Thermo SIG Progress Report 2016

Sergej Blagov,BASF / GermanyJasper van Baten,AmsterCHEM / SpainMark Stijnman,Shell Global Solutions/ The NetherlandsMichel Pons,CO-LaN / France

www.colan.org

Task:

Develop, maintain and promote Thermodynamic and Physical Properties interface specifications

Key Responsibilities:

- Maintain and manage existing interface specifications
- Assess expansions of interface specifications
- Manage the development of expansions
- Help organizations to develop implementations

Thermo SIG Annual Report: Membership

- Jasper van Baten
- Mark Stijnman
- Michel Pons
- Ryan Liu
- Jian Yong (Jim) Yang
- Richard Szczepanski

- Sergej Blagov
- Suphat Watanasiri
- Vicky Athanasiou

- AmsterCHEM (co-leader)
- Shell Global Solutions
- CO-LaN
- Honeywell
- Honeywell
- KBC ADVANCED TECHNOLOGIES (A Yokogawa company)
- BASF (co-leader)

- Aspentech
- Honeywell

Thermo SIG Annual Report: Membership

- Bjørn MARIBO-MOGENSEN (Hafnium Labs), formerly at DTU-CERE and Linde, joined last week the core team
- Thermo SIG is looking forward to work with Bjørn
- Experienced in electrolytes and CAPE-OPEN implementation

CAPE-OPEN 2016 Annual Meeting, Pullach, Germany, October 2016

Activities 2015-2016

Mark Stijnman joined the core SIG activities

Reviewed extensively current document

Efforts concentrated on the Chemical Reactions interface specification v1.1

Main ideas first presented on CO-LaN Annual Meeting, 2012, Lyon, France

www.colan.org

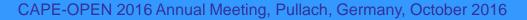
Ongoing work in a small group

- Jasper van Baten, Mark Stijnman, Michel Pons, Sergej Blagov
- 2 hours weekly remote desktop sessions

Still not finished

Status mid-2016

- Where we stand (mid-April 2016):
 - Requirements finalized and classified per package
 - Use Cases finalized (29)
- Not finished
 - Interface method documentation
 - Interface formalization (IDL)



www.colan.org

Feedback

- We requested reviews from other parties for check of completeness and consistency
 - Extensive review from Mark Stijnman received
 - Basic questions on the document were raised
 - Need for clarifications on business cases
 - Less recommendations, stricter rules (refer to CO 2015)
 - Overly complicated hierarchy of reactions (introduced in 2015)

- Global document structure
 - CAPE-OPEN template improper?
 - Splitting document in different scope sections

Immediate goals (1)

- Formulation of business cases
- Restructuration of document
 - Document treats three concepts
 - A Reaction Server that exposes reactions
 - A Chemical Phase Equilibrium Server
 - Multiple Compound Slates (true and apparent)
 - Initial structure follows CAPE-OPEN template
 - Textual requirements, Use Cases, Interface descriptions
 - Proposed structure: separate by concepts
 - CAPE-OPEN template applied per concept

Immediate goals (2)

- Means to achieve these goals
 - Formulate theoretical background with consistent terms and symbols for use in business cases and throughout document
- Purpose is not to write a textbook but
 - Motivate interface design
 - Demonstrate how interface design fits with common reaction engineering modeling approaches

Business cases

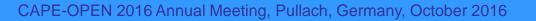
- **Explain expectations of Reaction Package standard:**
 - Enumerating example fields of applications:
 - e.g. electrolytes, reuse of reaction definitions between reactors,...
 - Product management issues:
 - e.g. minimum functionality, IPR, package configuration,...
- Justify interface design
 - Reactive Equilibrium distinct from Phase Equilibrium
- Introduce and help navigate through major concepts of the interface:
 - e.g. Reaction server, Chemical Reaction Equilibrium, Multiple compound slates

www.colan.org

Currently out of scope

- Polymerization
 - No standardized approach for population balances
- Field-induced reactions
 - External driving force
 - Production and consumption on non-compounds
 - Examples: electric current, radiation (X-ray, light, ...)
- Petrochemical reactions
 - Externally defined reactions are unable to affect petrochemical properties (e.g. sulfur content)

Summary


- Main building blocks are available
 - Textual requirements, Use Cases
 - Is it time to prototype current design?
- Re-arrangement of document envisioned
 - Per main concept
- Hierarchy of reactions challenged: change in design?
- More feedback is welcome from CO-LaN membership
 - Especially from parties interested in implementing
 - Current documents are available to all Members

Questions?

Thank you for your attention!

www.colan.org

CO⁻LaN

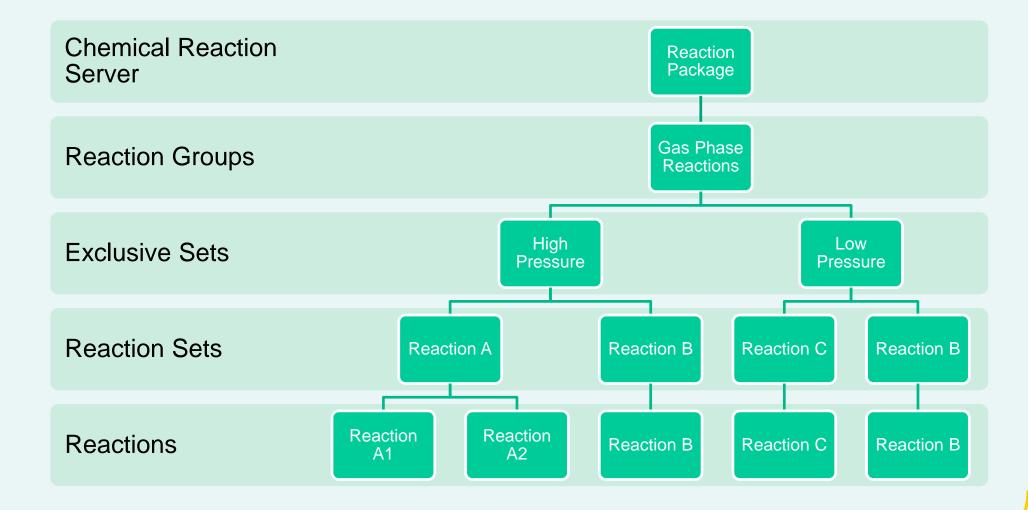
Main concepts: Chemical Reaction Server

New:

Reorganization of reactions into a hierarchy

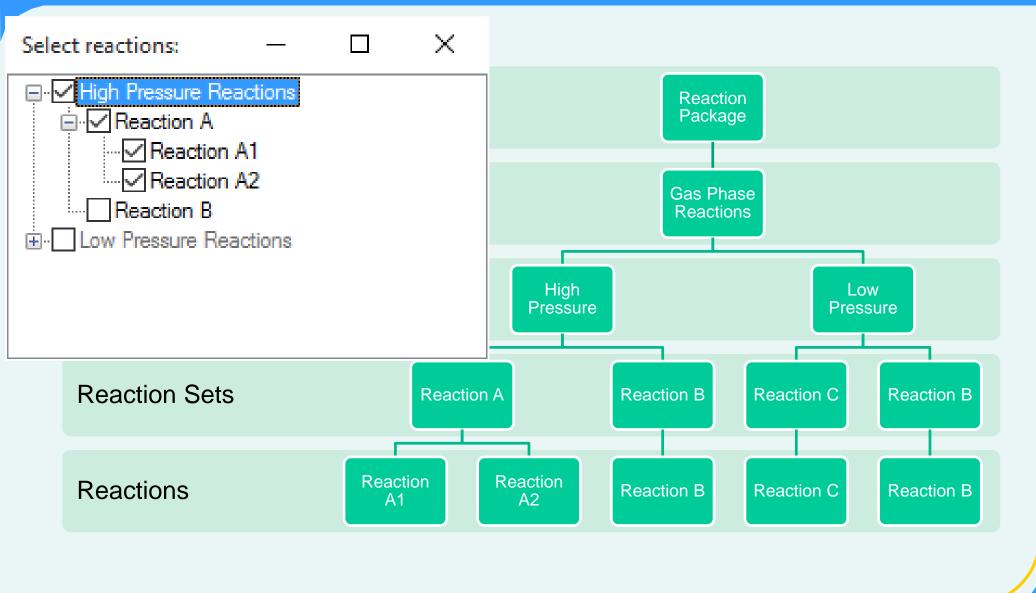
- Reaction groups
 - Arbitrary grouping of reactions related to each other
- Exclusive sets
 - Groups of mutually exclusive reactions at alternative conditions

www.colan.org


- Reaction sets
 - Groups of reactions that must be evaluated together

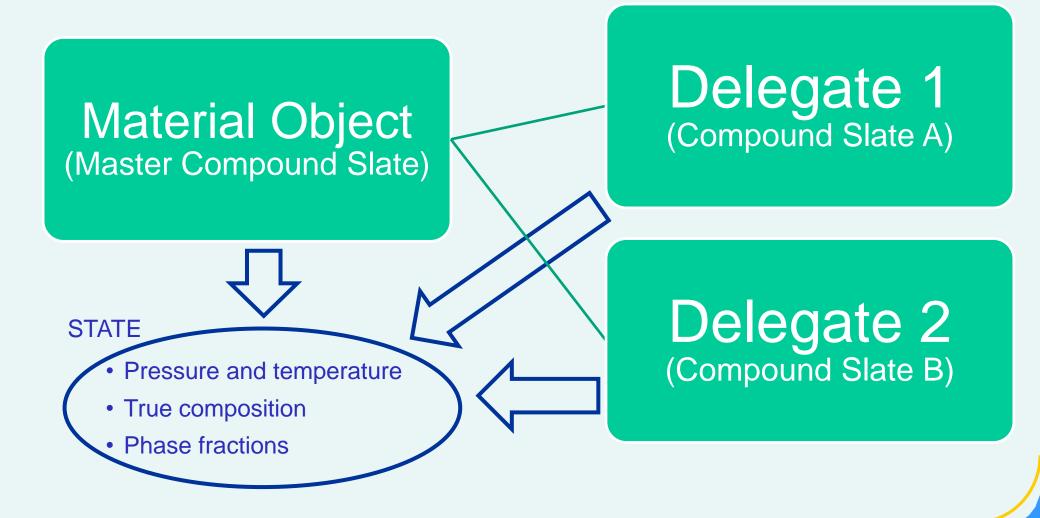
Advantages of the generic approach proposed

- Ease of analysis by the PMCs using CRS
- Complex reaction systems are easily defined


Internal representation

CO T LaN

www.colan.org


Example of GUI representation

CAPE-OPEN 2016 Annual Meeting, Pullach, Germany, October 2016 WWW.COlan.org

CO⁻LaN

Main concepts: Multiple compound slates

www.colan.org

CO v LaN