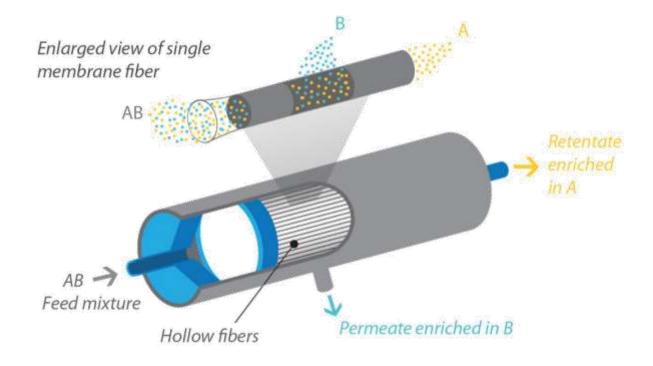


Presentation and CO development: Jasper van Baten

Theory and numerical development: LRGP & Progepi, Roda Bounaceur

A CAPE-OPEN unit operation based on dedicated multicomponent membrane gas separation software



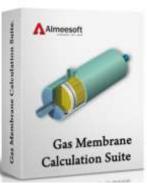
Membrane separation technology offers an attractive solution for bringing environmental sustainability to the chemical industries.

Advantages of membrane technology

Simplicity, plug-and-play process with no regeneration steps
 Energy efficiency, involves no phase change
 Environmentally friendly, no chemical reactions or solvents are used
 Compactness, based on intensified separation process

Market applications
Air separation
Hydrogen purification
Natural gas treatment
Volatile Organic Compounds recovery
Natural gas drying
CO₂ sequestration

Our main clients


Our main competitors

(1) Almeesoft

- Stand alone and compatible with Aspen HYSYS®
- Pressure drop for complex geometries
- Thermal effects for 2 equations of state
- Sweep gas and 3 module cascade with recycle
- Data fitting

Services

- Online test
- Academic and industrial licences
 (for stand-alone 1000 2000 US\$/year/pc)
- http://almeesoft.com

(2) PMEs

Aspen Plus® & PRO/II®

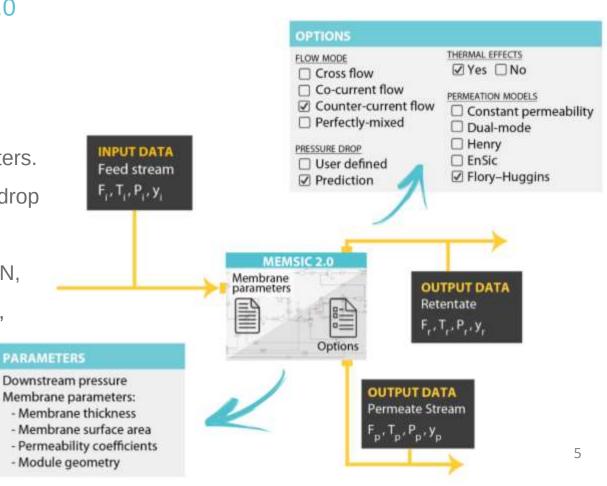
 Isothermal crossflow with constant permeability

ProSimPlus®

 Isothermal counter-current separation module with theoretical prediction of permeability

(3) MemCal

Options


- Standalone
- Specifically CO2 from NG
- Data of several commercial membrane modules
- No technical support
- http://sales.gastechnology.org/950197.html

MEMSIC:

- multicomponent membrane gas separation software
- available as CAPE-OPEN Unit

Key advantages of MEMSIC 2.0

- A User-friendly interface
- \Box A Robust and powerful tool
- \Box A database of more than 5000
 - compound membrane parameters.
- Possibility to estimate pressure drop and Joule-Thomson effects
- Compatible through CAPE-OPEN, with ProsimPlus®, Aspen Plus®, Aspen HYSYS®, PRO/II®, ...

Model Assumptions

Thermodynamics:

- 1. Stand-alone: internal Redlich-Kwong EoS model
- 2. When running as CAPE-OPEN unit: from PME

Flow assumptions:


- 2. Steady state
- 3. Plug flow, no axial dispersion and uniform flow distribution
- 4. Laminar flow (i.e. $Re_{internal} < 2000$ and $Re_{external} < 100$)

Model Assumptions

Transfer phenomena:

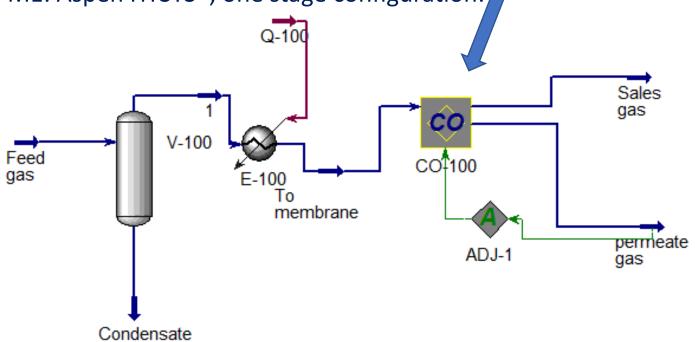
- 5. In the direction perpendicular to the membrane, there are no concentration gradients (the dense skin membrane layer is the only mass transfer resistance)
- 6. No phase-change
- 7. Rapid heat-transfer in gas phases (no heat transfer resistance)
- 8. Influence of pressure variation on fluid enthalpy is neglected
- 9. Hydrodynamics are decoupled from mass and heat transfer.
- 10. For laminar flow and HFMM (Hollow Fibre Membrane Module), the pressure drop of parallel flow using Poiseuille formulations
- 11. No flux coupling (each compound permeates through the membrane according to its own driving force)

Membrane Modelling Options (using CAPE-OPEN parameters or ICapeUtilities::Edit) Flow mode:

Membrane Modelling Options (using CAPE-OPEN parameters or ICapeUtilities::Edit)

	Pressure dro	p The	rmal effects
		/	
	IIII MEMSIC Membrane	Module	– 🗆 X
	General Compounds	Pressure drop Joule-Thomson effect	Solve options Overview
Flux model 🔍	Name	MEMSIC_1	
	Description		
	Flux model	Constant Permeability	•
	Flow pattern	Counter-Current	•
Flow mode	Surface area	10	m² 💌
	Permeate pressure	1.01325	bar 💌
	Membrane thickness	2	µm 💌
		<u> С</u> ору <u></u> Сору <u>/</u>	I To Excel
	For support please cont	act roda.bounaceur@univ-lorraine.fr	MEMSIC
	 Specification completion 	te	✓ <u>O</u> K × Cancel
Validation status			///

Membrane Modelling Options (using CAPE-OPEN parameters or ICapeUtilities::Edit)


	III MEMSIC Membrane	Module		-		
	General Compounds	Pressure drop	Joule-Thomson effe	ect Solve options (Overview C + +	
	Membrane:					
	Membrane family	Polyalkenes			-	
	Membrane	Polyethylene, Ll	DPE		Database	
		D 140				Database
Compound		Permeability Barrer -		MW gr/mol ▼		operations
parameter —	Methane	2	Ko/mor	16.0429992676		oporationio
	Ethane	1		30.0699996948		
table	Lindne	1		30.0033330240		
						From PME
		_	- E	1		
	<u>Import</u>	Export	Сору			
	 Specification complexity 	ete		<u> </u>	Cancel	

Membrane selection

A case study

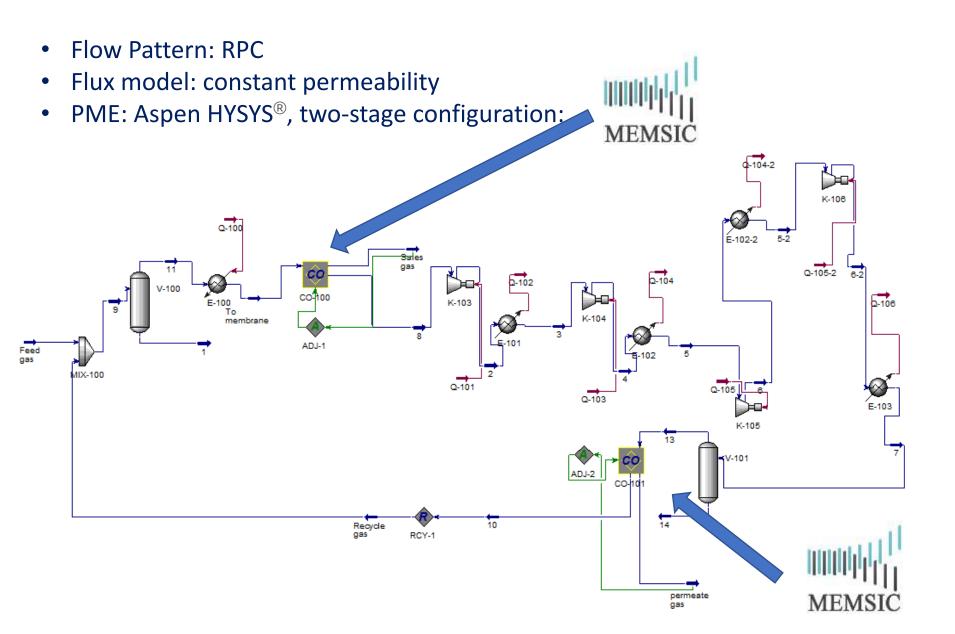
Comparison between Memsic Simulation and data from a supplier

- Results from a confidential study
- Membrane: triacetate of cellulose
- Parameters: from our database
- Flow Pattern: Cross Flow
- Flux model: Constant Permeability
- PME: Aspen HYSYS[®], one stage configuration:

MEMSI

DATA PROVIDED BY SUPPLIER

DATA PROVIDED BY SUPPLIER					
	Feed gas	Sales gas	permeate gas		
Temperature [C]	40	55	55		
Pressure [bar]	100	98	2.0		
Molar Flow [kgmole/h]	13178	11240	1938		
Composition %mol					
Comp Mole Frac (Methane)	84.07	84.4	82.0		
Comp Mole Frac (Ethane)	6.64	7.40	2.10		
Comp Mole Frac (Propane)	2.580	3.000	0.300		
Comp Mole Frac (n-Butane)	2.99	3.50	0.30		
Comp Mole Frac (Nitrogen)	0.67	0.60	0.80		
Comp Mole Frac (CO2)	2.93	1.10	13.70		
Comp Mole Frac (H2S)	0.02	<50ppm	0.10		
Comp Mole Frac (Helium)	0.01	0	0.1		
Comp Mole Frac (H2O)	0.1	<30ppm	0.7		


Results from Memsic simulation:

SIMULATION HYSYS				
	Feed gas	eed gas Sales gas perme		
Temperature [C]	40	55	55	
Pressure [bar]	100	100	2	
Molar Flow [kgmole/h]	13178	11240	1938	
Composition %mol				
Comp Mole Frac (Methane)	84.06	84.98	78.74	
Comp Mole Frac (Ethane)	6.64	7.21	3.33	
Comp Mole Frac (Propane)	2.58	2.97	0.33	
Comp Mole Frac (n-Butane)	2.99	3.44	0.30	
Comp Mole Frac (Nitrogen)	0.67	0.65	0.78	
Comp Mole Frac (CO2)	2.93	0.75	15.57	
Comp Mole Frac (H2S)	0.02	50 ppm	0.11	
Comp Mole Frac (Helium)	0.01	0.00	0.10	
Comp Mole Frac (H2O)	0.10	1 ppm	0.68	

Membrane Area (m ²)	19874
Membrane thickness (µm)	0.1
permeability (barrer)	
Methane	0.782
Ethane	0.4
Propane	0.1
n-Butane	0.1
Nitrogen	1
CO2	9.8
H2S	10
Helium	30
H2O	4000

Component	Sales gas (%error)	Permeate gas (%error)
CH4	0.7%	4%
H2S	ОК	10%
H2O	ОК	3%

Good agreement

DATA PROVIDED BY SUPPLIER

DATA PROVIDED BY SUPPLIER

	Feed gas	Sales gas	permeate gas
Temperature [C]	40	55	55
Pressure [bar]	100	98	2
Molar Flow [kgmole/h]	13178	12730	442
Composition %mol			
Comp Mole Frac (Methane)	84.07	85.6	42.1
Comp Mole Frac (Ethane)	6.64	6.90	0.50
Comp Mole Frac (Propane)	2.580	2.700	0.00
Comp Mole Frac (n-Butane)	2.99	3.10	0.00
Comp Mole Frac (Nitrogen)	0.67	0.70	0.40
Comp Mole Frac (CO2)	2.93	1.10	55.70
Comp Mole Frac (H2S)	0.02	<50 ppm	0.30
Comp Mole Frac (Helium)	0.01	C	0.3
Comp Mole Frac (H2O)	0.1	<30 ppm	0.5

Results from Memsic simulation:

Dans la configuration à deux étages :				
SIMU	JLATION ASPE	N HYSYS®		
	Feed gas	Sales gas (1 st membrane)	permeate gas (2 nd membrane)	
Temperature [C]	40	55	55	
Pressure [bar]	100	98	2	
Molar Flow [kgmole/h]	13178.00	12730.00	442.00	
Composition %mol				
Comp Mole Frac (Methane)	84.06	85.84	34.33	
Comp Mole Frac (Ethane)	6.64	6.85	0.71	
Comp Mole Frac (Propane)	2.58	2.67	0.02	
Comp Mole Frac (n-Butane)	2.99	3.10	0.02	
Comp Mole Frac (Nitrogen)	0.67	0.68	0.44	
Comp Mole Frac (CO2)	2.93	0.86	62.32	
Comp Mole Frac (H2S)	0.02 50 ppm		0.43	
Comp Mole Frac (Helium)	0.01	0.00	0.29	
Comp Mole Frac (H2O)	0.10 1 ppm 1.4			

	1 étage 2	étages
Membrane Area (m²)	24000	1979
Membrane thickness (µm)	0.1	0.1
permeability (barrer)		
Methane	0.782	0.782
Ethane	0.4	0.4
Propane	0.1	0.1
n-Butane	0.1	0.1
Nitrogen	1	1
CO2	9.8	9.8
H2S	10	10
helium	30	30
H2O	4000	4000

Component	Sales gas (%error)	Permeate gas (%error)
CH4	0.3%	18%
H2S	ОК	40%
H2O	ОК	186%

Relative good agreement except for water (initially its concentration is very low)

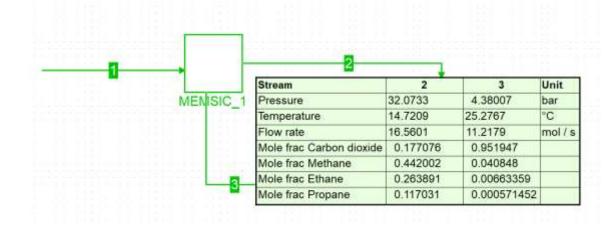
Gas separation of a gas from Pakistan

- Comparison of results coming from the supplier and from Memsic code
- 3 different configurations studied
- Simulation made with HYSYS
- Comparison of the total area obtained to reach objective

Total Area	Case 1	Case 2	Case 3
From Memsic / HYSYS (m²)	33385	13745	32327
Provided by supplier(m ²)	33000	13200	31800
% error	1%	4%	2 %

Experiences with CAPE-OPEN

- Generally in good shape
- Problems with one particular simulator
 - Persistence does not work
 - Unexpected crashes
 - Unexpected problems with dynamic collection of parameters
 - List of compounds not available until first run
 - Parameter values frequently disappear
 - Little support from PME vendor


We eventually got it to work – many concessions were made and not very user friendly

We are willing to make software (without numerical back-end) available to PME vendor for debugging!

Experiences with CAPE-OPEN

- Code consists out of 3 parts
 - Numerics
 - GUI + Database
 - CAPE-OPEN layer
- We have control over the first two parts, which work fine
- Not having control over the (quality of the) other party's CAPE-OPEN layer can be frustrating
- PME vendor is kindly requested to put in best effort to make their socket work better

Demonstration

SHOW THE CODE THROUGH AN EXAMPLE

Perspectives

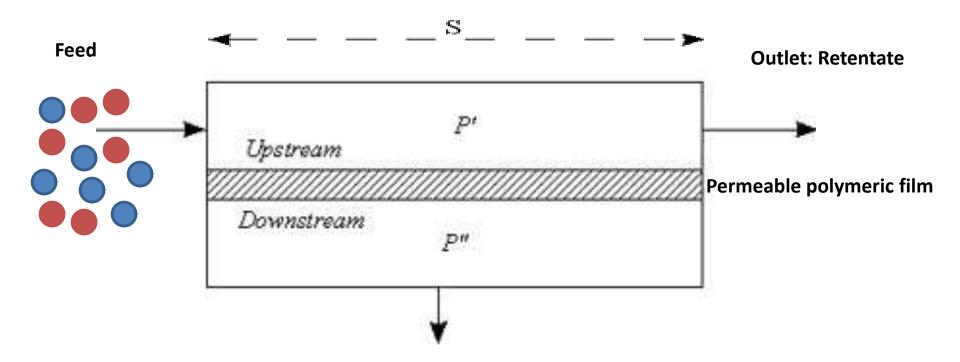
- MEMSIC 1.0 (without pressure drop and thermal effect) is provided under license
- MEMSIC 2.0 (with pressure drop and thermal effect+database): the code is still under validation expected to the end of 2017
- Under development, other unit operations to take into account separation of mixture in different phases:
 - 1. Liquid-Liquid
 - 2. Gas-Liquid
 - 3. Gas-Liquid with chemical reaction

LICENCE PROVIDED BY PROGEPI DEVELOPED BY LRGP & PROGEPI

PROGEPI

1 RUE GRANDVILLE, 54 000 NANCY- FR +33(0)3 72 74 38 88 CONTACT@PROGEPI.FR PROGEPI.FR/MEMSIC

Contact: roda.bounaceur@univ-Lorraine.fr



How works a membrane

Outlet: Permeate

The efficiency of the separation depends on:

- -the pressure ratio
- the flow rate

 $\theta = Q_p / Q_{in} = 1 \cdot Q_{out} / Q_{in}$

$$\mathbf{St} = \mathbf{S} \cdot \mathbf{K}_1 \cdot \mathbf{P}' / \delta \cdot \mathbf{Q}_1$$
$$R = \theta \cdot y_p / x_{in}$$

 $\Psi = P''/P'$

-the surface area

-the permeability coefficient of each compounds respect to the polymeric film