

Enabling process simulation of reactive electrolyte mixtures using CAPE-OPEN

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, 09 Oct. 2018 Bjørn Maribo-Mogensen, PhD (<u>bmm@hafniumlabs.com</u>) Hafnium Labs (Denmark)

Background: Bjørn Maribo-Mogensen

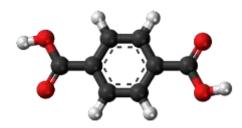
- Part of CAPE-OPEN Thermo SIG working group
- PhD in electrolyte thermodynamics 2010-2014
- Software manager **DTU** Institute of Chemical Engineering (CERE) 2010-2014
- Physical property specialist Linde Engineering 2014-2016
- Co-founder Hafnium Labs since 2016
 - Developing software to bring **state-of-the-art research** to industrial application
 - **Q-props:** World's most accurate predictions of **physical properties** for pure components and mixtures
 - **Epsilon:** Next-generation predictive thermodynamic model for **electrolytes**

Topics for today

- Reactive electrolyte systems are **challenging** to model
- No predictive models exist \rightarrow Parameters needed for each system
- Process simulators **support many** such systems
- But often we have to implement custom thermodynamic models
- Integrating a custom model is **simulator-specific** today (native or COM)

New CAPE-OPEN standard improves support for reactive electrolyte systems

How will we drive adoption by PME vendors?



Electrolytes are important but hard to model accurately

Electrolytes are small and not top of mind ...

Electrolytes are small molecules that

- Carry electrical charge
- Can e.g. form by reaction of neutral compounds + H2O
- Disproportionately affect process properties

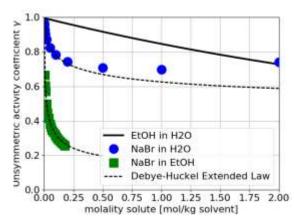
They are often neglected in process design as they

- Are present in trace amounts
- Are assumed unimportant
- Appear unexpectedly

... but they are crucial to get right ...

Surprises can be extremely expensive

- Corrosion and deposits
- Wrong material choice
- Unexpected reactions
- Wrong process design
- Pollutants in gas and water



In addition, electrolytes often serve a function in a process

- Separation processes
- Organic synthesis
- Electrocatalytic reduction
- Crystallization

... and very difficult to model accurately

Electrolytes show extreme non-ideality

They are more complex than they seem

- H2O + CO2
 - = 6 species, 3 reactions, 3 solids
- H2O + CO2 + NH3
 - = 9 species, 6 reactions, 8 solids
- ... and complexity grows exponentially with additional reactive components

What makes electrolytes so difficult?

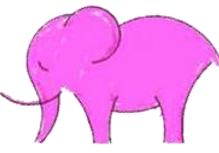
True chemistry is easily overlooked

Mix 1 kg water + 1 mol $FeCl_3$

- Resulting pH = 2... Why?
 - Dissolution
 - Hydration
 - Hydrolysis

FeCl₃(s) → Fe³⁺(aq) + 3Cl⁻(aq) Fe³⁺ + 6H₂O → [Fe(H₂O)₆]³⁺ [Fe(H₂O)₆]³⁺ + x H₂O → [Fe(OH)_x(H₂O)_{6-x}]^{-x+3} + xH₃O⁺

New compounds may form


- Some charged, some not
 - [Fe(CN)6]3-
 - [Fe(SCN)3]
- New compounds may form that are not stable in gas
 - E.g. NH₂COO⁻

Parameterization and experimental data

Each compound requires its own set of parameters

- T and P dependence?
- Interaction parameters?
- Do we have enough data?

Give me four parameters, and I will draw an elephant for you; with five I will have him raise and lower his trunk and his tail **Friedrich Gauss (1777-1855)**

A 4-term elephant function

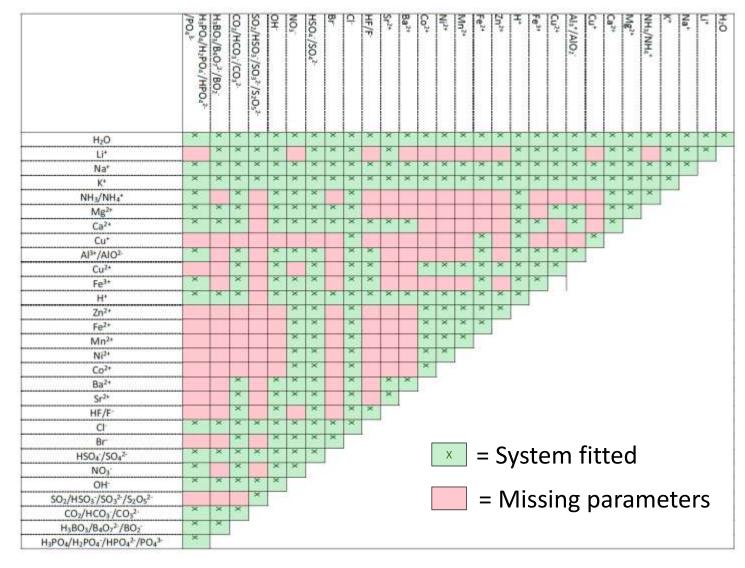
http://levenspiel.com/octave/elephant.htm

Challenge for existing tools and algorithms

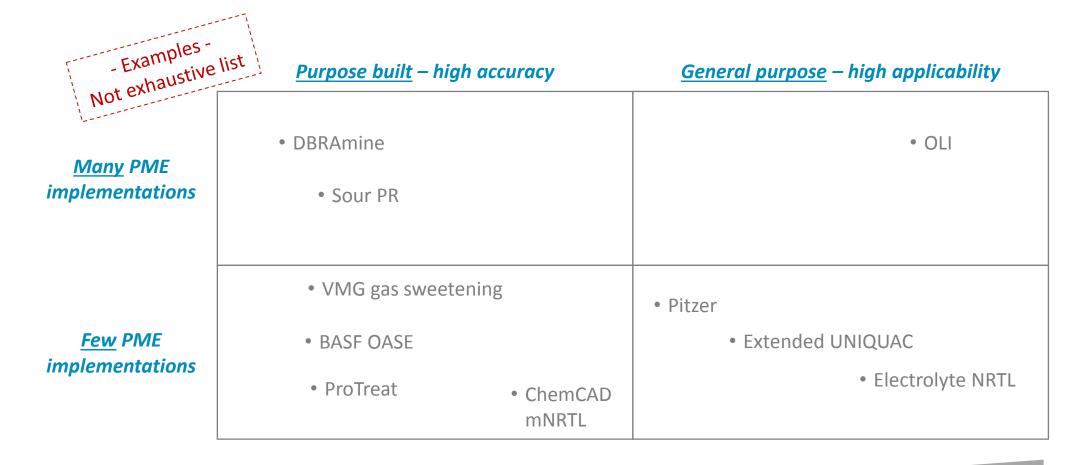
Robust and efficient flash algorithms exist for non-reactive systems

- Generic multi-phase flash using Gibbs phase stability criterion
- Used in most simulators and property packages
- e.g. Multiflash (KBC/Infochem)

But reactive systems give new challenges


- Cannot use K-values in the general case
- Reactions must be solved simultaneously or in inner loop
- Double precision may not be enough (roundoff errors)
- Are existing solutions robust?

No predictive model exists \rightarrow Specific systems must be fitted


Example:

Extended UNIQUAC is fitted to many systems – *but far from all*

Process simulators support many electrolyte systems today

Many

Two options exist when your system is not supported

Extend model already implemented in your process simulator

+ Easier if possible, but ...

1

- + Model may not be easily extensible
 - Component list not extensible
 - Physical model cannot be fitted to match experimental data
 - Involving vendor can be expensive
- ÷ Fitting electrolyte models is not simple
 - Requires a lot of experimental data
 - Labor intensive
 - Can prove impossible due to lack of control; e.g. black box model with no access to code, fitting tools, etc.

Build custom thermodynamic model

- + Always possible, but ...
- Model often needs to be build from scratch
 - Defining a model that fits the physical system well can be an expert task
 - Fitting model is time consuming

Model needs to be integrated in process simulator

- Integrations are simulator-specific
- May need reactive electrolyte flash
- Handle apparent vs. true components

Focus today

New CAPE-OPEN standard improves support for integrating custom electrolyte models in process simulators

Even when a model is available, it is challenging to implement custom electrolyte models in process simulators

Limited support for reactive systems

- **Few** simulators support a generic reactive flash for custom thermodynamic model extensions
- w/o native support for reactions and solids, the PMC must have a reactive electrolyte flash
 - Must be sufficiently robust and fast
 - May use cached result
- Reactions changes mole balance (in ≠ out)
 - Implicit assumption of component molar balances lead to convergence errors
 - True to apparent components conversion is necessary
 - May not always be possible (e.g. when salts not present in input stream precipitate)

True vs. Apparent components

Compound	Apparent	True
H ₂ O	55.5	55.5
NaCl	1	0
Na ⁺	0	1
Cl-	0	1
H⁺	0	1e-4
OH-	0	1e-4
Total	56.5	57.5

(in ≠ out)

What's new in the Chemicals Reaction Interface Specifications related to electrolyte simulations

- Fully compatible with 1.1 Thermodynamic and Physical Property Interfaces
 - No changes in these interfaces only new interfaces are added
- Support returning the ratio of total number of moles before/after the reactions
 - ICapeThermoEquilibriumRoutineII
 - [Chemicals Reaction Interface Specifications Chapter 5: Reactive Phase Equilibria]
- Saving of cached calculation results (to improve calculation speed)
 - ICapeThermoMaterialCustomData
 - [Material Object Custom Data Interface Specifications Chapter 3.4: Interface Specifications]
- Multiple compound slates (support true and apparent components)
 - ICapeThermoCompoundSlates
 - ICapeThermoCompoundSlateUtilities
 - [Chemicals Reaction Interface Specifications Chapter 6: Compound Slates]

CAPE-OPEN introduces new interfaces to support reactive electrolyte systems – reactive flash and custom data store

ICapeThermoEquilibriumRoutineII

- CAPE-OPEN 1.1 Property Packages use *ICapeThermoEquilibriumRoutine* ::CalcEquilibrium() to perform flash
 - Saves the flash result for each phase on the material object in mole fractions
- As total molar flow may change, ICapeThermoEquilibriumRoutineII
 ::CalcEquilibrium() also returns:

 $reactionMoleRatio = \frac{n_{eq}}{n_{in}} = \frac{M_{in}}{M_{eq}}$

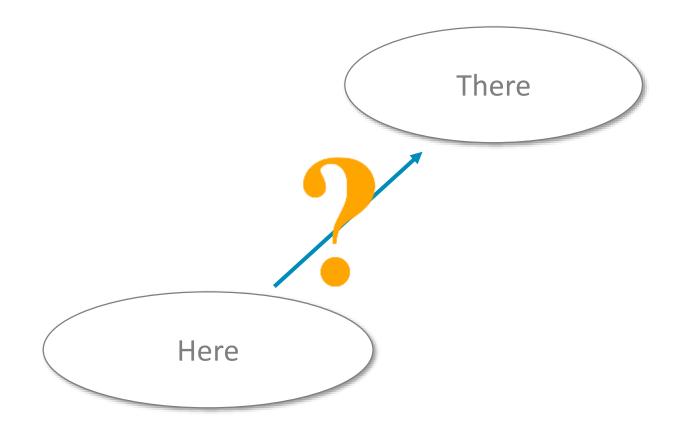
 Must be implemented and supported by material object (PME)

ICapeThermoMaterialCustomData

- Simultaneous chemical and phase equilibrium is computationally expensive
- By saving the result from the previous calculation, one can significantly speed up calculations
- Defines how storage can be created on the MO and used by the PP
- MOs supporting reactions should implement the interface – but it is not a strict requirement

CAPE-OPEN introduces new interfaces to support reactive electrolyte systems – compound slates (true vs apparent)

ICapeThermoCompoundSlates


- All CAPE-OPEN 1.1 PPs provide their primary compound slate through *ICapeThermoCompounds*
- Additional compound slates use
 ICapeThermoCompoundSlates
- SetActiveCompoundSlate() is used to make a compound slate active – all compositions and properties use this compound slate

ICapeThermoCompoundSlateUtilities

- <u>Includes a single utility function:</u> <u>ConvertFractionSinglePhase()</u>
- <u>A</u>llows conversion between source and target compound slates
- May fail
- Must be implemented by a property package that supports multiple compound slates
- A material object that supports multiple compound slates **must** implement support for *ICapeThermoMaterialCustomData* (requirement open for discussion)

How will we drive adoption by PME vendors?

Push: Support PMC vendors in using new standard?

Pull: Create demand from customers for PME adoption?

Other?

Where do we focus our efforts?

Hafnium Labs is building Epsilon, a predictive electrolyte model that will support new CAPE-OPEN interfaces

Epsilon is a predictive electrolyte model based on novel science ...

Based on novel science and cutting-edge computational tools & software practices

Providing good predictions without requiring new experimental measurements

Applicable to all systems: Solvents, ions, T, P, phases etc.

Supports new CAPE-OPEN interfaces and integrated with leading process simulation tools

Easy to use and interpret for both chemists and engineers

... and large scale quantum chemistry via our property prediction tool, Q-props

Motivation

- Garbage in = Garbage out
- Experimental data is scarce and not always reliable
- Prediction methods are inaccurate and/or difficult

Q-props advantages

- Unprecedented accuracy and specific uncertainty
 - Using thousands of quantum chemical (QC) calculations for each prediction
- Easy; no quantum chemistry expertise needed
- Cloud-based; no in-house compute needed
- Pay-per-use; no licenses

Preparing for closed beta (demo available)

• Reach out if you're interested

H2020 call: "Adopting materials modelling to challenges in manufacturing processes" Deadline: 22/1/19 – last H2020 call relevant to process simulation. Interested in collaborations

Summary

- Many electrolyte implementations **exist** and can be **extended** to other systems
- But custom thermodynamic models are frequently required
- New CAPE-OPEN interfaces give **better support for reactive electrolyte systems**
- CAPE-OPEN community needs to find ways to drive vendor adoption
- Hafnium Labs will adopt the new standard with Epsilon, our predictive electrolyte EoS