
My Experiences with the
AmsterCHEM COBIA Class Wizard

Peter Nellen

Introduction

Name: Peter Nellen
Country: The Netherlands
Current position: In between jobs
Worked for Shell: 1980 -2016, the last 14 yrs in Gas Processing

Interest in CAPE-OPEN:
Within Shell we developed, together with Jasper van Baten, CAPE-OPEN wrappers
for our legacy Fortran programs for Gas Treating with Amines. A column model
and a property package were made CAPE-OPEN compliant.

Why COBIA:
Jasper made me aware of the COBIA developments, I told him that I am an expert
in finding bugs in new software. To get access to COBIA I was supposed to be a
member of CO-LaN, so I became an individual associate.

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

AmsterCHEM COBIA Class Wizard

• What is the AmsterCHEM COBIA Class Wizard for Visual Studio

• COBIA code generation by the wizard

• Experiences

• Remarks

• Demo COBIA Class wizard for Visual Studio (if time permits)

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

AmsterChem COBIA Class Wizard

• The AmsterCHEM COBIA Class Wizard (COBIA Class Wizard) is an

add-in for Visual Studio, to help develop a COBIA PMC object,

e.g. unit operation.

• The COBIA Class Wizard is based on the COBIA Code Generation

Interface.

• The COBIA Class Wizards generates classes and the definitions

for all the functions in the classes. The content of the functions is

not generated.

• The COBIA Wizard does NOT generate ready to run units!

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

Code generation by the COBIA wizard

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

To start a project from scratch

Requirements:

• The COBIA SDK

• Visual Studio

• COBIA Class Wizard

• Set configuration type to DLL

• add the SDK Include folder to the C/C++ Directories: $(COBIA_Include)

The COBIA Class Wizard is accompanied with documentation for a step by

step walk through for a unit operation. This one was used for my

experience.

Code generation by the COBIA wizard

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

In Visual Studio start an empty C++ project

Code generation by the COBIA wizard

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

In the project properties set configuration type to DLL

Configuration DLL is required to give the PME access to the library

CREATE A PMC Object

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

CREATE A PMC Object

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

This will generate the following files:
COBIAEntryPoints.cpp

Holds the interface to the entry points and registration setting
UnitOperation.h

Header file for the UnitOperation
UnitOperation.cpp

Source file for the UnitOperation

COBIAEntryPoints.cpp

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

#include <COBIA.h>

//this definition prior to COBIA_PMC.h ensures the entry points are

//created. Do this only in one compilation unit

#define COBIA_PMC_ENTRY_POINTS

//this definition prior to COBIA_PMC.h ensures the a default

//DllMain entry point is created (if COBIA_PMC_ENTRY_POINTS

//and _WIN32 are defined)

#define COBIA_PMC_DEFAULT_DLLMAIN

//PMC entry points are defined here:

#include <COBIA_PMC.h>

COBIAEntryPoints.cpp

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

//! Define registration scope

/*!

PMC module must implement this function to indicate whether object

registration must be for all users or for the current user.

Alternatively, define either PMC_REGISTERFORALLUSERS or

PMC_REGISTERFORCURRENTUSER prior to including COBIA_PMC.h,

if COBIA_PMC_ENTRY_POINTS is defined

return true if registration is for all users,

false if registration is for current user only

*/

bool isPMCRegistrationForAllUsers() {

return false; //TODO: modify

}

UnitOperation.h

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The wizard will insert the following code in UnitOperation.h

#pragma once

#include <COBIA.h>

using namespace COBIA;

class UnitOperation :

public CapeOpenObject<UnitOperation> {

CapeStringImpl name;

public:

const CapeStringImpl getDescriptionForErrorSource() {

return COBIATEXT("UnitOperation ") + name;

}

UnitOperation.h

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

//Registration info

static const CapeUUID getObjectUUID() {

//Class UUID = DF2AD0C7-09EE-45C5-8AC3-CC1246D664D7

return CapeUUID{{0xdf,0x2a,0xd0,0xc7,0x09,0xee,0x45,

0xc5,0x8a,0xc3,0xcc,0x12,0x46,0xd6,0x64,0xd7}};

}

static void Register(CapePMCRegistrar registrar) {

registrar.putName(COBIATEXT("Unit Operation"));

registrar.putDescription(COBIATEXT("Code generation test"));

registrar.putCapeVersion(COBIATEXT("1.1"));

registrar.putComponentVersion(COBIATEXT("1.0.0.0"));

registrar.putProgId(COBIATEXT("COLAN.TestUnitOperation"));

registrar.addCatID(CAPEOPEN110::categoryId_Component);

registrar.addCatID(CAPEOPEN110::categoryId_UnitOperation);

}

UnitOperation.cpp

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

#include "UnitOperation.h"

#include <COBIA_PMC.h>

COBIA_PMC_REGISTER(UnitOperation);

UnitOperation Interfaces

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The wizard can be used to add interfaces to the UnitOperation:

e.g.

ICapeIdentification

ICapeUnit

ICapeUtilities

ICapePersist

Implement Interfaces

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

Right click on the UnitOperation.h
Select Implement CAPE-OPEN Interface on COBIA
Class
Click on Add to add the following interfaces:
CAPEOPEN110::ICapeIdentification
CAPEOPEN110:: ICapeUnit
CAPEOPEN110:: ICapeUtilities
CAPEOPEN110:: ICapePersist

UnitOperation Interfaces

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The wizard will insert the following code in UnitOperation.h

//CAPEOPEN110::ICapeIdentification

void getComponentName(/*out*/ CapeString name) {

#error getComponentName must be implemented

}

void putComponentName(/*in*/ CapeString name) {

#error putComponentName must be implemented

}

void getComponentDescription(/*out*/ CapeString desc) {

#error getComponentDescription must be implemented

}

void putComponentDescription(/*in*/ CapeString desc) {

#error putComponentDescription must be implemented

}

UnitOperation Interfaces

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The code in UnitOperation.h needs to be updated to:

void getComponentName(/*out*/ CapeString name) {

name = this->name;

}

void putComponentName(/*in*/ CapeString name) {

this->name = name;

dirty = true;

}

UnitOperation

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

To complete the Unit Operation classes for port collection and

unit port needs to be added.

These classes have their own Interfaces and Methods.

My Experiences

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

Following the guideline of the COBIA Class wizard it was relative easy to
create a unit operation with a port collection.
Running it was a bit more difficult:

An issue with the base of the collection
An issue with persistence

Both were quickly resolved by Jasper
So the Unit Operation did run.

Extending the Unit Operation was more difficult, e.g. adding parameters
Documentation is still a bit scarce, so what interfaces were required for the
parameters?? Jasper gave some guidelines, but the parameters did not work
as expected. The parameter mode was wrong and an issue with validate.
These were also solved by Jasper, so parameters are now supported as well.

My Experiences cont’d

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

Next on my wish list was an energy port.
This one failed as well; an issue with ParameterSpec not implemented.
This is also fixed by Jasper, but on only very recent, so not yet tested.

Remarks

CAPE-OPEN 2018 Annual Meeting, Ludwigshafen, Germany, October 2018

The COBIA framework makes developing a PMC more efficient; the
available adapter classes are easy to use.

The AmsterCHEM COBIA Class wizard is a powerful tool, but it only
generates a skeleton and only for the Interfaces selected. It would be
nice if there was some more documentation for COBIA.

A number of (small) errors were encountered during this exercise, so
maybe it would be an idea if there was a test set within CO-LaN that
should be run before releasing a new version of the software.

