
1

2

I will, in this presentation, briefly outline where the middle ware lives in CAPE-
OPEN, what we are currently using and how we can improve that. This will lead to
a formulation of a list of targets for a new middle ware. From there one, we will
evaluate each of these targets in the light of the recent delivery of Phase I of
COBIA. I will conclude with an enumeration of what has been delivered for Phase 1
and some final remarks. Warning: this presentation gets somewhat technical at
times. Feel free to interrupt and ask questions.

3

I will briefly iterate over the context of an object model. This was presented in
Berlin, 2011, and Pittsburgh 2012, roughly, and sets the context.

CAPE-OPEN is, in short, a definition of a whole bunch of interfaces that define the
functionality exposed by one object and accessed by another object, in terms of
which functions are exposed, what are the arguments to these functions and what is
expected calling order and behavior of objects that implement CAPE-OPEN
interfaces. CAPE-OPEN lives at the boundary between a PME and external
modelling components, PMCs. This implies that the PME and PMC can come from
different software vendors, that use different compilers, etc. So declaring the
interfaces is not enough, we also need to establish binary compatibility between the
objects.

4

So CAPE-OPEN does not define what the PME or PMC implement exactly, it just
defines the interfaces with the functions and function arguments that a PME must
supply to a PMC and vice versa. For example, ICapeUnit has a function Validate
that returns a Boolean and provide a textual message as output argument. It does not
state which tests a unit operation must perform for validation to succeed or fail, that
is up to the implementation. The piece that is missing is the binary definition of the
string, which in COM is a COM BSTR, the calling convention, the exact data type
of the Boolean, in other words, the details that allow for binary compatibility of the
PME and PMC. More-over, the middleware also provides the functionality to locate
and create PMC objects, defines how to deal with threading models, and defines
how a PME and PMC communicate if they are not part of the same process, or
architecture.

5

Until now, CAPE-OPEN has adopted two middlewares: COM and CORBA. COM
is built-in to Microsoft Windows, only available on Windows, and automatically
supported if you run Windows as it is built-in to Windows. CORBA is in principle
platform independent, once you agree on the implementation; separate Object
Request Broker software is required and must be installed. CORBA did not really
take off in CAPE-OPEN due to the complexity of setting it up, so COM pretty much
became the standard.

6

COM is very powerful, it can sing and dance. Using it however implies that a
CAPE-OPEN PME must be a COM client, and a PMC must be a COM server, and
implementing these requires programming skills. Choices need to be made
regarding threading models, server type, etc. The wrong choice may lead to data
marshalling, which may be detrimental to performance. Not following the COM
rules may lead to memory leaks, crashes, and whatnot. The data in CAPE-OPEN via
COM pretty much all goes over the pipeline as VARIANTs, which are generic weak
typed data containers, and BSTR strings. Somebody must allocate these and
somebody must free these, which is not always obvious. And of course you have to
check that the data you are looking at is of the expected type to begin with. Not very
efficient, and error prone.

7

In addition, COM is bound to Windows, and that binds CAPE-OPEN in its current
state effectively to Windows. And perhaps it is time to re-evaluate that. COM was
introduced 23 years ago. Microsoft announced to retire it sometime ago, and to
replace it by .NET. Surely this will not happen, but COM will get the name of ‘old
technology’.

8

So these are our targets. Create something that will work on other operating
systems, is easier on PME and PMC programmers, has strong and more efficient
data typing and is less error prone. As CAPE-OPEN should be truly open, it would
naturally need to be open sourced. But we cannot do away with what was built up in
the last 15 years, so we need to be a 100% COM compatible. Let us address each of
these points in the remainder of this presentation and see where we stand upon
completion of COBIA phase I.

9

The M&T sig came up with the name COBIA for the new middleware, which stands
for CAPE-OPEN Binary Interop Architecture. Its development is planned in three
phases.

Stage I include prototyping for a subset of the interfaces, on Windows only, thermo
1.1 only, with a test PME and test PMC and full COM interop. It is the proof of
concept stage and has just been completed.

Stage II extends the functionality to the entire CAPE-OPEN interface set. Still
Windows only, and still native only, with C++ as the only language binding. Which
covers a good deal of the current CAPE-OPEN application field. At this stage the
COBIA IDL will be determined and stub generation and marshalling can use
information parsed directly from the IDL.

Stage III will introduce platform independence, and implementations on different
platforms talking to each other, via marshaling.

10

Platform independence may seem to require a business case, which may be hard to
demonstrate considering that most of us are using Windows based platforms for our
process simulations. There is however a very strong argument for it: you cannot
claim to be open if you depend on a particular OS vendor who’s software is not
open. There are practical advantages too of course. We are not all bound to
Windows, we have both PMC and PME vendors that can operate on for example
Apple or Linux platforms. And the market is shifting, why not have web based
simulations where the PME runs on a web server and the client just has a tablet. In
this cases, chances are that the web server is a unix or linux host.

Platform independence is easy to obtain: all interfaces have been written down as C.
Not C++. C++ does not have single binary standard, but C has. And this binary
standard is understood by virtually all compiler platforms.

11

Although not part of the Phase I deliverables, platform independence is easily
demonstrated. These are snapshots of the text based COBIA test PME and the
COBIA Ideal Thermo Test PMC, which are part of the deliverables, running on
Ubuntu Linux. Not under WINE, the Windows emulator, but simply natively
compiled for Linux. A GTK basis was used for the Edit interface of the Property
Package Manager and Property Package, but clearly CAPE-OPEN does not decide
on how to implement the windowing.

12

Easier on programmers I can only demonstrate for C++ at the moment, as that is the
only language binding that so far has been provided. To use COBIA, you include
COBIA.h. This will hide all details of the binary interface, and provide a bunch of
C++ wrapper classes to deal with all data and all interfaces. Any programmer in this
room of course knows that C++ is object oriented, and this implies that any variable
that is defined as a class, comes with a constructor and a destructor, and the C++
compiler will take care of calling the destructors for you. This is used to clean up
whatever we are doing, so as opposed to the COM interface, you typically do not
have to take care who owns what object or who owns what data. Surely most C++
programmers will use smart pointers for COM objects already, but not so for the
VARIANT and BSTR arguments to the methods. You need to know who owns the
data, who allocates, and who cleans up. Not in COBIA’s C++ binding. All data are
simply represented, essentially, by smart pointers around interfaces to the data. In a
moment I will demonstrate how this affects efficiency, but for now let’s see what it
does to programming.

Sorry to have to bother you with code, but we cannot really get around that when
talking about programming. Here’s the initial bit of the test property package class.
The class is defined as ant C++ class, but derives directly from a class that
represents each implemented CAPE-OPEN interface. The corresponding methods
need to be implemented of course. The base class in bold is ICapeIdentification.
Let’s see how it is implemented.

13

The arguments are strongly typed, and in this case are CapeString, for both input
and output.

14

They are not COM specific types such as BSTR, or VARIANT. Furthermore, they
are C++ classes that wrap interfaces, so we do not need to complicated things about
allocating data, or deallocating data. Common functionality of any string class is
implemented, such as assignment, checking for empty, etc. The class is a wrapper
around an interface, and because the data is owned by the caller, allocation and
deallocation of the interface are the responsibility of the caller. The caller can use
off-the-shelf wrapper classes for this, as shown later in this presentation, which take
care of the life time of the interface. Therefore, there is no need to reference count
this interface, it can just be used without any concerns. The class that wraps it has
only one data member: the interface pointer. We can therefore safely pass the class
by value instead of by reference.

15

Note that this package does not accept an empty name. It simply throws an
exception, which is defined in COBIA.h. The CapeIdentificationAdapter that we
saw on the previous page, catches the C++ specific exception and translates it into a
valid CAPE-OPEN error.

Please notice again the absence of any allocation or deallocation. Same holds for
double arrays, etc. Everything in the C++ binding of COBIA is a smart pointer to
an interface. All of that is defined in, or included via, COBIA.h.

16

Of course you want to have some mechanism that declares your class as seen on the
previous slide, and that writes down the function definitions as seen on this slide of
all methods that require implementation, with the proper arguments. This is called
STUB code generation, and part of Phase II. The STUB code to be generated is
along the lines of the code that was prototyped in Phase I.

PMC registration, enumeration and instantiation has also been made very simple. If
you are interested, please study the test PMC and test PME that were part of the
Phase I deliverables.

17

Basic data types like CapeInteger, CapeDouble, CapeBoolean are passed directly by
reference. Other data types that require memory management are passed as
interfaces. The original idea was for the underlying data to be managed by the
middleware, in one central place, where we can implement per-thread memory
caching pools to speed things up. The PME and PMC could then just request an
array of particular size, and the middleware would take care of all allocations and
deallocations, by reference counting. Mark however had a better idea, and we
followed that route instead. All datatypes are actually interfaces that allow read and
write access to the memory of the caller directly. Much like passing a vector by
reference in C++, but then in a system and implementation independent form.

The promise was to make data access both easier, less error prone and more
efficient, so let us have a look on how it is done. Firstly, all data is strongly typed. In
COM, GetSinglePhaseProperty passes the data in a VARIANT, which contains a
SafeArray of type double. The VARIANT can contain anything and everything, so
the sender of the data must go through some steps to properly allocate this, and the
receiver must to type checking and a bunch of additional steps to access the array
data. In COBIA, what goes over the pipe line is an interface to the data, with
essentially two members: a member to change the length of the array, and a member
to access the data content and its length.

18

The details of the interface are hidden to the programmer by the language binding.
In C++ this is naturally wrapped up into a class that will take care of the reference
counting, and provides functionality that you would expect from an array class, such
as an indexing operator, a size() operator, etc. A function that populates the array,
which is passed as argument to the function, must set the size of the array and the
data of the array. There is a special shortcut for setting a scalar value. For vector
data, the size is set, and the content can be set via an indexing operator or directly
via the data pointer, as shown in this example slide.

19

This implies that the caller must provide a class that actually stores the data, and
implements the interface to the data. Four basic classes are provided for the C++
language binding. The first copy derives from a std::vector and can be used as a
normal standard vector. The second copy assumes you have std::vector already
somewhere in your code and puts an interface around that. The third copy assumes
that the data is outbound and not inbound, so the other side will not try to resize the
data or write to the data. In this case a double pointer with fixed size can be used
directly. The resize function of this implementation raises an error of course. The
last implementation is for completeness, and an array implemented by the
middleware. This is not likely to be used by C++ applications, but other languages
may perhaps benefit from it.

Of course you can provide your own implementation around your own data if you
want. For example the COM wrappers that I will discuss in a moment implement a
data type that wraps directly around a VARIANT and accesses directly the
VARIANT data.

20

So this is how it works. We can declare either of the array data types. The first one
implies the std::vector, the second one uses an explicitly declared one.

The resulting variable implements the ICapeArrayDouble interface, so we can
simply pass it to an external function. This function will then write data to our array.
We can re-use the variable at will. C++ programmers will know that a std::vector
only re-allocates itself in case it grows, not in case it shrinks. So this approach will
pretty much lead to eliminating all memory allocations altogether, except from a
few initial ones.

For SetSinglePhaseProperty, we do not expect the callee to write to the data, so we
can pass a wrapper around any non-resizable double array.

21

Clearly CAPE-OPEN programming becomes easier this way. Especially if we
integrate the wizards that will create the CAPE-OPEN object framework for you.
But it also becomes less error prone. You may have noticed the absence of any
explicit allocations, deallocations, AddRef, Release etc, in the previous slide. All
that responsibility has been taken to C++ wrapper classes. As all data is strongly
typed, you no longer have to type check your data, and it is not possible to make
any wrong assumptions there.

Also error handling is easier: any method can simply throw a CAPE-OPEN specific
exception. The C++ wrapper code will catch this exception, and translate it into a
CAPE-OPEN error. The C++ wrapper code on the caller side will check for this
error and translate it back into an exception. In other words: the C++ language
binding can simply use exceptions. Other language bindings that support exceptions
can do the same.

22

As nearly all current implementations are COM based, and we cannot expect
everybody to migrate at the same time, COM-COBIA interop is essential, and was
made part of COBIA Phase 1. COM PMCs can transparently be used from COBIA
PME’s, of course only on Windows. Similarly, COBIA PMCs can be used
transparently from COM PMEs. At no point will there be any need for any
implementation to provide a double interface. And even better, as we have seen the
data access in COBIA is set up such that we can directly read from and write to the
caller’s variable, COM-COBIA interop is by good approximation as efficient as
COM-COM interop.

23

Clearly COBIA-COBIA interop remains within the COBIA realm, and COM-COM
interop does not change and remains COM. The cross interaction is provided by the
glue, which was dubbed COMBIA, and has been tested with a variety of COM
PMEs and PMEs.

24

Going back to our check list of targets, I hope it was clear from this presentation
that all targets have already been demonstrated in the Phase I part of the
implementation.

25

26

27

28

29

30

31

I can talk about 3 more hours about COBIA, I id not go into the details of error
handling, component registry and whatnot. But this presentation has a limited time
slot. So to conclude: we started a new middleware, it is called COBIA. It does
exactly what we need it to do, no more and no less. Therefore, programming
becomes easier and less error prone, interop becomes more efficient. And we no
longer are bound to only Windows. I myself am not disappointed, I think this will be
a lot more effective than COM to drive CAPE-OPEN for the next decades. So from
me it gets three thumbs up.

There is only one down side compared to COM that I can think of: COM is very
integrated into Windows itself, while COBIA requires a separate CO-LaN installer.
For COM we have a type lib and PIA installer, so I think this is not a big issue.

32

But do please feel free to try it youself. All CO-LaN members have access to the
COBIA code via the CO-LaN code repository; please ask Michel for further details
if you do not have access yet. Now is the time to make corrections and
improvements as the code is not yet frozen. Feedback is welcome from you all.

