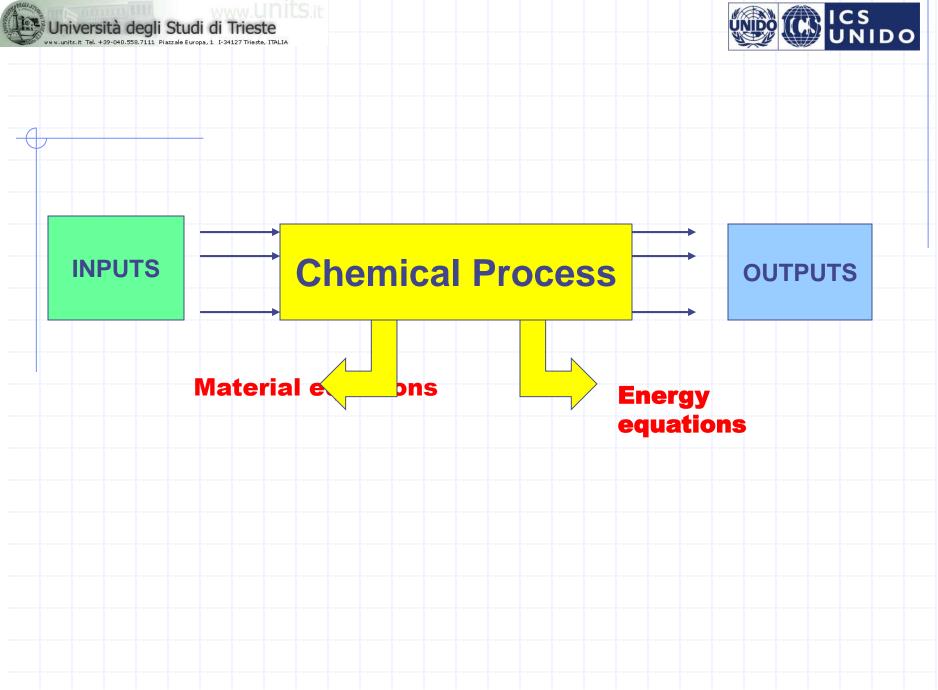
Agenda

- Goal and importance of the project
- The Waste Reduction Algorithm (WAR)
- The implementation of WAR in a CAPE OPEN Unit Operation
- Case study
- Conclusions

What is Waste Reduction Algorithm (WAR)?

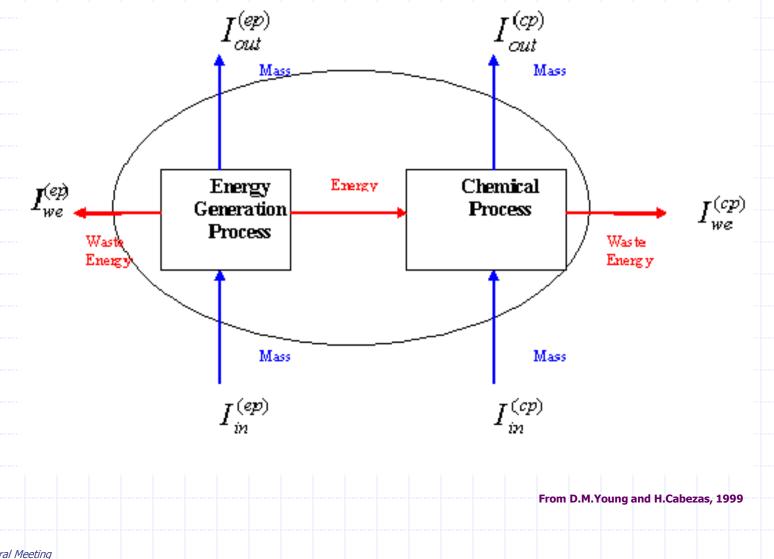

 Is a tool used to evaluate the environmental friendliness of a chemical process

The evaluation is made through environmental impact indexes


Today's approach of Process Simulation

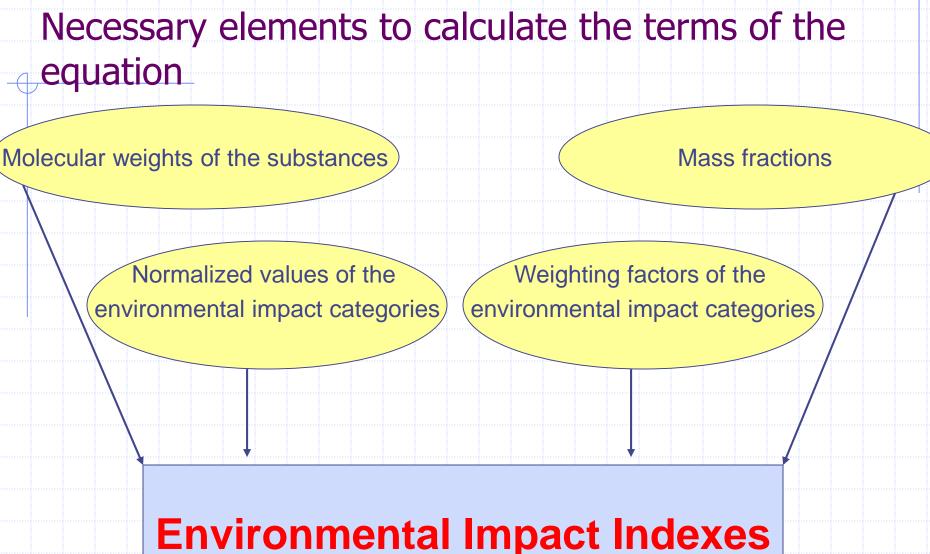
COLAN Annual General Meeting

From D.M.Young and H.Cabezas, 1999


Heidelberg, Tuesday, 13 November 2018 - slide 9

The environmental balance

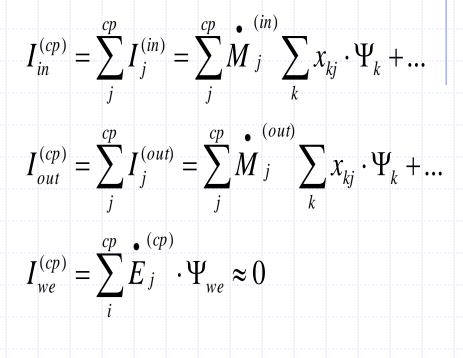
PEI Balance


General form of the equation

$$\frac{\partial I_{syst}}{\partial t} = I_{in}^{(cp)} + I_{in}^{(ep)} - I_{out}^{(cp)} - I_{out}^{(ep)} - I_{we}^{(cp)} - I_{we}^{(ep)} + I_{gen}^{syst}$$

The equation at steady state

$$0 = I_{in}^{(cp)} + I_{in}^{(ep)} - I_{out}^{(cp)} - I_{out}^{(ep)} - I_{we}^{(cp)} - I_{we}^{(ep)} + I_{gen}^{syst}$$



Expressions for the chemical process

- The impacts due the emission of waste energy directly into the environment will be neglected
 - Chemical process plants do not generally emit large amounts of waste energy into the environment
- For the chemical process plants, the environmental impact associated with the emission of mass is usually much greater than that associated with the emission of energy

Expressions for the energy generation process

- The PEI of the mass inputs is assumed to be zero
- The PEI of the mass outputs are divide into gaseous and solid streams
- The energy generation process is assumed to be a coal-fired electrical power plant and the mass inputs to this process consist mainly of coal and air along with water

$$T_{in}^{(ep)} = \sum_{j}^{ep} I_{j}^{(in)} = \sum_{j}^{ep} M_{j} \sum_{k} x_{kj} \cdot \Psi_{k} + ... \approx 0$$

$$T_{out}^{(ep)} = \sum_{j}^{cp} I_{j}^{(out)} = \sum_{j}^{ep-g} M_{j} \sum_{k} x_{kj} \cdot \Psi_{k} + \sum_{j}^{ep-s} M_{j} \sum_{k} x_{kj} \Psi_{k} + ...$$

$$\approx \sum_{j}^{ep-g} M_{j} \sum_{k} x_{kj} \cdot \Psi_{k} + ...$$

$$T_{we}^{(ep)} = \sum_{i}^{ep} E_{j} \cdot \Psi_{we} \approx 0$$

Environmental Impact Categories

Local Toxicological		Global Atmospheric			
Human Human Toxicity Potential by Ingestion (HTPI)	Ecological Aquatic Toxicity Potential (ATP)	Global Warming Potential (GWP)	A cidification Potential (AP)		
Human Toxicity Potential by Inhalation and Dermal Exposure (HTPE)	Terrestrial Toxicity Potential (TTP)	Ozone Depletion Potential (ODP) Zero o.D.P	Photochemical Oxidation Potential (PCOP)		

÷

÷

ۍ

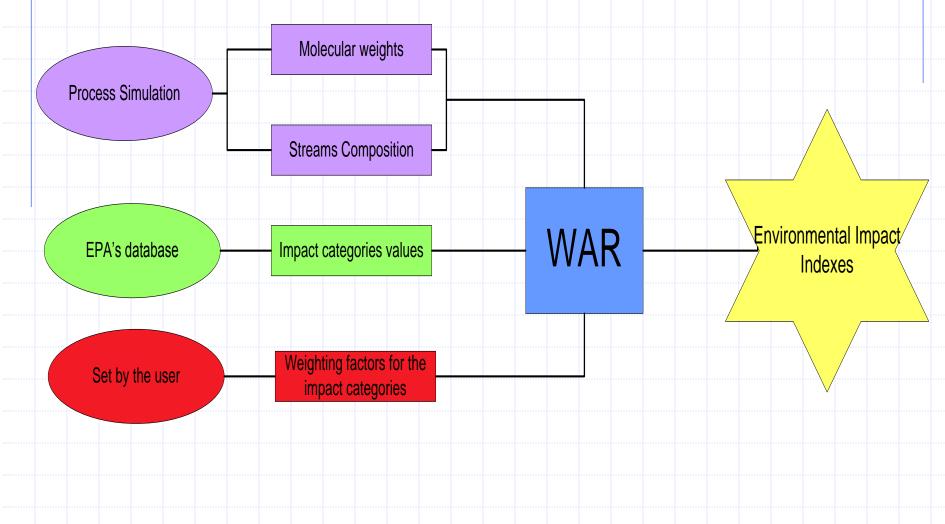
Environmental Impact Indexes

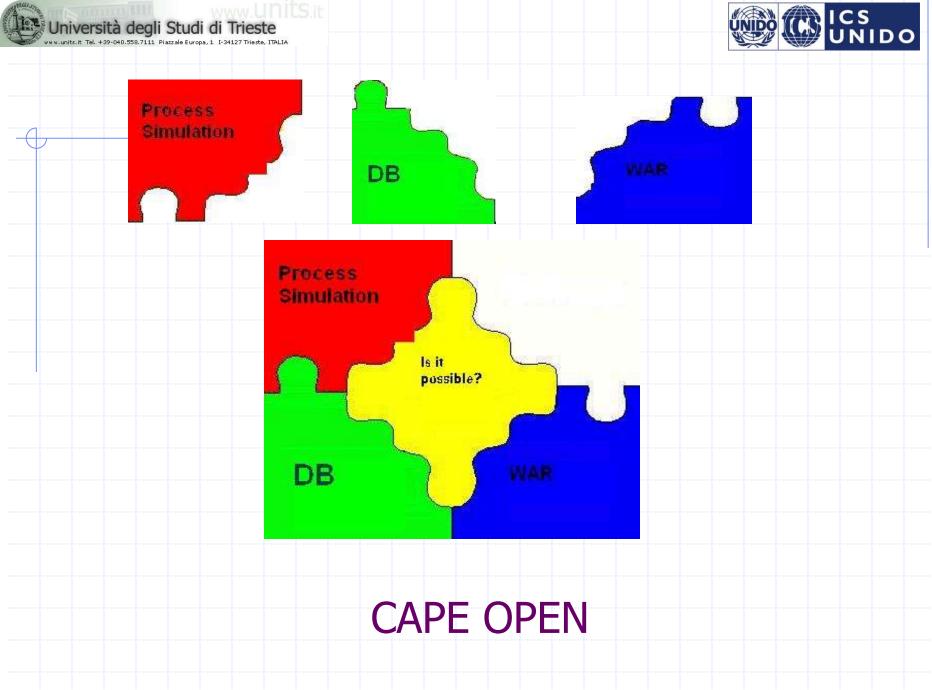
- Associated with PEI output (PEI/h or PEI/kg of product):
 - total rate of impact output $I_{out}^{(t)}$
 - total impact output per mass of products \hat{I}_{out}
- Associated with PEI generation (PEI/h or PEI/kg of product):
- Φ total rate of impact generation $I_{gen}^{(t)}$

total impact generated per mass of products $I_{gen}^{(t)}$

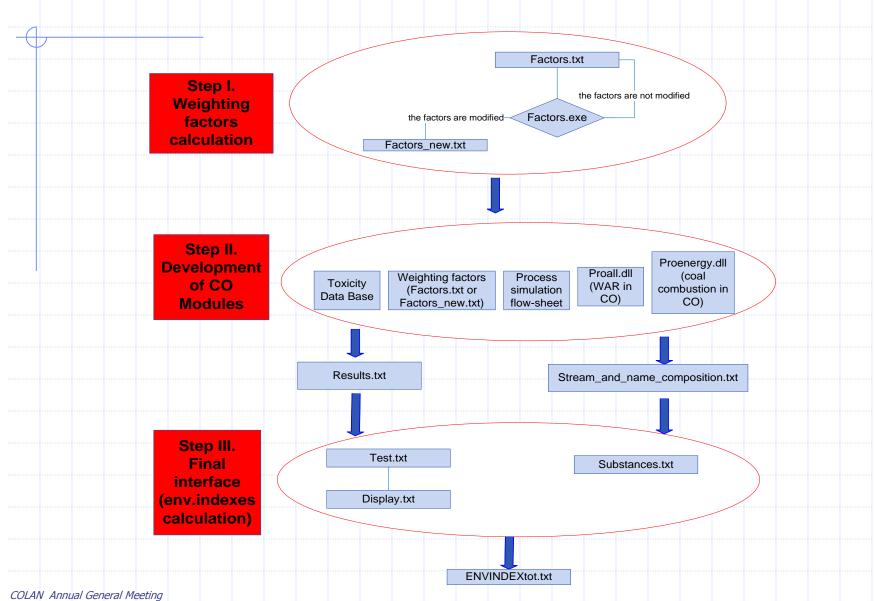
Observations:

- The lower the value of these indexes the higher the environmental efficiency of a process
- The prudent course of action is to generate as little PEI as possible consistent with engineering constrains and societal needs


Agenda


- Goal and importance of the project
- The Waste Reduction Algorithm (WAR)
 - The implementation of WAR in a CAPE OPEN Unit Operation
- Case study
- Conclusions

Necessary data for WAR



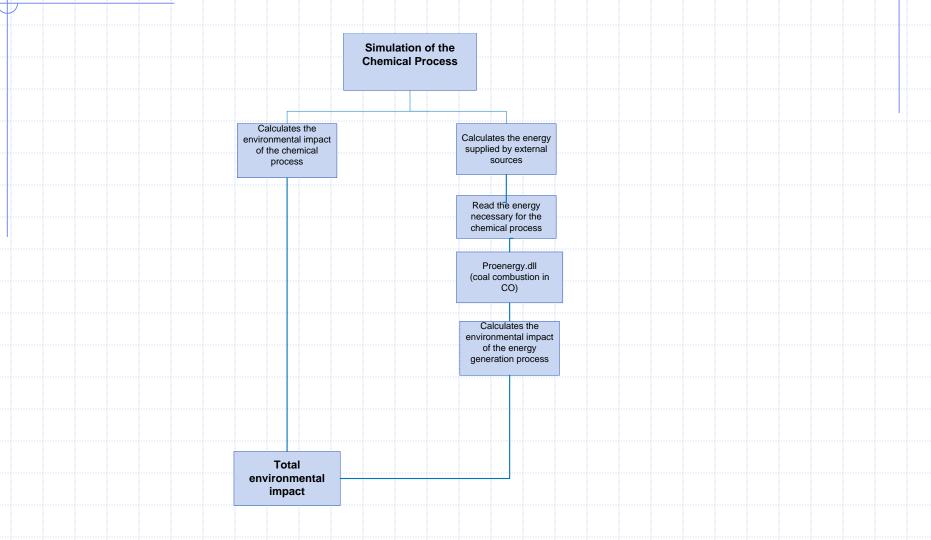
Main framework of the implementation

Step1, Weighting Factors Interface...

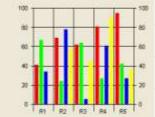
Form1	
	Weighting Factors
GWP_factor	1
ODP_factor	Save the new values of the weighting factors
PCOP_factor	1
AP_factor	1
HTPE_factor	1
HTPI_factor	1
TTP_factor	1 Set the weighting factors to the defalut values
ATP_factor	1
STO	IP
	sighting factors?
The weighting factor Why are they u The weighting factor process conditions of	sed ? rs are used to emphasize or de-emphasize specific concerns that are relevant or irrelevant to their
 Which are the a The WAR assigns a equally important. 	efault values? default value of unity (1) for all weighting factors. This implies that all the impact categories are
	alues they can assume ? ting factors should range between 0 and 10 (according to local needs and policies).
- PCOP - ATP v body.	of the weighting factors would be weighted more heavily than others impacts in an area that suffers from smog rould be weighted more heavily than others impacts if the process plant is discharging in a water uld have small values if the chemical plant is situated in the dessert.
1	

Step2, Development of the CO Modules WAR implemented in a CO Module

	Chemical Process			Energy Generation Process		
The CO containing the WAR has:	Name of the parameter	Value	Results obtained after the simulation	Name of the parameter	Value	Results obtained after the simulation
One input port	Pmcess_Type (type)	0		Process_Type (type)	1	
One output port	Cape_position (Ind)	0 (for the imput stneam)	Value for In CP	a 1	0 (for the input stream)	Value for In EP
Three parameters		1 (for the waste stream) 2 (for the output- product- stream) 3 (for the internal stream of chemical process)	Value for Out CP Value for Output stream of the chemical process "Internal stream of the chemical process"		l (for the waste stæam)	Value for Out EP
	cape_ID. (name)	0 1		cape_ID. (name)	0 1 N-number of CAPE OPEN modules inserted in the process	


The energy generation process

- The energy is obtained from the combustion of the coal
- Only the gaseous streams are considered in the calculation of the environmental impact
- The material and the energy balance equations for the combustion of the coal were implemented in a CO Unit Operation


General Schema of the Total Environmental Impact

Step3, Final Interface

COLAN Annual General Meeting

Agenda

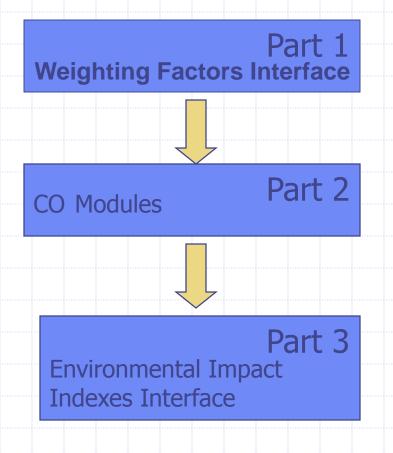
- Goal and importance of the project
- The Waste Reduction Algorithm (WAR)
- The implementation of WAR in a CAPE OPEN Unit Operation
 - Case study
- Conclusions

Processes developed

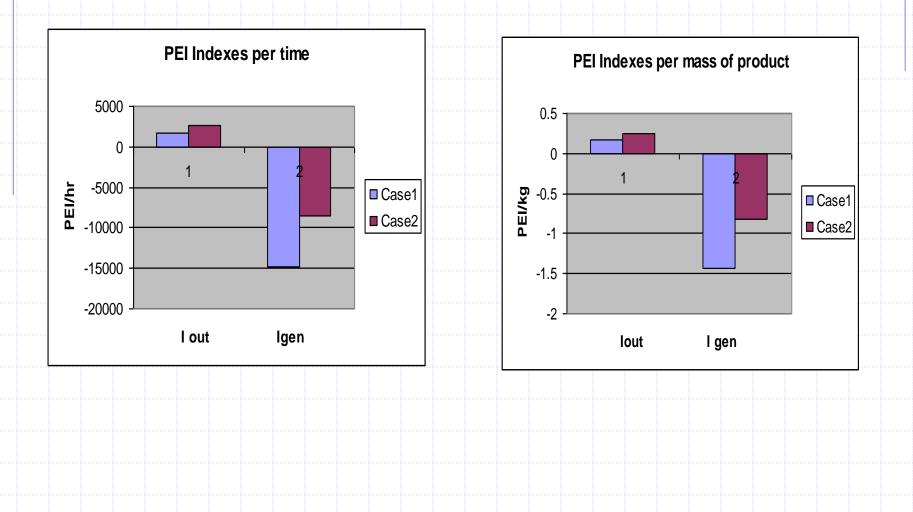
- Acrylic Acid production
- Phthalic Anhydride production
- Formaldehyde production
- Mobile incineration of heavy oil laden soil
- Sweetening natural gas by means of dyglicolamine absorption
- Dimethyl ethere production

Phthalic Anhydride Production

From o-xylene


From naphtalene

The environmental impact of both processes was calculated with the described methodology


Practical demonstration...

Environmental Impact Indexes

Conclusions

- It is possible to reduce the generation of the wastes and their environmental impact by modifying the design of the process
- The WAR is a useful tool for the design of new processes as well as modification of the old ones
- WAR was implemented in a CO Unit Operation
- The energy generation process connected to the chemical process is considered too, for a complete evaluation of the environmental impact
- The procedure was tested with success using two process simulators: PROII and Aspen Plus

Acknowledgments

- PROII and Aspen Plus support teams
 Michel Pons, CO-LaN
- ICS-UNIDO
- University of Trieste