

Global CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in computer-aided process engineering

D822
Migration Cookbook

Global

CAPE-OPEN

J. Köller RWTH.IS
J.C. Töbermann RWTH.IS

CO-LaN standardisation and dissemination support

iii

Archival Information

Reference
Filename (if different)
Authors J. Köller

J.C. Töbermann
Date 02.10.20022
Number of Pages 28
Version 1.1
Reviewed by (date) Reviewed by (name) (greyed out means not yet)

Distribution WP8.2
Additional Material
Location on BSCW

CO-LaN standardisation and dissemination support

iv

IMPORTANT NOTICES

Disclaimer of Warranty

Global CAPE-OPEN documents and publications include software in the form of sample code.
Any such software described or provided by Global CAPE-OPEN --- in whatever form --- is
provided "as-is" without warranty of any kind. Global CAPE-OPEN and its partners and suppliers
disclaim any warranties including without limitation an implied warrant or fitness for a particular
purpose. The entire risk arising out of the use or performance of any sample code --- or any other
software described by the Global CAPE-OPEN project --- remains with you.

Copyright 2000 Global CAPE-OPEN and project partners and/or suppliers . All rights are
reserved unless specifically stated otherwise.

Global CAPE-OPEN is a collaborative research project established under BE 3512 “Industrial and
Materials Technologies” (Brite-EuRam III), under contract BPR-CT98-9005

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are
claimed as trademarks. Where those designations appear in Global CAPE-OPEN publications, and
the authors are aware of a trademark claim, the designations have been printed in caps or initial
caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Visual Studio, .NET,
Internet Explorer, Windows, Windows NT, Windows 2000, Unix, Sun Microsystems, Java,
Borland, Inprise, Delphi, Promula, Linar, J-Integra, Cobalt Blue, FOR_C, Anita, CO*Star are
registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

CO-LaN standardisation and dissemination support

v

Contents

1 Introduction..7

2 Migration goals, issues and strategies ...7

2.1 Migration goals...8
2.2 Migration issues..9
2.3 Migration strategies..9

3 Migration paths ...12

3.1 Middleware issuses...12
3.1.1 Middleware Principles ... 12
3.1.2 CORBA .. 13
3.1.3 COM ... 15
3.1.4 Middleware related Migration issuses .. 16

3.2 Language integration...17

4 How to migrate to CAPE-OPEN...19

4.1 Source Code...19
4.2 Layers for Wrapping...20
4.3 Do just a wrapping or a re-design?...21
4.4 What middleware and target platform should be used?...22
4.5 What programming language to use?..22

5 Supporting tools for a CAPE-OPEN migration ...23

5.1 The Thermo and Unit Wizards..23
5.2 The Migration Wizard CapWiz ...23

6 Source Code Samples ...24

6.1 Calling a FORTRAN dll from VB or C++ directly ...24
6.2 Calling FORTRAN from Java using cfortran...25

CO-LaN standardisation and dissemination support

 - 7 -

1 Introduction

The CAPE-OPEN (CO) standards provide a set of interfaces which allows the seamless integration of
Computer Aided Process Engineering (CAPE) modules from various sources (software and equipment
vendors, universities, and company generated) into process simulation environments. This enables a
process engineer to ‘assemble’ the necessary computational tools with the minimum effort from a
collection of software (in-house, commercial, and/or academic) to achieve a best-in-class solution to
various CAPE-related problems.

Since the CO standards are a recent development, a lot of in-house, academic or commercia l CAPE-
software naturally do not comply to the CO standards yet. These systems – often, and especially in the
following, called legacy systems – have consumed a lot of resources during their development and
may comprise significant parts of a company’s expertise. In the classical sense a legacy software has
been defined by Brodie and Stonebraker as follows: “A legacy information system is any information
system that significantly resists modification and evolution.” [1]. Additionally, these legacy systems
perform mission critical tasks and cannot be switched off without ruining the company operating the
system.

Fortunately, the situation with regard to the CAPE-OPEN standard is often not as difficult as in this
definition. In our domain these software systems are still maintained and improved but they do not fit
into the CAPE-OPEN framework. Often, these systems have been developed using FORTRAN 77
which is not object-oriented or FORTRAN 90 if we are lucky. Therefore, it is important to combine
these legacy systems with the CO standards in some way to earn the benefits offered by a CO
integration without loosing the know-how captured within the legacy systems. Additionally, software
migration help to preserve the investments that have been made during the deve lopment of the legacy
system. A migration of the legacy system leads to this goal.

Which migration strategies, e.g. by wrapping, source-code reuse or other alternatives, are feasible
depends heavily on the legacy system and its maintenance state, but of course also on the resources
and further goals related to the migration project. For example many of these systems are monolithic
applications without object-oriented interfaces and are written in FORTRAN. In such a case any
integration with other software is difficult and a direct integration into a component based framework
like CO is almost impossible. However, wrapping may be easily achieved.

To assist with migration of such legacy software to the CO standard, this document compiles
migration issues, strategies, methods and tools as well as experiences. From the presented material
follow guidelines and rules which are supported by actual migration experience. But the document is
not intended to be exhaustive, i.e. to cover all migration opportunities with all their possible pitfalls.
However, the document will be extended and revised according to further knowledge gains about best-
migration-practice.

In the next section, migration goals, issues and alternative strategies are discussed in general. Section 3
presents a small decision framework giving hints and recommendations for choosing a migration path
according to the actual goals and circumstances. In the further sections, alternative tools for migration
support, with their requirements, their abilities, and examples, are then described.

2 Migration goals, issues and strategies

The first step in a migration project is the definition of its goals. Of course, the main migration goal in
our context is that we want the legacy system to support the CAPE-OPEN standard. This means that it
must match the CAPE-OPEN component framework and expose the appropriate interfaces.
Additionally to the outside world the component to be developed from the legacy system must behave
like it is defined in the CAPE-OPEN standards specification. To reach this overall migration goal the
legacy system must then be investigated to define certain sub-goals determining how the system can
be migrated to the CAPE-OPEN standard. It must be checked whether these goals may be met at all

CO-LaN standardisation and dissemination support

 - 8 -

and if so by which strategy and at which cost. From this assessment, and the gained knowledge about
the legacy system, may follow a reformulation of the goals. Defining the goals and deriving an
appropriate strategy is therefore obviously an iterative process.

2.1 Migration goals

During definition of the goals at least the following questions must be answered to derive a
appropriate migration path and choosing a migration strategy:

• Migrate the whole legacy system or just parts of the legacy system ?
Example: the legacy system is a library of unit operation models. The migration may then
include all models or just a few, because others are clearly out-dated or are not used anymore.

• Migrate the legacy system as a whole or decompose it during migration ?
Example: the legacy system is a unit operation model with its own thermodynamic system.
The migrated system may also consist of the same intertwined unit/thermodynamic -model or
of a unit operation model and a separated thermodynamic system.

• Is the (old) legacy system further used after migration and if so which system should be
primarily maintained ?
Example: A unit operation model of the legacy system should be migrated to CO standards to
use it within a commercial available COSE. On the other hand the same model must be further
used within simulations already set-up within an in-house simulator. In such a case the
primary maintenance, e.g. bug-fixes to the core functionality, may be targeted at the legacy
system, the migrated system or perhaps both systems (with the added complexity to keep both
systems consistent).

• Is it a real migration or just adding some new interfaces?
Example: If you still need the legacy system in the way it is used now a full migration might
not be desirable. Then just adding the CAPE-OPEN interfaces to the system might be
sufficient. A full migration can include re-implementation of the foundations of the legacy
system making it impossible to use it in the original context.

• Is it just a migration or an extension?
Example: It might be desirable just to provide the old functionality in a new shell if we just
want to migrate a unit operation implementing a specific model. On the other hand it might be
a goal to extend the units functionality by adding some more parameters. Another example is
the addition of new calculation routines to a properties package.

• Is the current legacy system environment kept operational in the future ?
Example: the legacy system runs on a specific machine with a specialised configuration (e.g.
ancient operating systems such as MS-DOS). This machine, i.e. the system environment, is
going to be shut down after migration. Then it must be assured that the migrated system runs
on a new target environment.

• What is the target environment for the migrated system ?
Examples: the target environment may be a Windows-system or a Unix-Server or a Linux-PC.
The decision may depend on the type of the CO component, e.g. unit operation or
thermodynamic system, the COSE environment, company-agreed hardware and middleware
preferences and so on.

• Is performance a big issue ?
Example: performance is always an issue, but in the case of an unit-operation which is just
sometimes called during a whole flowsheet calculation and convergence, it is not such a big
issue as it may be for a thermodynamic calculation called many times by many unit operations
during each flowsheet calculation loop.

CO-LaN standardisation and dissemination support

 - 9 -

• What is the timeframe for the migration ?
Example: If the migrated system has to be available very soon a complete re-implementation
is not an option.

2.2 Migration issues

Having defined the migration goals we now need to assess the current situation of the legacy in detail
to define a migration path and to choose the appropriate technologies. This may sound trivial but can
be very tricky especially if knowledge about the system has been lost. During investigation of the
legacy system at least the following issues have to be considered:

• Determine the exact functionality of the system. What are its features and how can this
functionality be accessed by the user and/or other software systems.

• Check whether the underlying conceptual model is available and up-to-date, e.g. the model
equations of a unit operation.

• Check the underlying software framework. What programming paradigm (structured, object
oriented, functiona l programming or something completely different) has been used and what
programming language(s) were chosen.

• Check whether documentation is available and up-to-date, e.g. source documentation like
calling sequences, API-descriptions, user-guide, examples, manuals, etc..
If it is not the case some documentation may have to be recaptured by specialised analysis or
generation tools.

• Check which people are familiar with the legacy system (users and developers).

• Check whether source code is available and up-to-date. Also check whether the development
environment is still available, e.g. included library headers as well as your compiler-linker, so
you can rebuild your actual legacy system (at least in principle).
If it is not the case, source code may be recaptured by sophisticated tools of reverse-
engineering. But keep in mind that source-code obtained from reverse-engineering is very
hard to understand.

• Check whether your legacy system is bound to a specific hardware/middleware configuration,
e.g. due to operating system calls, special libraries, database or file access, I/O-routines, etc..
Also check if the software depends on other software systems. If yes: Do you have to migrate
these systems as well (If this is possible!) or can they be kept as they are.

2.3 Migration strategies

According to the migration goals and the results of the system investigation alternative migration
strategies may be applied. Each of them bears a certain set of advantages, risks and drawbacks:

• Automated code generation
Code generation means here a complete re-implementation of the conceptual model by a
specialised tool. From the user-supplied model equations, a new CO compliant software is
automatically generated. This is distinct from a wizard, which generates a skeleton code to be
further edited by a developer, e.g. placing at appropriate places copy & paste code from the
legacy source code or calling functions of the maintained legacy system.

Requirements: The actual implemented conceptual model must be known, so a good
documentation may be essential or the source code must be available to re-
extract it.

CO-LaN standardisation and dissemination support

 - 10 -

Advantages: No programming skills needed, because the user supplies just the model
equations.

Disadvantages: It is quite hard to check the consistency of the generated system and the
supplied model, i.e. just black-box tests are possible. Additionally, the code
generation may not work on more complex models or may lead to very
inefficient code execution. Moreover the tools required for that process
might be expensive and hard to obtain.

Risks: The code generated by the tool might be too inefficient to fulfil simulation
requirements.

• Copy & paste approach

The functionality of the legacy system is re-implemented. The functional core of the original
source code is copied into the new source code and placed into appropriate new routines. The
skeleton of the new source code may be provided by a wizard-tool.

Requirements: The legacy source code must be available and should be easy to understand.
Additionally, it must be decomposable, i.e. it must be possible to extract
certain pieces/modules/routines that implement a specific functionality. The
legacy programming language must be the same as the one used for the
skeleton. To further the understanding, documentation of high quality should
be available too.

Advantages: Results in a new, modernized system (i.e. new interfaces, complying to new
standards,...) running in a almost free-to-choose environment (i.e. choice of
operating system, development environment, middleware, etc.). Offers the
opportunity to migrate just parts of the system and decompose the system
(e.g. split a unit-operation model from its thermodynamic model). Existing
documentation can be re-used. Also offers the opportunity to enhance the
quality with regard to software engineering aspects, usability,
documentation, future maintainability, etc. The migrated system’s
performance is the same as in the legacy system.

Disadvantages: See risks, also resources needed to analyse and understand the source code as
well as to implement and test the whole new system.

Risks: The original legacy system will be normally almost bug-free in its core
functionality. During re-implementation there is a high risk of introducing
“new” bugs due to erroneous copy & paste actions or misunderstanding of
the legacy source code (which might be quite complex to enhance
performance, use special tricks of the underlying programming language,
libraries or operation system, etc.). This may lead to system crashes, which
are at least easy to detect, and much worse to not obvious differences
between the behaviour of the old and the new implementation, e.g. slightly
different calculation results.

• Wrapping approach
The legacy system is not touched, but a wrapper is written, which acts as a shell around the
legacy system adding the CO support. This wrapper may consist of several layers each of
them providing a certain conceptual view. The legacy system is used either in compiled form
(such as a library or some sort of server processs) or the source code is embedded completely
as it is in the migrated system.

Requirements: The API-Interface of the legacy system must be available and clearly
understandable. Necessary calling sequences as well as preconditions to a
function calls and its parameters and data structures must be known or
derivable. The source code itself is not required if the compiled version of
the legacy system is used. The wrapper has to start or to link dynamically the
existing binaries. Therefore, the execution environment of the legacy system
must still be available (e.g. operating system). In case of full source code

CO-LaN standardisation and dissemination support

 - 11 -

integration only the dependencies on other legacy systems have to be taken
into account (such as databases, network infrastructure, etc.).

Advantages: The wrapping system is rather small, so it is also rather easy to implement,
test and maintain. Basic functionalities of the wrapper should be easily re-
useable in other migration projects using the wrapping approach. Since the
underlying, i.e. the legacy, system is not touched itself, there is no risk of
undesired changes in behaviour (see risks of the copy & paste approach).
The programming language for the wrapper can be chosen freely. Multiple
layers of wrappers allow a large amount of flexibility. Systems that are not
well documented on source code level can be migrated rather easily.

Disadvantages: See risks, also no good chances to migrate just parts of the system or perform
a decomposition of the system during the migration. Approach leads to
additional complexity of the whole system and performance might slightly
decrease due to overhead especially if multiple wrapper layers are used.
Functional extensions to the legacy system are difficult.

Risks: Since the legacy system is not changed or replaced it sticks to the same,
possibly quite old, environment and programming approach. This may lead
to comparable high operational and maintenance cost in the future. The
legacy system might depend on other legacy systems that might not be
available anymore in the near future. Data conversion needed to call legacy
routines can be tricky and error prone. Bridging technologies to access
legacy libraries or binaries might not be available.

• Hybrid

The migration strategies may be mixed according to the possible decomposition of the legacy
system and the migration goals.

Example: The main approach is wrapping, but to make the system operational on a new
platform, the legacy system is also touched, to exchange for example
operation specific calls. In such a case the migration project is split into two
parts, the first part is a CO-unspecific migration to another platform, and the
second part is the CO-migration by wrapping. This migration strategy comes
in lots of flavours due to the CO-unspecific parts. It can include database
migrations, platform changes, structural changes (e.g. transforming a stand-
alone server to a library) and many more.

Advantages, disadvantages, risks:
Highly dependent on the strategy chosen. Hybrid migration itself add some
complexity to the migration process but gives a great flexibility.

• Full re-implementation

The legacy system is fully re-implemented from scratch using the original requirements
specification (if available).

Advantages: Since the system is completely rewritten the new system can be design and
implemented using freely chosen state-of-the-art software development
techniques and technologies. The new system can be optimised for its new
environment thereby allowing an increase in performance. To employ this
strategy no internal information about the legacy system is needed. This is
useful when no source code documentation or even no source code at all
exists. The only thing that id needed is knowledge about the outside
behaviour (i.e. system’s features) of the legacy software.

Disadvantages: See risks. The full re-writing of a system is very resource consuming.
Risks: Because the system is fully re-implemented it is likely (in fact sure) that

there will be lots of new errors. Therefore, it will take a while to make the
new system stable. Secondly, the probability of accidentally modifying a
system feature present in the legacy system in an unwanted way or
completely leaving it out is high.

CO-LaN standardisation and dissemination support

 - 12 -

• No migration

In some cases a migration may not be feasible at all or the obstacles are too high to make the
migration worth it.

3 Migration paths

We will now give some concrete pieces of advice how to act in some specific situations one might find
oneself in after defining the migration goal and assessing the current situation. But before doing so we
will give a short introduction into some of the relevant technologies such as middleware and
programming languages. We will discuss how we can make use of the various technologies which are
currently available to do legacy migration by wrapping old code either on source or on binary level. In
the CAPE-OPEN domain we consider the wrapping approach to be the most useful because much of
the existing legacy software is not going to be re-written. Then wrapping offers the easiest way to a
new system. Nevertheless, the decision framework we will present in this section will also cover other
migration strategies.

3.1 Middleware issuses

The CAPE OPEN standards are based on a component based software architecture and rely on two
alternative middleware solutions: CORBA from the Object Management Group and COM from
Microsoft. Pros and Cons of both alternatives are discussed in the following sections.

3.1.1 Middleware Principles

In a component based software architecture an application consists of several software pieces which
are executed independently and may even reside on different computers in a network. To make this
approach workable, the components must be able to communicate, i.e. to exchange data and issue
method calls to each other via the component’s defined interface. The technology that implements an
infrastructure for such a component communication is called middleware. A middleware solution
provides standardized mechanisms for the definition of component functionality and communication
as well as additional services easing the use and implementation of component based software.

Basically, a middleware framework consists of four parts: An interface definition language (IDL), an
interoperability protocol, an object request broker (ORB), and additional supporting services, e.g.
naming or persistence services. The IDL is a language which describes all accessible data and methods
of a component. It is very similar to a programming language but contains just method headers and no
implementations. The interoperability protocol defines how the components communicate which each
other. It defines valid message types and formats and how their content should be interpreted. The
ORB is responsible for directing messages to and from different components throughout the network.
It is the central piece of software in every advanced middleware because it is the logical backbone for
all component communication. A general introduction about middleware issues can be found in [2].

Figure 3.1 illustrates the use of a middleware infrastructure for component communications. Here a
client application uses some server functionality. The IDL is used to define the interface that a server
implements, i.e. the set of services that clients may request. IDLs compile into client and server stubs.
The client application calls a client stub to request a service. The client stub interfaces to the runtime
system of which the ORB is a part and invokes server code that implements the requested service
through the appropriate server stub. The transmission of service requests and responses between
clients and servers is handled by the runtime system of the middleware platform. Thus, applications
does not worry about locations of clients and servers are located on the network, differences between

CO-LaN standardisation and dissemination support

 - 13 -

hardware platforms, operating systems, and implementation languages (e.g. data formats and calling
conventions).

service request

Application code

Client

Client stub
generated by
the IDL compiler

Runtime system

Operating system

Hardware platform

Server

Server code

Server stub
generated by

the IDL compiler

Runtime system

Operating system

Hardware platform

Middleware

Figure 3.1: Middleware approach

As presented in this example the client and the server can be located on different computers based on
different operating systems and different hardware platforms (e.g. a Windows PC and a SUN Solaris
machine). Additionally, different programming languages can be used on client and server side (e.g.
C++ and Java).

3.1.2 CORBA

The Common Object Request Broker Architecture (CORBA) is an open middleware standard
facilitating broad interoperability between object oriented distributed components in highly
heterogeneous environments [3]. It was developed by the Object Management Group (OMG) [5]
which represents a wide community of software vendors, developers, and users. The OMG specified
the Object Management Architecture (OMA) which includes CORBA as a key part. It is important to
know that the OMA and CORBA are just open specifications and no implementations. The
implementation of these standards is left to the software vendors.

The OMA is constituted of an Object Model that defines how objects distributed across a
heterogeneous environment can be described and an architectural Reference Model that characterises
the interaction between those objects. Therefore, these models also include the definition of the
Internet Inter-Orb Protocol (IIOP) which sets a standard for internet based communication between
software components for transferring messages and data. It also defines marshalling procedures on a
binary level. Therefore, it is possible that CORBA implementations from different software vendors
can communicate with each other. The OMA Object Model defines an object as an encapsulated entity
which offers services that can only be accessed through well-defined interfaces. Clients send requests
to objects to perform services on their behalf. An overview of the OMA Reference Model is given in
Figure 3.2.

The central part of the OMA is the ORB, a kind of distributed object bus that is mainly responsible for
facilitating communication between client and server objects through their interfaces. Several ORBs in
the network from different vendors may communicate via IIOP thereby maybe connecting different
hardware platforms or operating systems. Additionally, several standardized services are part of the
OMA and are defined using the CORBA interface definition language (IDL). These services can be
grouped in the following categories [4]:

CO-LaN standardisation and dissemination support

 - 14 -

Application

Interfaces

Domain

Object Services

Common

Object Request Broker

Interfaces Facilities

Security
Lifecycle
Licencing

Concurrency
Naming
Trading

Properties
Relationships
Query

Events
Transactions
Persistence

Figure 3.2 OMA Reference Model: interface categories

Object Services: These interfaces define the system-level object frameworks that extend the CORBA
object bus. They are used by many application programs and provide services that are almost always
necessary regardless of the application domain. Two examples of Object Services are the Naming
Service which allows to locate objects based on names and the Trading Service which is a kind of
yellow pages that enables to find objects based on their properties.

Common Facilities: Like Object Services these interfaces are horizontally-oriented, i.e. independent of
the application domain, but they are more oriented towards the end-user application. For example
database services could be found here.

Domain Interfaces: These interfaces are vertically-oriented and focus on specific application domains
such as manufacturing, telecommunications, medical, and financial domains. These standard interfaces
as well as the Common Facilities are designed by special task forces of the OMG.

Application Interfaces: These interfaces are specifically developed for applications and thus not
standardized by the OMG.

The IDL used for defining these standard services and for all components developed outside the OMG
is fully object oriented and supports multiple inheritance of interfaces. To use these IDL definitions
the CORBA standard includes language bindings which are translation rules from IDL to real
programming languages. Therefore, it is possible to connect components developed in different
programming languages using these standardized mappings and the other CORBA mechanisms.
Additionally, the language bindings facilitate the development of IDL compilers which can
automatically generate all necessary code for the communication between the component
implementation and the ORB. Currently, official standardized bindings are available for C, C++,
COBOL, Java, Smalltalk, Ada, Python, and IDLScript [3]. There are also some bindings available for
other languages (e.g. FORTRAN) which have not been standardized by the OMG so far and therefore
should not be used. Hybrid approaches can be used for integrating languages that no mapping exists
for. For example one could provide a C++ wrapper for a FORTRAN program and then use the
wrapper to access CORBA (see below).

Due to its strengths in the integration of software in heterogeneous environments and its robustness
CORBA has gained a growing importance in la rge enterprise applications. It has proven itself useful
for complex and mission critical applications and is therefore employed in many e-commerce
applications as well as in the banking sector. The importance and maturity of CORBA is stressed by
the fact that a wide range of stable and high-performance commercial and non-commercial CORBA

CO-LaN standardisation and dissemination support

 - 15 -

implementations is currently available. There are also integrated tools in the market supporting rapid
prototyping with CORBA (JBuilder, Delphi and C++Builder from Inprise)

3.1.3 COM

Microsoft’s Component Object Model (COM) and its distributed version DCOM are the foundation of
Microsoft’s compound document technology OLE (Object Linking and Embedding) [6]. In the
beginning, OLE was a proprietary integration solution for Microsoft Office products, but now it has
become very popular. Based on OLE there is another Microsoft component standard which has
become very popular recently especially in the area of web-based applications: ActiveX. Many tools
available today are based on these technologies which allows them to integrate with each other
seamlessly on the GUI level. Moreover, the next generation COM+ has been made available in
Windows 2000, which offers advanced object services and targets the integration of systems
developed in different programming languages.

In contrast to CORBA COM is no open specification but a binary interface standard that is directly
connected to the Windows operating system. This makes COM and its derivatives a platform
dependent technology not very suitable for heterogeneous environments. There are however some
DCOM implementations available for other operating systems but these products have not gained
much acceptance in the market so far. But on the other hand this strong relation to Windows has
facilitated a quite efficient implementation for reasons that are explained below.

COM object

vTbl pointer

COM interface binary object code

pointer to function 1

pointer to function 2

pointer to function 3

vTbl

interface

reference func1(pObj, arg1, ...)
{ ...}

func2(pObj, arg1, ...)
{ ...}

func3(pObj, arg1, ...)
{ ...}

Figure 3.3: COM objects and interface references

The central idea of COM is to construct a binary interface that is constituted of a data structure called
virtual function table, or v-table (vTbl). This v-table contains pointers to the functions within the COM
object. A reference to a COM interface implies that you have a pointer to a pointer to a v-table. Since
COM provides no language mappings, the developer of a component is responsible for providing these
tables. They match very closely with v-tables known from Visual C++, but it may be very difficult if
not impossible to directly implement COM interfaces in other languages like FORTRAN. However,
Visual Basic, Visual C++, Visual J++, Delphi and others offer powerful tools that support COM such
that less effort is required for these languages. Regarding FORTRAN, a hybrid can be built by
wrapping FORTRAN with Visual C++ or Visual Basic. In this implementation model there is no
explicit piece of software handling all object requests like in CORBA. All the COM ORB
functionality is built into the Windows operating system. This kind of implementation is obviously
quite efficient but is very proprietary.

On a higher level the functionality of a COM component is described by the Microsoft IDL (MIDL).
The MIDL whose syntax strongly resembles C++ is an object oriented language which features single

CO-LaN standardisation and dissemination support

 - 16 -

inheritance only. But in contrast to COM a component is allowed to implement several interfaces
which can be used for simulating multiple inheritance.

Microsoft already defines many standard COM interfaces which can be used to provide standard
behaviour of application components. Most of them are closely related with OLE and define common
services such as Structured Storage or compound document facilities. For application development it
is necessary to create custom interfaces to define the services a component wants to provide.

In spite of its conceptual weaknesses COM plays a very important role in completely Windows based
environments. Strong tool support is offered by various vendors hiding the inherent complexity of
COM to a developer. Especially with Visual Basic COM component development is very easy.
Additionally, no necessary software is needed for using COM as it is shipped as part of the Windows
operating system. But when choosing COM as technology one should keep in mind that there are very
limited options for interfacing non Windows systems.

3.1.4 Middleware related Migration issuses

Using COM, CORBA or both

As already discussed COM and CORBA have their specific strengths and weaknesses. COM is a good
choice in a purely Windows based non-distributed environment. It offers good tool support for
different programming languages and is efficient. CORBA on the other side has its strengths in the
integration of very heterogeneous IT-landscapes. It is available for most operating systems and many
programming languages. Its concepts are well designed, but it does not integrate as seamlessly as
COM into the Windows environment thereby making it less runtime efficient.

Therefore, the best solution may be a mixed strategy which combines the best of all worlds. To reach
such a solution so called bridging software is needed exposing a component written for a specific
middleware system to another system (e.g. make a CORBA component available to COM or vice
versa). To integrate COM into CORBA is not an easy task, but there are some products available (e.g.
Iona Orbix COMet) which offer bridging capabilities for that area. COM-CORBA bridging is tackled
extensively in [7] and the Global CAPE-OPEN bridging report [8] that ships with the CAPE-OPEN
COM-CORBA bridge available online at the CO-LaN web-site [9].

Middleware and programming languages

Most modern programming languages, e.g. C++, Java, Delphi, Visual Basic, are suitable to develop
software components for a middleware environment. Most state-of-the-art integrated development
environments offer direct support for such middleware projects. We will now very briefly discuss
some of the possible combinations of programming languages and middleware approaches.

COM-C++
Among others Microsoft Visual Studio and Borland C++ Builder offer good support for developing
COM-C++ application. Generally speaking COM-C++ implementations can be made very runtime
efficient but require profound experience in both C++ and COM development. This is due to the fact
that the developer operates on a very low abstraction level compared to other languages.

COM-Delphi
Although not being as runtime efficient as C++ compiled Borland’s Delphi code is rather efficient.
The Delphi IDE offers good support for COM component development and is suitable for less
experienced COM developers as much of COM’s complexity is hidden away by the Delphi COM
classes. Delphi is a good compromise between efficiency and development complexity.

COM-Visual Basic
Visual Basic as included in Microsoft Visual Studio is very easy to learn and to use. Most of the
complexity of COM is hidden away which is why almost no detailed low-level knowledge about COM

CO-LaN standardisation and dissemination support

 - 17 -

is needed for COM-VB development. VB can be definitely recommended for COM rapid prototyping
but has the drawback of not being very runtime efficient. Additionally, from a software engineering
point of view VB is not suitable for larger projects because it is not really object-oriented but just
object-based.

COM-Java
This combination is not recommendable because COM is a native Windows technology (although
there is a Unix implementation by Software AG) whereas Java is platform independent. Therefore,
COM is not part of the JDK. Nevertheless, there are some commercial technologies that facilitate
Java-COM integration such as Microsoft Visual J++ or J-Integra [10].

CORBA-C++
Similar to COM CORBA-C++ applications are very runtime efficient for the price of a rather complex
development. Fortunately CORBA-C++ development is not as complex as in the COM case due to the
cleaner conceptual design of CORBA. Therefore, C++-CORBA development adds not very much
complexity to usual C++ development. An advantage of C++-CORBA is that most CORBA ORBs
support C++ language mappings and are available for multiple software platforms. This makes code
migrating between different operating systems easier.

CORBA-Delphi
In version 6.0 Delphi offers good support for CORBA. Similarly to the COM-Delphi combination this
offers a good compromise between ease of implementation and performance.

CORBA-Java
The combination of Java and CORBA is in principle highly recommendable because both
technologies fit together very well. CORBA-Java applications are very easy to implement (comparable
to the COM-VB situation). With current just-in-time compilers performance is also good but of course
worse than in the C++ case. Nevertheless for migration tasks this combination can be a little bit
painful. This is due to the fact that integrating non-Java code into a Java application is tricky. We will
come back to this later.

Other languages
Because both COM and CORBA IDL´s follow an object oriented approach non-object oriented
languages such as FORTRAN77 are not suitable in a middleware environment. Migration to CAPE
OPEN requires then a re-implementation in another programming language, migration by wrapping or
a hybrid migration approach.

3.2 Language integration

As we have seen in the previous sections migration will often require us to integrate pieces of code
that have been implemented in different programming languages if we do not want to re-implement
the whole system. Each of these languages may have it’s own data structures and data types and may
have different calling conventions for procedures, subroutines or functions. But if we want these
pieces of software to interoperate we need mechanisms that can cope with these problems. In this
document we will take a look at the two integration technologies: bridges and cross-compilers.

Cross compilers are tools that translate source code written one language (e.g. FORTRAN77) to
another language (e.g. C). They mechanically translate one programming language into another
without user interaction. A large set of commercial and non-commercial cross-compilers are currently
available, e.g. [11,12,13]. They are not limited to FORTRAN to C or C++ translation but have been
implemented for all major programming languages. Therefore, using them for integrating legacy code
into a new framework is an approach applicable to a wide range of legacy systems. One serious
drawback of these tools is that the source code generated by them is often not human readable and
therefore not maintainable. Additionally, depending on the quality of the cross compiler performance
losses might occur.

CO-LaN standardisation and dissemination support

 - 18 -

The alternative to cross compiling for language integration is the use of bridging technologies. Here
we use a piece of software which can be an executable, a library or a piece of source code or macros
respectively to call legacy routines that reside in a compiled library in our new source code. The
bridging approach clearly separates old and new code thereby facilitating the maintenance of both sub-
systems. We will now briefly introduce some bridging technologies.

cfortran
cfortran is a simple C-header file with a set of macros providing a machine independent framework for
bridging between C/C++ and FORTRAN [14]. It enables the developer to call FORTRAN routines
and access complex FORTRAN data structures in C/C++ source code and vice versa. It can be used on
a variety of platforms including most UNIX derivatives and windows. It allows the integration of
static libraries thereby providing very efficient access to FORTRAN routines. In the CAPE-OPEN
project context it has been used successfully for a prototypical IK-CAPE thermo migration. Additional
information about FORTRAN-C/C++ integration can be found in [15].

Dynamic Link Libraries
Windows’ Dynamic Link Libraries (dll’s) are the standard technology on the different Windows
platforms to integrate various pieces of software that have been implemented in different programming
languages. Virtually, they allow arbitrary combination of all programming languages whose compilers
support the generation of such dll’s. However, using these dll’s directly can sometimes be tricky due
to the calling conventions and subtly different data structures. For example it is possible to integrate to
call a FORTRAN in VB directly without using any additional bridging technology. But the advanced
tools such as the ObjectBrowser in VB cannot be used for these plain dll’s because the lack some
metadata about the methods it contains. Therefore, the CapWizard (cf. Section 5.2) system implements
the automated generation of metadata to ease the use of FORTRAN in VB. Similar technologies exist
on Unix platforms.

.NET
The .NET framework is one of the last developments on the windows platform. Currently, a first
official release is available from Microsoft [15]. The .NET framework is very interesting with regard
to migration because it offers a common execution environment for multiple languages. This so called
Common Language Runtime (CLR) is a virtual machine with features that are similar to the JAVA
virtual machine as specified by Sun Microsystems. Using Visual Studio .NET and the remaining parts
of the .NET framework it is possible to integrate pieces of software written in different languages to
form an complete software system in an absolute seamless manner. This is due to the fact that all .NET
compilers generate metadata about a program that allows the linker to calls methods and convert data
structures automatically. Another great advantage of the .NET framework is that distributed
computing and the implementation of web services come almost for free and require only very little
additional coding. As with Java executables .NET programs can be executed on any platform
supporting the .NET framework. Currently, supported platforms are Windows NT/2000/XP, Windows
CE and freeBSD. More ports to other operating systems are expected to be done soon. There are
compilers for various programming languages available: C++, C#, VB, COBOL, FORTRAN, Python,
Perl, SML, Oberon and others. Some of these implementations are still in beta while others such as
VB, C++ and C# are available as commercial systems.

JNI
The Java Native Interface (JNI) is a technology to allow calls to platform dependent (native) libraries
from Java programs [16]. Using JNI and a C++ wrapper you can call any library implemented in an
arbitrary programming language. To achieve this you have to write a wrapper in C++ which then calls
the actual package to be migrated. In more detail the process consists of the following steps (source
code example can be found in the annex). First, you start to implement the Java program that should
expose the legacy system as CAPE-OPEN component. You have to declare those methods as native
that will do the C++ calls to your legacy libraries. Using the javah tool a C++ header file is generated
for the methods declared as native. You then implement C++ code for this header file which then calls
the actual legacy implementation. This of course bears the same problems as calling a dll or other type
of shared library directly. This C++ code is compiled into a library which then is called by the Java
runtime automatically. JNI is available on all platforms that have a JDK implementation.

CO-LaN standardisation and dissemination support

 - 19 -

If performance is a big issue, then overheads by wrapping may be become a problem. Also
performance gains due to a modern implementation may be promising and may lead to a re-
implementation decision. On the other hand a re-implementation for example in Visual Basic, which is
a widely known and used language, but leads to comparably slow code execution, may reduce the
performance gain significantly. Additionally, language bridging (except for the .NET framework
which was specifically designed for that purpose) may create data conversion errors that are had to
detect. However the wrapping approach seems to be the most promising approach in the CAPE-OPEN
world as most of the software is well implemented, efficient and stable. Therefore, it is a good idea to
preserve this code for future use. Moreover, the code will not be used in the CAPE-OPEN framework
alone which is why preserving the code in its original environment definitely makes sense.

4 How to migrate to CAPE-OPEN

As explained in the previous section we consider the wrapping approach to be the most promising in
the CAPE-OPEN domain. However there are still many options or concrete paths how to actually
perform the migration. In this section we will now give several pieces of advice on how to act in a
specific migration scenario. These scenarios are based on the technologies presented before and will
be presented in terms of a set of question and typical situations including suggestions on how to
proceed from there. The scenarios are not mutually exclusive and neither are the advices given there.

The first two steps of a migration have been presented already: situation analysis and goal definition.
By now you should know exactly how your legacy system behaves, how it is structured, what it
depends on, and what artefacts exist (source code, documentation, etc.). Additionally should now what
the renewed system should look like: What components should be implemented, what platforms it
should support and other things. Based on this situation the following questions will help you to define
your migration path and the appropriate technology.

4.1 Source Code

Whether the source of the legacy system is available is one of the most important questing when
determining the migration strategy. If source code is not available wrapping the system in its original
environment is the only option. If wrapping is not possible (e.g. when the machine the system is
installed used on will not be available anymore and is not compatible to another machine) then reverse
engineering tools such as disassemblers or tools that generate source code from executable binaries
can be a solution. However, the source code generated by these tools is often not human readable and
should be is hard to include into a migration project. There are also tools that do no full source code
reverse engineering but that just extract header information from a library. This is useful if you are
wrapping a binary (see below). Another problem can be the availability of these reverse engineering
tools for the platform you need. If you can neither wrap nor reverse engineer your legacy systems you
should go for a full re-implementation from scratch.

If source code is available you should first check if it is complete and if it can be rebuilt on its original
platform. If this is possible (and the new build really does the same thing as the legacy system) you
can choose if you want to use the legacy system as binary or as source code. This decision depends on
how you want to use migrated system (see also below). If you just want to use the legacy functionality
or the legacy system is still maintained just wrapping the system without changing the source code at
all is a good idea. This is due to the fact that you will not introduce new bugs by manipulating the
source code. Additionally, this is the fastest method. But one must keep in mind that it must be
possible to integrate the legacy code with the wrapper code using the technologies mentioned in
Section 3.2. However, integrating the legacy source with the wrapper or the migrated source directly
(or using a cross-compiler) eases the deployment of you migrated application and may increase
performance.

CO-LaN standardisation and dissemination support

 - 20 -

4.2 Layers for Wrapping

We now take a look at how a migration by wrapping can be performed and how the resulting system is
structured. In principle, a wrapped legacy system should consist of at least four software layers each of
them providing a separate API. These four layers are shown Figure 4.1. The thickness and structure of
these layers strongly depends on the complexity of the legacy application and the way the migrated
system is going to be used. Depending on that each of these layers can consist of multiple sub-layers
introducing new abstraction levels.

Legacy CoreLegacy Core

Legacy Shell
Object Layer

Middleware Layer

Legacy CoreLegacy Core

Legacy Shell
Object Layer

Middleware Layer

Legacy CoreLegacy Core

Legacy Shell
Object Layer

Middleware Layer

Figure 4.1 Wrapper Layers

The legacy core contains the original functionality and routines of the system to be migrated. These
routines can either be used in form of a legacy binary (library or stand alone server) or as legacy
source code. This does not necessarily mean that the original legacy code is not altered at all. The core
level might already contain a slightly changed version of the original legacy system. For example
when the legacy source was available one could have decided to extract certain routines from the
original source and just include them into the new system. But this level should not contain any
fundamental changes to the code. This has the advantage that the core functionality is not touched at
all thereby not introducing new bugs on this level. All new bugs will then only introduced on the other
layers. If the core level has outside dependencies (e.g. database access) that have to be changed in the
migration process. This should be done by introducing appropriate gateways in the legacy shell layer.
If this is not possible due to the lack of abstraction layers in the legacy core then these layers should be
carefully introduced into the core. One should keep in mind that the legacy core can consist of
multiple legacy system which by definition of the migration goal should be combined in one overall
new system.

The legacy shell is responsible for providing low level access to the legacy system. Again, the
structure of this level strongly depends on the architecture of the legacy system itself. If the legacy
system is integrated on source code level and is written in an language that supports object oriented
programming this layer can be very thin or may not be needed at all. But in the CAPE-OPEN context
the core layer is often coded in FORTRAN which makes it necessary to use language integration
technologies like the ones mentioned in Section 3.2. It is recommendable to implement this layer using
C or C++ because this opens up the a lot of options to proceed with the object layer. There is a lot of
bridges to integrate C and C++ code into a system. The wrapper layer itself should have a simple API
which is more or less a one-to-one mapping of the core routines. This facilitates a clean separation
between the object layer and the legacy core although it would be possible to integrate those two in
one overall layer. Therefore, the shell layer is also not responsible for combining several legacy
functions or subsystems into one shell function. However the shell layer is responsible for providing
basic functionality for the legacy core itself if it is needed. This can be the case if a source level
migration to another platform is needed where e.g. database access has to be modified or calls to the
operating system must be performed. In this case the shell layer provides the appropriate functions
which can be called from the modified legacy core using a language integration technology.

CO-LaN standardisation and dissemination support

 - 21 -

So far we have we have just looked at the wrapping layer for migration of legacy libraries. In case of a
stand alone legacy application which is to be migrated into an component based framework things are
more complicated. If the system is available as source one can try to extract the functionality needed
from the system and then migrate it like a library. But this can be dangerous because the dependencies
in the code have to be investigated thoroughly. These dependencies tend to be poorly documented but
are very important. Reverse engineering tools provide good help here. But even in the case of a legacy
application that can or should not be migrated on source level (for what reason ever) we are not lost. If
the application is some sort of server accessible through TCP/IP connection (or another network
protocol) the shell layer must encapsulate this network interface and provide a regular one-to-one API.
But even in case of a really stand alone application there are still some options. There are so called
terminal or screen wrappers/emulators which can encapsulate an application’s (graphical) user
interface and expose it as an API or make it accessible via scripting [17, 18, 19].

On the next abstraction level the object layer provides an object oriented API for the legacy system.
Naturally, this layer must be implemented in an object-oriented (or at least object based) language
such as C++, VB or Java. The object model of this layer may correspond directly to the object model
that is used in the target framework’s middleware layer. Therefore, the object layer could make use of
the CAPE-OPEN interfaces to define an object model as a one-to-one mapping. If the migration is
only performed to make the legacy systems available through the CAPE-OPEN interfaces this is a
quick and easy solution. But if the system is going to be used with other API’s than the CAPE-OPEN
interfaces a separate object model can make sense. But a separate object model is also useful when
because the object layer is responsible for mapping the plain shell API to a more comfortable one.
This can for example include the introduction of new objects for data structures used in the legacy core
or modifications of them. Another important issue is the user friendly configuration of the legacy
system which should be coded on this level. All these things should not be moved to the middleware
layer directly because it is specific for CAPE-OPEN which might not be the natural object model for
wrapping the legacy. Additionally, the object layer should be independent of the middleware platform
used.

Finally, the middleware layer is responsible for exposing the functionality defined in the object layer
in terms of CAPE-OPEN interfaces to the outside (i.e. clients). It is specific for a given set of
interfaces defined in IDL (COM, CORBA, etc.) and a middleware technology. In the skeleton
implementations that are generated by most IDL compilers the objects of the object layer have to be
created and their methods are called. Therefore, a mapping from the object model of the middleware to
the one used in the object layer is needed.

When designing and implementing these layers existing documentation of the legacy system is crucial.
When there is no complete documentation set available simple header files and clients whose source
code is available are very useful to reconstruct how to use the legacy system. An example for a
migration by wrapping can be found in the CAPE-OPEN Migration Methodology Handbook [20].

4.3 Do just a wrapping or a re-design?

Just wrapping a legacy systems is clearly the quickest way to migrate the system to a new environment
but it is not necessarily the best. If you just wrap the system you do not perform a real migration on the
legacy core. This makes sense if the legacy itself is going to be maintained in its original form or if
there are many dependencies in form of other applications calling it directly. A real migration of the
core would cause not only the legacy itself to be migrated but also the other clients. But if maintaining
the legacy core itself if expensive or cannot be performed anymore a real migration should be
performed. This includes porting the system to another platform and or re-implementing it (partially)
in another language or programming paradigm (e.g. from FORTRAN 77 to FORTRAN 90/95). Of
course, a re-design can be performed on source code level only. One should also think about a re-
design if the way the legacy core is used changes fundamentally. An example for this would be a
library that is going to be accessed by object-oriented interfaces only (such as the CAPE-OPEN
interfaces).

CO-LaN standardisation and dissemination support

 - 22 -

Important scenarios for a re-design are all scenarios where the source code of the legacy core has to
modified significantly. If you are touching the source code anyway you should modify it in a way that
it makes it easier to maintain and to use in the future. Important scenarios for re-design are the
migration of stand-alone legacy systems to component or the extraction of functionality from an
existing library (e.g. modifying a unit with thermo to a unit with external thermo).

When you are doing a re-design of the legacy core the first important step is to analyse the core’s
architecture and to identify internal abstraction layers and dependencies. Reverse and reengineering
tools are available for that purpose. The next step is to transform these abstraction layers to the target
architecture. We are not covering this issue here because there are too many approaches to this to
show them here. A good starting point for reading is the book “Migrating Legacy Systems” by Brodie
and Stonebreaker.

4.4 What middleware and target platform should be used?

The choice of the target platform (hardware and operating system) and of the middleware platform is
very important because can affect the whole migration path. As explained in Section 3.1 COM and
CORBA have their specific strengths and weaknesses. In general one could say that CORBA is the
more flexible platform because it supports multiple operation systems. Therefore, it is a good choice if
you are planning to make a piece of software CAPE-OPEN compliant that resides on a non-Windows
platform such as Linux or Solaris. Because distributed computing was one of the main design goals of
CORBA it should be used if you are planning to use remote calculations. Additionally, if you are
planning to use Java in your migration path on the object layer the use of CORBA as middleware
platform is recommended due to the good integration of these two technologies. COM on the other
hand does not integrate very well with Java although there are some commercial implementations of
Java-COM bridges. Examples on how to use CORBA in connection with Java to implement CAPE-
OPEN components is can be downloaded from the CO-LaN web-site.

Similar to COM which ships with the Windows operating system there are free implementations of
CORBA which are very stable and runtime efficient (e.g. omniORB [21]). But CORBA has some
severe drawbacks that should be mentioned. Because it is not integrated into the Windows OS directly
it is not as runtime efficient as COM especia lly when remote calls are issued (the same holds for
DCOM). Additionally, component activation is not as comfortable as in COM. In COM just
registering a component in the Windows registry is sufficient to make it available for potential clients.
In CORBA the servers have to be started explicitly or some sort of application server (usually a
commercial tool) has to be used. Therefore, if you are planning to deploy the migrated system in a
non-distributed pure Windows environment the use of COM is recommended. However, the complex
development of COM components should not be underestimated. Developing a COM application in
C++ is a rather tricky thing whereas development in VB is easy on the price of runtime efficiency.
Examples for COM components implemented in VB can be found in the source code of the CO tester
which is available for download at [9].

If you are mainly working in a Windows environment and you need remote calls or components that
are running on other platforms than Windows then the use of a bridging technology is a good option.
There are some commercial implementations of COM-CORBA bridges and a free implementation of a
specific CAPE-OPEN bridge will be available on [9]. However, when using middleware bridging
technology one should be aware that performance may go down. If it the use of remote components is
expected to be rather frequent a CORBA migration should be considered.

4.5 What programming language to use?

Following the discussion in Sections 3.1.4 and 3.2 the fastest way to a migrated system is the use of
the combinations of Java and CORBA or VB and COM. Because both languages are very suitable for
rapid prototyping and hide away much of the complexity of CORBA or COM respectively you will
have a wrapped migrated legacy system rather quickly. VB and Java should be used for the object and

CO-LaN standardisation and dissemination support

 - 23 -

middleware layer whereas C++ should be used for the shell layer (in the COM case VB can be used as
well) because there a good tools especially for integrating C/C++ and FORTRAN. If performance is a
big issue then C++ is a good choice for the object and middleware layer for both COM and CORBA
components. But usually the C++ implementation will need more resources because development
takes more time here. A good alternative which is also supports COM and CORBA is Delphi.

5 Supporting tools for a CAPE-OPEN migration

In the Global CAPE-OPEN project a number of tools have been developed to support the
implementation of CAPE-OPEN components. All these tools are wizards which can produce source
code skeletons for CAPE-OPEN components thereby relieving the developer from implementing all
the things that occur in almost every CAPE-OPEN component in similar ways. Two of these wizards
are targeting the mechanical generation of Unit Operation and Property Packages. Another wizard has
been developed to support a migration by wrapping directly. The latter one will be described in more
detail in this document.

5.1 The Thermo and Unit Wizards

These two wizards are implemented as plug-ins for Visual Studio 6.0. They can be used to generate
skeleton implementations in VB or C++ that may be completed by the component developer. They can
be downloaded from [9]. These tools support the migration process by generating parts of the object
and middleware layer. They do not offer direct support for implementing the shell layer of a wrapped
legacy system. Nevertheless they are useful in such a process because they generate all the “standard”
CAPE-OPEN compliant code that is needed in a property package or a unit operation respectively.

5.2 The Migration Wizard CapWiz

The CapWiz System which is available for download on [9] is a web based migration wizard that
mainly supports the developer in implementing the shell and the object layer of a legacy wrapper.
Additionally it guides the user through the overall migration process. Currently, it is capable of
analyzing arbitrary FORTRAN source code (or headers) and arbitrary CORBA IDL. Based on this
analysis it generates skeleton source for the shell and the object layer. The process implemented in the
CapWiz system is shown in Figure 5.1.

First, the developer uploads the FORTRAN source and the target CORBA IDL to the system. A
personal project area is created for this. Then, the FORTRAN source and the CORBA IDL are parsed
and translated into an XML representation. Based on these representation the developer can create
associations between FORTRAN routines and methods for objects which have been defined in the
CORBA IDL. These associations are create graphically by drag-and-drop. The associations are also
stored in a XML file. Now these three XML files can be used for creating the various pieces of
wrapper code. The code generation is performed by XSL transformations on the XML files using
some pre-defined XML stylesheets. Currently, the stylesheets are capable of producing the following
source code skeletons:

Ø cfortran macro definitions

Ø CORBA server skeleton code including calls to FORTRAN using the cfortran (according to
association definition)

Ø Native omniORB server skeletons with cfortran macro calls (also according to associations)

Ø ODL (object definition library) code which can be used to call a FORTRAN dll directly from
VB without having to define the dll imports first.

CO-LaN standardisation and dissemination support

 - 24 -

FORTRAN
Source

Legacy-
Code-
XML

CIDL
Source

XML

Translator

IDL-
XML

Visual
Association

Builder

XML

Translator

Assoc.-
XML

XSL
Processor

C++-
Corba-

XSL

C-ODL
XSL

VB-
XSL

migrated
(skeleton)

source
code

FORTRAN
Source

Legacy-
Code-
XML

CIDL
Source

XML

Translator

IDL-
XML

Visual
Association

Builder

XML

Translator

Assoc.-
XML

XSL
Processor

C++-
Corba-

XSL

C-ODL
XSL

VB-
XSL

migrated
(skeleton)

source
code

FORTRAN
Source

Legacy-
Code-
XML

CIDL
Source

XML

Translator

IDL-
XML

Visual
Association

Builder

XML

Translator

Assoc.-
XML

XSL
Processor

C++-
Corba-

XSL

C-ODL
XSL

VB-
XSL

migrated
(skeleton)

source
code

Figure 5.1 The CapWiz Migration Process

Additionally, the developer can define and upload XSL stylesheets to generate other types of source
code skeletons (e.g. java source). Currently, on the input side the system is limited to CORBA and
FORTRAN but COM parser and other source code parsers that would generate appropriate XML
structures could be integrated easily. Because the system itself is self-explanatory we will not prsent
more details here.

6 Source Code Samples

Finally, we will now present some examples for typical pieces of code needed to perform legacy
migrations.

6.1 Calling a FORTRAN dll from VB or C++ directly

This sample was provided by Daniel Pinol, AEA Hyprotech.

The following piece of FORTRAN source specifies an enthalpy calculation routine.

LIBRARY "HDAPack"
DESCRIPTION 'Fortran HDAPack DLL'
EXPORTS
 _ENTHAL@20 @3

SUBROUTINE ENTHAL(TEMP,PRESS,COMP,PHASE,ENTH)
 DOUBLEPRECISION PRESS,TEMP,COMP(10),ENTH
 INTEGER PHASE

The routine can be called in C++ using this declaration:

extern void _stdcall ENTHAL //"_ENTHAL@20"
 (double*Temp, double*press, double*comp, long*Phase,
 double*enthalpy);

C++ call:

ENTHAL(myTemp, myPress, myComp, myPhase, myEnthalpy);

CO-LaN standardisation and dissemination support

 - 25 -

In VB the declaration for the same subroutine looks like this.

Public Declare Sub RKEnthalpy Lib "HDAPack.dll" Alias "_ENTHAL@20" _
 (Temp As Double, press As Double, comp As Double, _
 phase As Long, enthalpy As Double)

VB call:

RKEnthalpy myTemp, myPress, myComp, myPhase, myEnthalpy

6.2 Calling FORTRAN from Java using cfortran

Let’s assume the FORTRAN source contains the follwing definition (this example is taken from the
IK-CAPE thermodynamics package)

SUBROUTINE T_ENTH (WHAT, PHASE, T, P, MOLES, ENTHALPY, RVAL)

CHARACTER WHAT*(*), PHASE*(*)
 INTEGER RVAL
 DOUBLE PRECISION T, P, ENTHALPY, MOLES(*)

Our goal is to call this function from Java source code. To do this we have to declare a wrapper class
which contains this function as a static member. Additionally in the static initialization part of the
class we have to load the native wrapper library “IKCThermoWrapperLib” into memory:

package NativeCape;
public class NativeFunctions {
 public static native int CEnthalpy(java.lang.String what,
 java.lang.String phase, double t, double p, double[] moles,
 Double enthalpy);

 static {
 try {
 // IKCThermoWrapperLib should be in searchpath
 System.loadLibrary("IKCThermoWrapperLib ");
 }
 catch (UnsatisfiedLinkError e)
 {
 System.out.println("Library not found");
 }
 catch (SecurityException e)
 {
 System.out.println("Security violation");
 }
 }

 public NativeFunctions() {
 }
}

CO-LaN standardisation and dissemination support

 - 26 -

Next, we must generate a C/C++ header file for this wrapper class using the javah-tool. The output
will look like this:

#include <jni.h> //include all necessary jni routines
#ifndef _Included_IKCThermoWrapperLib
#define _Included_IKCThermoWrapperLib

#ifdef __cplusplus
 extern "C" {
#endif

JNIEXPORT jint JNICALL Java_NativeCape_NativeFunctions_Centhalpy
 (JNIEnv *,jclass, jstring, jstring, jdouble, jdouble,
 jdoubleArray, jobject);

#ifdef __cplusplus
}
#endif
#endif

CO-LaN standardisation and dissemination support

 - 27 -

Now, we must implement the C/C++ (here it is C++) source for the wrapper library we does the actual
calls to the FORTRAN source using cfortran:

#include <stdio.h>
#include "IKCThermoWrapperLib.h"
#include "cfortran.h"

// first the cfortran definitions
PROTOCCALLSFSUB7(ENTHALPY, t_enth, STRING, STRING, DOUBLE, DOUBLE,
 DOUBLEV, PDOUBLE, PLONG)
#define ENTHALPY(what, phase, t, p, moles, enthalpy, mist)
CCALLSFSUB7(ENTHALPY, t_enth, STRING, STRING, DOUBLE, DOUBLE,
 DOUBLEV, PDOUBLE, PLONG, what, phase, t, p, moles, enthalpy, mist)

// now the actual implementation of the native function calling the
// FORTRAN routine

JNIEXPORT jint JNICALL Java_NativeCape_NativeFunctions_Centhalpy
 (JNIEnv *env, jclass jclas, jstring jwhat, jstring jphase,
 jdouble jt, jdouble jp, jdoubleArray jmoles, jobject jenthalpy)
 {
 int RVAL=0;
 // for jenthalpy
 jclass jcls;
 jfieldID fid;
 jdouble enthalpy;
 //for jmoles (jdoubleArray)
 jsize len;
 jdouble *moles;

 const char *what =(*env)->GetStringUTFChars(env,jwhat,0);
 const char *phase =(*env)->GetStringUTFChars(env,jphase,0);
 // GET jenthalpy
 jcls = (*env)->GetObjectClass(env,jenthalpy);
 fid = (*env)->GetFieldID(env,jcls,"value","D");
 if (fid == 0) {
 printf("VALUE not found.");
 return -1;
 }
 enthalpy =(*env)->GetDoubleField(env,jenthalpy,fid);
 // GET jmoles
 len = (*env)->GetArrayLength(env,jmoles);
 moles = (*env)->GetDoubleArrayElements(env,jmoles,0);
 // now perform the FORTRAN call
 ENTHALPY (what, phase, jt, jp, moles, &enthalpy, &RVAL);
 (*env)->ReleaseDoubleArrayElements(env, jmoles, moles, 0);
 (*env)->SetDoubleField(env, jenthalpy, fid, enthalpy);
 (*env)->ReleaseStringUTFChars(env, jwhat, what);
 (*env)->ReleaseStringUTFChars(env, jphase, phase);
 return RVAL;
 }

If the header file and the C file are compiled into a library (maybe statically linking the FORTRAN
lib) the java program can be executed sucessfully.

CO-LaN standardisation and dissemination support

 - 28 -

REFERENCES

[1] M. Brodie, M. Stonebreaker, Migrating Legacy Systems, Morgan Kaufmann Publishers, 1995

[2] D. Serain, Middleware, Springer, 1998

[3] OMG CORBA web site, www.omg.org/corba, 2001

[4] S. Vinoski CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments. IEEE Communication Magazine, Vol. 14, No. 2, 1997

[5] OMG web site, www.omg.org, 2001

[6] Microsoft COM web-site www.microsoft.com/com, 2001

[7] R. Geraghty et al., COM-CORBA Interoperability, Prentice Hall, 1999

[8] Global CAPE-OPEN Bridging Report, 2001

[9] CO-LaN web-site, www.colan.org, 2001

[10] Linar Ltd. web-site, www.linar.com, 2001

[11] f2c FORTRAN-C cross compiler, www.netlib.org/f2c/index.html, 2001

[12] Promula FORTRAN to C translator, www.promula.com/fortrantoc, 2001

[13] Cobalt Blue, FOR_C, www.cobalt-blue.com/fcmain.htm, 2001

[13] cfortran web-site, www-zeus.desy.de/~burow/cfortran/, 2001

[14] FORTRAN-C/C++ integration, www.neurophys.wisc.edu/comp/docs/notes/not017.html,
2001

[15] Microsoft .NET web-site, www.microsoft.com/net, 2001

[16] Sun Microsystems Java Native Interface web-site, java.sun.com/j2se/1.3/docs/guide/jni/,
2001

[17] Expect web-site, expect.nist.gov, 2001

[18] CO*Star web-site, www.clearview-software.com/webpage/products/costar.html, 2001

[19] AniTa web-site, www.april.se/english/anita.asp, 2001

[20] CAPE-OPEN Migration Methodology Handbook, available at
www.global-cape-open.org/09_CO_Migration_Methodology_Handbook.pdf

[21] omniORB web-site, www.uk.research.att.com/omniORB/omniORB.html, 2001

