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➢ Introduction

➢ Outline Phase III

➢ Marshaling overview

➢ Marshaling tasks

➢ Marshaling alternatives

➢ Marshaling proposal

➢ Outlook



Slide 3

CAPE-OPEN Binary Interop Architecture

Phase 1: 

native, C++, in-process, Windows, thermo 1.1,

COM binding                        (proof of concept)

Phase 2: 

extend interface set, code generation from IDL 

(covers most current applications)

Phase 3:

other platforms, inter-platform interop
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➢ Porting to other platforms

➢Windows: MSVC/Intel++/GCC

➢Linux: GCC/(CLang)

➢ Expanding Language bindings

➢Windows: .NET

➢Fortran/Java/Python: as business cases warrant

➢ Marshaling between different platforms

Technical proposal required
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➢ CAPE-OPEN defines interfaces

➢ COBIA defines calling convention etc…

➢ COBIA defines instantiation 

Process DLL DLL
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➢ Different processes

➢64-bit app using legacy 32-bit implementation

➢PMC hosted on different computer than PME

Process DLL Process
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➢ Same process, but different memory space & layout

➢Native vs .NET (managed)

➢Other VM-like environments (e.g. java, Python)

Native Process Java runtime Managed
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➢ Any combination thereof

➢E.g. PME and PMC run on different OS

Windows Process DLL Linux 

Native ...

Java ...
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➢ Placing the argument in a stream

➢Example:

SomeFunction(CapeBoolean arg1,CapeString arg2)

CapeBoolean

4 bytes

String length

4 bytes

String content

2 bytes per character, for UTF-16

arg1 arg2

Byte stream



Slide 10

Caller Callee

Call

Return

(Processing)
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Caller Callee

Call Input 

args
(Serialize)

(Deserialize) Call

Return
(Serialize)

Output 

args

(Deserialize)

Return

(Processing)

Proxy Proxy
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Caller Callee
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Caller Callee

Call Input 
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Caller Callee

Call Input 

args
(Serialize)
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Return
(Serialize)
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Proxy Proxy
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➢ Handshake:

➢Easy: 

COBIA defined format for agreeing on data types

➢ Transport

➢Easy: e.g. TCP/IP

➢ Serialization and Deserialization

➢Not obvious

➢ Data to be (de-)serialized depends on call
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➢ Caller pushes arguments  and return address

on call stack and/or registers

➢ Caller transfers execution point to callee

➢ Callee pops arguments + return address 

off call stack and/or registers

➢ Callee processes data

➢ Callee pushes return value on call stack and/or registers

➢ Callee transfers execution point to return address

➢ Caller pops return value off call stack and/or registers
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Exact format depends on:

➢ calling convention

➢ data alignment (32-bit, 64-bit)

➢ operating system ABI

➢ data format (data size, string encoding)

➢ potentially hardware
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➢ Function call on-the-fly by COBIA

➢ Arguments are determined from IDL / Registry

➢ Call stack and registers are manipulated 

programmatically

➢ This is what Windows / COM does

➢ Advantage: all that is needed is IDL / type info

➢ Disadvantage: 

➢Requires assembly (C++ cannot do this)

➢Complex, and platform dependent
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➢ All of these tasks is exactly what a compiler does when 

compiling a function call

➢ Proxy code could be compiled on the fly

➢ Advantage: all that is required is type info

➢ Disadvantage: 

COBIA needs to distribute with compilers
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➢ All of these tasks is exactly what a compiler does when 

compiling a function call

➢ Code for proxy could be compiled 

on by the manufacturer

➢ Advantage: 

Proxy code to be completely generated

➢ Disadvantage: 

Proxy binary needs to be shipped
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➢ Proxies for interfaces are shared components

➢ Proxy for all known CAPE-OPEN interfaces are provided 

by COBIA itself

➢ Software vendors can provide proxies for custom 

interfaces

➢ Code for the proxies is generated by COBIA

➢ Proxy software components are part of vendor installer 

as shared component

➢ Vendor provides proxies for all platforms on which 

vendor software may run
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➢ Upon installation, shared component for serialization is 

registered using COBIA registrar function

➢ On a single platform, multiple serializers may be 

required

➢E.g. Windows:

➢ x64 native

➢ x86 native

➢ managed

➢ COBIA takes are of handshake and transport

➢ COBIA data types are not marshaled, but serialized
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➢ COM does not have built-in facilities

➢ COLTT (CO-LaN)

➢ OATS / COULIS (COCO Simulator)

➢ For COBIA we can make a logging ‘fence’

➢ All traffic automatically logged

➢ No need to implement a logger specific to any 

interface

➢Part of COBIA distribution
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➢ Marshaling is complex

➢ Serialization/deserialization and function calls 

are the difficult part

➢ Proposal: vendors deliver precompiled 

serialization/deserialization code generated by 

COBIA from IDL

➢ COBIA is pretty cool!


