
Slide 1

Jasper van Baten – AmsterCHEM

Mark Stijnman – Shell Global Solutions

Slide 2

➢ Introduction

➢ Outline Phase III

➢ Marshaling overview

➢ Marshaling tasks

➢ Marshaling alternatives

➢ Marshaling proposal

➢ Outlook

Slide 3

CAPE-OPEN Binary Interop Architecture

Phase 1:

native, C++, in-process, Windows, thermo 1.1,

COM binding (proof of concept)

Phase 2:

extend interface set, code generation from IDL

(covers most current applications)

Phase 3:

other platforms, inter-platform interop

Slide 4

➢ Porting to other platforms

➢Windows: MSVC/Intel++/GCC

➢Linux: GCC/(CLang)

➢ Expanding Language bindings

➢Windows: .NET

➢Fortran/Java/Python: as business cases warrant

➢ Marshaling between different platforms

Technical proposal required

Slide 5

➢ CAPE-OPEN defines interfaces

➢ COBIA defines calling convention etc…

➢ COBIA defines instantiation

Process DLL DLL

Slide 6

➢ Different processes

➢64-bit app using legacy 32-bit implementation

➢PMC hosted on different computer than PME

Process DLL Process

Slide 7

➢ Same process, but different memory space & layout

➢Native vs .NET (managed)

➢Other VM-like environments (e.g. java, Python)

Native Process Java runtime Managed

Slide 8

➢ Any combination thereof

➢E.g. PME and PMC run on different OS

Windows Process DLL Linux

Native ...

Java ...

Slide 9

➢ Placing the argument in a stream

➢Example:

SomeFunction(CapeBoolean arg1,CapeString arg2)

CapeBoolean

4 bytes

String length

4 bytes

String content

2 bytes per character, for UTF-16

arg1 arg2

Byte stream

Slide 10

Caller Callee

Call

Return

(Processing)

Slide 11

Caller Callee

Call Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Proxy Proxy

Slide 12

Caller Callee

Call Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Serialization / Deserialization

Proxy Proxy

Slide 13

Caller Callee

Call Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Transport

Proxy Proxy

Slide 14

Caller Callee

Call Input

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output

args

(Deserialize)

Return

(Processing)

Handshake

Proxy Proxy

Slide 15

➢ Handshake:

➢Easy:

COBIA defined format for agreeing on data types

➢ Transport

➢Easy: e.g. TCP/IP

➢ Serialization and Deserialization

➢Not obvious

➢ Data to be (de-)serialized depends on call

Slide 16

➢ Caller pushes arguments and return address

on call stack and/or registers

➢ Caller transfers execution point to callee

➢ Callee pops arguments + return address

off call stack and/or registers

➢ Callee processes data

➢ Callee pushes return value on call stack and/or registers

➢ Callee transfers execution point to return address

➢ Caller pops return value off call stack and/or registers

Slide 17

Exact format depends on:

➢ calling convention

➢ data alignment (32-bit, 64-bit)

➢ operating system ABI

➢ data format (data size, string encoding)

➢ potentially hardware

Slide 18

➢ Function call on-the-fly by COBIA

➢ Arguments are determined from IDL / Registry

➢ Call stack and registers are manipulated

programmatically

➢ This is what Windows / COM does

➢ Advantage: all that is needed is IDL / type info

➢ Disadvantage:

➢Requires assembly (C++ cannot do this)

➢Complex, and platform dependent

Slide 19

➢ All of these tasks is exactly what a compiler does when

compiling a function call

➢ Proxy code could be compiled on the fly

➢ Advantage: all that is required is type info

➢ Disadvantage:

COBIA needs to distribute with compilers

Slide 20

➢ All of these tasks is exactly what a compiler does when

compiling a function call

➢ Code for proxy could be compiled

on by the manufacturer

➢ Advantage:

Proxy code to be completely generated

➢ Disadvantage:

Proxy binary needs to be shipped

Slide 21

➢ Proxies for interfaces are shared components

➢ Proxy for all known CAPE-OPEN interfaces are provided

by COBIA itself

➢ Software vendors can provide proxies for custom

interfaces

➢ Code for the proxies is generated by COBIA

➢ Proxy software components are part of vendor installer

as shared component

➢ Vendor provides proxies for all platforms on which

vendor software may run

Slide 22

➢ Upon installation, shared component for serialization is

registered using COBIA registrar function

➢ On a single platform, multiple serializers may be

required

➢E.g. Windows:

➢ x64 native

➢ x86 native

➢ managed

➢ COBIA takes are of handshake and transport

➢ COBIA data types are not marshaled, but serialized

Slide 23

➢ COM does not have built-in facilities

➢ COLTT (CO-LaN)

➢ OATS / COULIS (COCO Simulator)

➢ For COBIA we can make a logging ‘fence’

➢ All traffic automatically logged

➢ No need to implement a logger specific to any

interface

➢Part of COBIA distribution

Slide 24

➢ Marshaling is complex

➢ Serialization/deserialization and function calls

are the difficult part

➢ Proposal: vendors deliver precompiled

serialization/deserialization code generated by

COBIA from IDL

➢ COBIA is pretty cool!

