amstercHem

tailor-made engineering software solutions

COBIA PHASE Ill: MARSHALING

Jasper van Baten — AmsterCHEM
Mark Stijnman — Shell Global Solutions



amstercHEm

tailor-made engineering softwa

PRESENTATION OUTLINE

» Introduction

» Outline Phase Il

» Marshaling overview

» Marshaling tasks

» Marshaling alternatives
» Marshaling proposal

» Outlook



amstercHem

tailor-made engineering softw

COBIA CAPE-OPEN Binary Interop Architecture

Phase 1:
native, C++, in-process, Windows, thermo 1.1,

— COM binding (proof of concept)
Phase 2:
extend interface set, code generation from IDL
(covers most current applications)
Phase 3:

O other platforms, inter-platform interop




amstercHem

tailor-made engineering softwa

OUTLINE PHASE Il

» Porting to other platforms
» Windows: MSVC/Intel++/GCC
- » Linux: GCC/(CLang)
» Expanding Language bindings
» Windows: .NET

» Fortran/Java/Python: as business cases warrant
» Marshaling between different platforms

Technical proposal required




tailor-made engineering software solutions

COMMON CASE: IN-PROCESS
» CAPE-OPEN defines interfaces

» COBIA defines calling convention etc...

» COBIA defines instantiation




tailor-made engineering software solutions

MARSHALING

» Different processes

» 64-bit app using legacy 32-bit implementation
» PMC hosted on different computer than PME




tailor-made engineering software solutions

MARSHALING

» Same process, but different memory space & layout

» Native vs .NET (managed)

» Other VM-like environments (e.g. java, Python)




tailor-made engineering software solutions

MARSHALING

» Any combination thereof
» E.g. PME and PMC run on different OS




amstercHem

tailor-made engineering software solutions

SERIALIZATION

» Placing the argument in a stream

» Example:
SomeFunction(CapeBoolean argl,CapeString arg2)

argl arg2

String content |
2 bytes per character, for UTF-16 ‘

CapeBoolean
4 bytes

String length
4 bytes

Byte stream




tailor-made engineering software solutions

DIRECT CALL

Call

Return




amstercHem

Slide 11

tailor-made engineering software solutions

MARSHALING A CALL

Call

Return

Proxy
Input
(Serialize) |_279S

(Deserialize)

Output
args

Proxy

(Deserialize)

| (Serialize)

Call

Retur




tailor-made engineering software solutions

MARSHALING A CALL

(Serialize)

| (Deserialize)

(Serialize)
(Deserialize)

Serialization / Deserialization



tailor-made engineering software solutions

MARSHALING A CALL

Transport

Proxy Oroxy

Call

(Serialize)
(Desgrialize)| call

Retur

(Sefialize)
(Deserialize)

Return




amstercHem

Slide 14

tailor-made engineering software solutions

MARSHALING A CALL

Call

Return

Proxy

(Des A ' 3

Proxy

P (S¢E alize)

Handshake

Call

Retur




amstercHem s

tailor-made engineering softwa

MARSHALING A CALL
» Handshake:

» Easy:
COBIA defined format for agreeing on data types

» Transport
» Easy: e.qg. TCP/IP

> Serialization and Deserialization
> Not obvious

» Data to be (de-)serialized depends on call



amstercHem s

tailor-made engineering softwa

A FUNCTION CALL

» Caller pushes arguments and return address
on call stack and/or registers

» Caller transfers execution point to callee

» Callee pops arguments + return address
off call stack and/or registers

» Callee processes data
» Callee pushes return value on call stack and/or registers
» Callee transfers execution point to return address

» Caller pops return value off call stack and/or registers



amstercHem o

tailor-made engineering softwa

A FUNCTION CALL

Exact format depends on:

» calling convention

» data alignment (32-bit, 64-Dbit)

» operating system ABI

» data format (data size, string encoding)

» potentially hardware



amstercHem s

tailor-made engineering softwa

ALTERNATIVE 1:
MANIPULATE CALL STACK
» Function call on-the-fly by COBIA

» Arguments are determined from IDL / Registry

» Call stack and registers are manipulated
programmatically

» This is what Windows / COM does
» Advantage: all that is needed is IDL / type info i}j
» Disadvantage:

> Requires assembly (C++ cannot do this) . 0

» Complex, and platform dependent N\ "/



amstercHem s

tailor-made engineering softwa

ALTERNATIVE 2:
A LOCAL COMPILER

» All of these tasks is exactly what a compiler does when
compiling a function call

» Proxy code could be compiled on the fly

i
» Advantage: all that is required is type Info e
> Disadvantage: ‘2 )

COBIA needs to distribute with compilers N



amstercHem

tailor-made engineering softwa

ALTERNATIVE 3:
PRE-COMPILED SERIALIZERS

» All of these tasks is exactly what a compiler does when
compiling a function call

» Code for proxy could be compiled
on by the manufacturer

» Advantage: .
Proxy code to be completely generated i}j
» Disadvantage: T

Proxy binary needs to be shipped =



amstercHem

tailor-made engineering softwa

PROPOSAL 1/2

» Proxies for interfaces are shared components

» Proxy for all known CAPE-OPEN interfaces are provided
by COBIA itself

» Software vendors can provide proxies for custom
Interfaces

» Code for the proxies is generated by COBIA

» Proxy software components are part of vendor installer
as shared component

» Vendor provides proxies for all platforms on which
vendor software may run



amstercHem

tailor-made engineering softwa

PROPOSAL 2/2

» Upon installation, shared component for serialization is
registered using COBIA registrar function

» On a single platform, multiple serializers may be
required

» E.g. Windows:
» X64 native
» X86 native
» managed
» COBIAtakes are of handshake and transport

» COBIA data types are not marshaled, but serialized



amstercHem

tailor-made engineering softwa

A WORD ABOUT LOGGING
» COM does not have built-in facilities
» COLTT (CO-LaN)
» OATS / COULIS (COCO Simulator)

» For COBIA we can make a logging ‘fence’
» All traffic automatically logged

» No need to implement a logger specific to any
Interface

» Part of COBIA distribution



amstercHEm ez

tailor-made engineering softw

CONCLUSIONS

» Marshaling is complex

» Serialization/deserialization and function calls
are the difficult part

» Proposal: vendors deliver precompiled
serialization/deserialization code generated by
COBIA from IDL

» COBIA is pretty cool!




