
CAPE-OPEN
Delivering the power of component software

and open standard interfaces
in Computer-Aided Process Engineering

Open Interface Specification:
Persistence Common Interface

 www.colan.org

2

ARCHIVAL INFORMATION

Filename Persistence Common Interface.doc

Authors CO-LaN consortium

Status Public

Date August 2003

Version version 2

Number of pages 30

Versioning version 2, reviewed by Jean-Pierre Belaud, August 2003

version 1, Methods & Tools group, November 2001

Additional material

Web location www.colan.org

Implementation
specifications version

CAPE-OPENv1-0-0.idl (CORBA)

CAPE-OPENv1-0-0.zip and CAPE-OPENv1-0-0.tlb (COM)

Comments

http://www.colan.org/

3

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such software
described or provided by CO-LaN --- in whatever form --- is provided "as-is" without warranty of any kind.
CO-LaN and its partners and suppliers disclaim any warranties including without limitation an implied
warrant or fitness for a particular purpose. The entire risk arising out of the use or performance of any
sample code --- or any other software described by the CAPE-OPEN Laboratories Network --- remains with
you.

Copyright © 2003 CO-LaN and/or suppliers. All rights are reserved unless specifically stated otherwise.

CO-LaN is a non for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in CO-LaN publications, and the authors are aware of a
trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows and
Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

4

SUMMARY

Most simulation environments allow the possibility to store at any moment the state of a simulation case, in
order to be able to restore it at any time in the future. In the CAPE-OPEN distributed environment, where
different pieces of the simulation may be implemented by different vendors, there must be a standard
mechanism to provide this feature.

5

ACKNOWLEDGEMENTS

6

CONTENTS

1. INTRODUCTION..8

2. REQUIREMENTS ...9

2.1 TEXTUAL REQUIREMENTS...9
2.2 USE CASES..9

2.2.1 Actors ..9
2.2.2 List of Use Cases...10
2.2.3 Use Cases maps...10
2.2.4 Use Cases ..10

2.3 SEQUENCE DIAGRAMS ..13

3. ANALYSIS AND DESIGN..15

3.1 OVERVIEW ...15
3.2 SEQUENCE DIAGRAMS ..15
3.3 INTERFACE DIAGRAMS..15
3.4 STATE DIAGRAMS...16
3.5 OTHER DIAGRAMS ..17
3.6 INTERFACES DESCRIPTIONS ..17
3.7 SCENARIOS...17

4. INTERFACE SPECIFICATIONS..18

4.1 COM PERSISTENCE MECHANISMS ...18
4.1.1 COM Persistence Interfaces..18
4.1.2 IPersistStreamInit ...18

4.2 CORBA PERSISTENCE MECHANISMS...19

5. NOTES ON THE INTERFACE SPECIFICATIONS...21

6. PROTOTYPES IMPLEMENTATION..22

6.1 PMC IMPLEMENTED IN VB ..22
6.2 PME IMPLEMENTED IN C++ ...25

7. SPECIFIC GLOSSARY TERMS ...28

8. BIBLIOGRAPHY ..29

9. APPENDICES ..30

7

LIST OF FIGURES

FIGURE 1 RETRIEVE FLOWSHEET ...13
FIGURE 2 SAVE FLOWSHEET ..14
FIGURE 3 INTERFACE DIAGRAM ...15
FIGURE 4 PERSITENCE STATE DIAGRAM...16
FIGURE 5 PERSITENCE COMPONENT DIAGRAM...17

8

1. Introduction

Most simulation environments allow the possibility to store at any moment the state of a simulation case, in
order to be able to restore it at any time in the future. In the CAPE-OPEN distributed environment, where
different pieces of the simulation may be implemented by different vendors, there must be a standard
mechanism to provide this feature.

The UNIT interfaces provided two methods for storing and restoring the state of each Unit Operation
inserted into a flowsheet. Upon this experience, it became evident that:

 Units must store their state in order to keep the configuration set by the user. This
configuration may have been performed through the Simulator mechanisms to update the
unit’s public parameters, or through the custom Graphical User Interface that the Units may
provide.

 Any type of CAPE-OPEN PMC might benefit of this functionality. PMCs such as Property
Packages, should be allowed to be configured from the simulation environment, in order to
allow the user to deploy all the PMC functionalities from the same entry point, the simulator.

 Originally, the COM mechanisms for implementing persistence were not regarded
satisfactory at all and no analogue was available in the CORBA world. As it is becoming
evident that an integration of CORBA and COM components is far more difficult than
expected, this requirement can be weakened. Hence, the mechanism proposes to use the
standard COM implementation on Windows-based machines, whereas a similar model for
CORBA will be proposed.

9

2. Requirements

2.1 Textual requirements

Based on the introduction chapter, the requirements to be fulfilled consist of:

• A common mechanism that any CAPE-OPEN PMC may use in order to persist its state.

• The PMC and the Simulator Executive may be located on different machines. Persistence based on
storage of local files may not be feasible due to security limitations.

• A practical implementation mechanism must be chosen. The one chosen by the original Unit
specification presented major limitations, especially when the PMC were implemented in high level
languages such as VB. Although the standard allowed two alternative mechanisms, both presented
shortcomings:

o The simulator passes the Unit the name of the file where the state must be persisted. This
implementation was not convenient at all, since it created a different file for each Unit
Operation instance. Apart from this undesirable multiplicity of files for a single case,
moving them to a different storage device or path was unfeasible, since the file location
became fixed.

o The simulator passes the Unit a storage interface where the Unit must write its data.
Unfortunately, VB did not support the access to this type of interfaces.

2.2 Use cases

2.2.1 Actors

 Flowsheet User. The person who uses an existing flowsheet. This person will put new data
into the flowsheet, rather than change the structure of the flowsheet.

 Simulator Executive. The part of a simulator whose job it is to create, or load, a previously
stored flowsheet, solve it and display the results.

 CAPE-OPEN PMC. Any type of PMC inserted in a simulation flowsheet.

Use Cases Categories

 General Purpose Use Cases: Since persistence applies to any type of PMC, these use cases
are applicable to Unit Operations, Property Package, Solvers, ...

 Specific Use Cases: The specific Use Cases for each particular type of PMC should be
specified in each Business Interface specification. This document only shows two template
Uses Cases to be customized on each particular case.

Use Cases Priorities

 High. Essential functionality. Functionality without which usability or performance might be
seriously compromised

10

 Low. Desirable functionality that will improve performance. If this Use Case is not met,
usability or acceptance can decrease.

2.2.2 List of Use Cases

 UC-001: Save Flowsheet

 UC-002: Save PMC

 UC-003: Retrieve Flowsheet

 UC-004: Restore PMC

2.2.3 Use Cases maps

2.2.4 Use Cases

UC-001 SAVE FLOWSHEET

Actors: <Flowsheet user>

Priority: <High>

Classification: <General Purpose Use Cases>

Pre-conditions:

<A PMC has been inserted into a flowsheet. A particular case would be UNIT’s [Add Unit to Flowsheet] Use Case>

Flow of events:

Basic Path:

The Flowsheet User requests the Simulator Executive to save the Flowsheet. The Simulator Executive saves its native
information in its own native format (this is outside CAPE-OPEN).

The Simulator Executive asks the CAPE-OPEN PMC to save its data in a persistence structure provided by the former.
The CAPE-OPEN PMC uses the [Save PMC] Use Case to save its data. Each instance of each CAPE-OPEN PMC is
provided an independent persistence structure, so that each PMC instance can be individually retrieve its data in the
future. The Simulator Executive will integrate the persistence structure in the native simulator’s mechanism for storing
simulation cases.

Note 1: In the case of Units, Connectivity data must be persisted by the simulator, including port names.

Post-conditions:

<PMC’s state data has been successfully stored with the simulation case>

Errors:

<Failure saving>

Uses:

[Save PMC]

Extends:

11

UC-002 SAVE PMC

Actors: <Simulator Executive>

Priority: <High>

Classification: <Specific Use Cases>

Pre-conditions:

The PMC supports persisting its state

Flow of events:

Basic Path:

The PMC information, including Specific Data and Results if any, is saved on the persistence structure provided by the
Simulator Executive.

Post-conditions:

<Save succeeded>

Errors:

<Fails to save>

Uses:

Extends:

UC-003 RETRIEVE FLOWSHEET

Actors: <Flowsheet User>

Priority: <High>

Classification: <General Purpose Use Cases>

Pre-conditions:

<The simulation case to be retrieved exists>

Flow of events:

Basic Path:

The Flowsheet User asks the Simulator Executive to retrieve a previously stored flowsheet. The Simulator Executive
retrieves the native Flowsheet data, such as stream connections, in its usual way. For each CAPE-OPEN PMC in the
flowsheet, it recovers the PMC type together with the persistence structure at which the PMC data was stored. A new
instance of this PMC type is created. It requests each CAPE-OPEN PMC to connect to the simulator’s CAPE-OPEN
objects, such as connecting their ports to the simulators streams in the case of unit. If the creation is successful, it asks
the PMC to retrieve its data from its corresponding persistence structure. It does this using the [Restore PMC] Use Case.
If the Flowsheet Unit fails to restore, the Flowsheet User is notified.

Post-conditions:

<PMC has been appropriately created and initialised>

<PMC has been connected to the appropriate simulator objects>

12

<PMC has recovered its state>

Errors:

<Failed to retrieve the flowsheet>

<Failed to restore the PMC data>

<Failure to connect to the simulator objects>

Uses:

[Add PMC to Flowsheet]

[Specify PMC Connections to Simulator Objects]

[Restore PMC]

Extends:

UC-004 RESTORE PMC

Actors: <Simulator Executive>

Priority: <High>

Classification: <Specific Use Cases>

Pre-conditions:

<[Add PMC to Flowsheet] has been used and successfully passed. A particular case would be UNIT’s [Add Unit to
Flowsheet] Use Case >

Flow of events:

Basic Path:

The PMC restores its specific data from the specified persistence structure.

Post-conditions:

Errors:

<Bad data>

Uses:

Extends:

13

2.3 Sequence diagrams

SQ-001 RETRIEVE FLOWSHEET

Flowsheet
User

Restore
PMC

Recover
PMC

persistence
structure

Recover
Type of
PMC

Retrieve
previously

stored
flowsheet

Flowsheet
Manager

Create a
PMC

Connection to
Flowsheet objects

Creates
PMC

Restores
PMCSpecific Data

Unit
Manager

Flowsheet
Unit

Retrieve Native
Information

Figure 1 Retrieve flowsheet

14

SQ-002 SAVE FLOWSHEET

Flowsheet
User

Save Unit

Save Native
Information

Store
flowsheet

Flowsheet
Manager

Store persistence structure
of PMC Data in native file

Flowsheet
Unit

Save PMC Specific Data on passed
persistence structure

Figure 2 Save flowsheet

15

3. Analysis and Design

3.1 Overview

3.2 Sequence diagrams

3.3 Interface diagrams

IN- 001 INTERFACE DIAGRAM

<<Interface>>
ICapePersistence

SaveState
RestoreState

<<Interface>>
PrimaryObject

Figure 3 Interface diagram

16

3.4 State diagrams

ST- 001 PERSISTENCE STATE DIAGRAM

/Instantiate

Initialization request

[Restore Requested]

Teminating

Initializing PMC

Non Initialized

[Save requested]

[Save Completed]

Terminate requested

Saving UO Data

Unloading

[Restoring successful]

Restoring PMC
Do/Restore PMC state

Do/Connect to Flowsheet

Deploying PMC
Do/Answer simulator requests

[New PMC Requested]

Figure 4 Persitence state diagram

17

3.5 Other diagrams

CO-001 COMPONENT DIAGRAM

ICapePersistence

PMCPME
Other Business
Interfaces Other Common

Interfaces

Figure 5 Persitence component diagram

3.6 Interfaces descriptions

3.7 Scenarios

18

4. Interface Specifications

4.1 COM Persistence Mechanisms

Based on the existing requirements, it was decided that rather that defining CAPE-OPEN specific persistence
interfaces and data structure, it was best to reuse the COM Persistent native mechanisms. See below an
overview of this specification. Since methods InitNew and Load are considered to be part of the COM
middleware life-cycle, they will always be the first methods called on each PMC (obviously, after their
object constructors). This means that even Initialize method (belonging to common or business interfaces)
will be called after invoking the methods InitNew and Load

4.1.1 COM Persistence Interfaces

Objects that have a persistent state of any kind must implement at least one IPersist* interface, and
preferably multiple interfaces, in order to provide the container with the most flexible choice of how it
wishes to save a control’s state.

If a control has any persistent state whatsoever, it must, as a minimum, implement either IPersistStream or
IPersistStreamInit (the two are mutually exclusive and shouldn’t be implemented together for the most
part). The latter is used when a control wishes to know when it is created new as opposed to reloaded from
an existing persistent state (IPersistStream does not have the created new capability). The existence of
either interface indicates that the control can save and load its persistent state into a stream, that is, an
instance of IStream.

Beyond these two stream-based interfaces, the IPersist* interfaces listed in the following table can be
optionally provided in order to support persistence to locations other than an expandable IStream.

{PRIVATE}Interface Usage

IPersistMemory The object can save and load its state into a fixed-length sequential byte array (in
memory).

IPersistStorage The object can save and load its state into an IStorage instance. Controls that
wish to be marked Insertable as other compound document objects (for insertion
into non-control aware containers) must support this interface.

IPersistPropertyBag The object can save and load its state as individual properties written to
IPropertyBag which the container implements. This is used for Save As Text
functionality in some containers.

IPersistMoniker The object can save and load its state to a location named by a moniker. The
control calls IMoniker::BindToStorage to retrieve the storage interface it
requires, such as IStorage, IStream, ILockBytes, IDataObject, etc.

With the exception of IPersistStream[Init]::GetSizeMax and IPersistMemory::GetSizeMax, all methods
of each interface must be fully implemented.

See below the specification of IPersistStreamInit. More information on any of these interfaces may be found
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/cmi_n2p_02b1.asp

4.1.2 IPersistStreamInit

The IPersistStreamInit interface is defined as a replacement for IPersistStream in order to add an
initialization method, InitNew. This interface is not derived from IPersistStream; it is mutually exclusive

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/comsrv2k/htm/cs_rp_pipelineinterfaces_nroc.asp

19

with IPersistStream. An object chooses to support only one of the two interfaces, based on whether it
requires the InitNew method. Otherwise, the signatures and semantics of the other methods are the same as
the corresponding methods of IPersistStream, except as described below.

Methods

{PRIVATE}IPersist Method Description

GetClassID Returns the class identifier (CLSID) for the component object.

{PRIVATE}IPersistStreamInit Methods Description

IsDirty Checks the object for changes since it was last saved.

Load Initializes an object from the stream where it was previously saved.

Save Saves an object into the specified stream and indicates whether the
object should reset its dirty flag.

GetSizeMax Return the size in bytes of the stream needed to save the object.

InitNew Initializes an object to a default state.

4.2 CORBA Persistence Mechanisms

CORBA is a middleware facing towards large-scale systems integration such as in Enterprise Application
Integration purposes. Banks run transaction systems using CORBA systems which connect hundreds of
computers all over the world, for example. This is unlike COM which actually aims at the integration of
smaller components (such as controls) on a single desktop computer. Although the underlying technical
basics of the two technologies are very similar, the differences become obvious when considering the
infrastructures developed for them: CORBA services standardized by the OMG always focus on large-scale
systems integration and are often very complex systems, always taking distribution issues into account
whereever possible.

This is more true than anywhere else for persistence services which defines access to persistent data in
distributed storage via a two-phase transactional protocol. This is clearly not the focus of process modeling
components so a different mechanism is required here. Although CORBA components can transparently
maintain a persistent state without interacting with their clients, this leads to the same difficulties as the
original unit specification, where a number of data storages exists but no single file containing the complete
model/simulation specification.

Hence, a mechanism similar to the COM approach presented above is required here. In the CORBA services
world, such an approach is provided by the COS property service specification. It defines two interfaces
representing a property set (with a similar meaning to a property bag). The first is called PropertySet and
does not specify any information about properties whereas the PropertySetDef interface allows additional
information (modes) such as read-only properties to be specified. These interfaces are defined by the OMG
and implementations for these services are available e.g. as part of the free ORB TAO (Schmidt, 2001) so
that implementers of CORBA-based simulation systems can reuse them for developing persistence features
of their systems.

However, we need a linkage between a PMC and a property set which is defined analog to the COM
interface. The interface will be called PropertySetPersist and reside in the package
CapeOpen::Base::Persistence. Interfaces which shall be persistence-capable A method InitProperties tells
the PMC to initialize its properties internally. This method returns a boolean which is true if the PMC
actually supports persistence and false otherwise. The method LoadProperties is given a property set from
which the persistent properties can be loaded into the PMC. Finally, SaveProperties is given a property set
into which persistent parameters shall be stored by the PMC. The PMC is free to return an object reference to
a different property package as the one being passed. The PME will have to detect this and make sure to
clean up the original property set object.

20

Some notes on the use of PropertySetDef. The PME can pass a PropertySetDef to a PMC using either
LoadProperties or SaveProperties because PropertySetDef actually subclasses from PropertySet. In such a
case, the PMC is strongly advised to respect the additional information that can be obtained from
PropertySetDef. In the implementation of a PME supporting persistence, the implementer has to
serialize/unserialize the information in the property bag during save and restore phases as needed. This
specification does not make any assumptions how this is done internally. Also, the specification does not
impose whether the PME actually implements the PropertySet interfaces on its own or uses an external
implementation to do it.

// put the CORBA IDL here
#include <Cos/CosPropertyService.idl>

module CapeOpen
{

module Base
{

module Persistence
{

interface PropertySetPersist
{

exception PropertySetPersistException
{ };

boolean
InitProperties()

raises (PropertySetPersistException);

void
LoadProperties(in CosPropertyService::PropertySet prop_set)

raises (PropertySetPersistException);

void
SaveProperties(inout CosPropertyService::PropertySet prop_set)

raises (PropertySetPersistException);

};
};

}

...
module Unit
{

interface UnitOperation : CapeOpen::Base::Persistence::PropertySetPersist
{

};
};

};

21

5. Notes on the interface specifications

22

6. Prototypes implementation

6.1 PMC implemented in VB

The VB way for a class module to implement the COM persistence interfaces is configuring the class as
persistable. To do that:

(i) Select the corresponding “Class Modules” in the “Project Explorer” window.

(ii) Open the “Properties Window” (View menu)

(iii) Select the “Persistable” property.

(iv) Change its value to “1 – Persistable”

1. Click on the interface drop-down list. Select the class entry.

2. If your “Class Module” has been set to persistable, you will see three new procedure names:
InitiProperties, ReadProperties and WriteProperties.

23

3. Implement these 3 procedures:

Private m_persistableVariable as String
'Called after class_initialize when client uses CAPE-OPEN Persistence to create a new
instance.
'Be aware that only clients that support Persistence will call it
Private Sub Class_InitProperties()
End Sub

‘called after class_initialize when client uses COMPersistence to restore a saved
instance.
Private Sub Class_ReadProperties(PropBag As PropertyBag)
m_persistableVariable = PropBag.ReadProperty("notes")

End Sub

‘called when client uses COMPersistence to persist an instance.
Private Sub Class_WriteProperties(PropBag As PropertyBag)

Call PropBag.WriteProperty("notes", m_persistableVariable)
End Sub

4. Be aware that property bags allow storing any variant type except for arrays. For arrays, you may use
these functions:

Public Function isArray(v as Variant) As Boolean
isArray = VarType(v) And vbArray

End Function

'returns 0 if it is not an array
Public Function dimensions(v) As Integer
On Error GoTo ONE_DIM

If isArray(v) Then
Dim i&
i = LBound(v, 2)
dimensions = 2

Else
dimensions = 0

End If
Exit Function

ONE_DIM:
dimensions = 1

End Function

‘Saves variant ‘m_value’ into PropertyBag ‘PropBag’ identifying it with name ‘varID’
Public Sub Save(PropBag As PropertyBag, m_varID as String, m_value as Variant)

Dim d&, vt&
Dim v
d = dimensions(m_value)
vt = VarType(m_value)
Call PropBag.WriteProperty(hideBlanks(m_varID) & "_vt", vt)
Call PropBag.WriteProperty(hideBlanks(m_varID) & "_Dim", d)

If d = 1 Then
Call PropBag.WriteProperty(hideBlanks(m_varID) & "_lb", LBound(m_value))
Call PropBag.WriteProperty(hideBlanks(m_varID) & "_ub", UBound(m_value))

Dim i&
For i = LBound(m_value) To UBound(m_value)

Call PropBag.WriteProperty(hideBlanks(m_varID) & "_" & i, m_value(i))
Next

ElseIf d = 0 Then
Call PropBag.WriteProperty(hideBlanks(m_varID), m_value)

Else

24

Call MsgBox("CapePublicVariable does not support persisting 2dimensional arrays")
End If

End Sub

‘Restores from PropertyBag ‘PropBag’ a variant identified with name ‘varID’ and places
value into ‘m_value’
Public Sub Load(PropBag As PropertyBag, m_varID as String, m_value as Variant)

Dim d&, vt&
Dim v
Dim ub&, lb&

vt = PropBag.ReadProperty(hideBlanks(m_varID) & "_vt")
d = PropBag.ReadProperty(hideBlanks(m_varID) & "_Dim")

If d = 1 Then
lb = PropBag.ReadProperty(hideBlanks(m_varID) & "_lb")
ub = PropBag.ReadProperty(hideBlanks(m_varID) & "_ub")
Select Case (vt - vbArray)

Case vbDouble:
ReDim m_value(lb To ub) As Double

Case vbInteger:
ReDim m_value(lb, ub) As Long

Case vbString:
ReDim m_value(lb, ub) As String

Case vbVariant:
ReDim m_value(lb, ub) As Variant

Case Else
Call MsgBox("CapePublicVariable does not support persisting vartype =" &

(vt - vbArray))
End Select
Dim i&
For i = lb To ub

m_value(i) = PropBag.ReadProperty(hideBlanks(m_varID) & "_" & i)
Next

ElseIf d = 0 Then
m_value = PropBag.ReadProperty(hideBlanks(m_varID))

Else
Call MsgBox("CapePublicVariable does not support persisting 2dimensional

arrays")
End If

End Sub

25

6.2 PME implemented in C++

typedef enum {
NO_PS = 0, //no persistence
IPSTG, //IPersistStoragePtr
IPSTR, //IPersistStreamPtr
IPSTI //IPersistStreamPtrInit

} COMPersistType;
IDispatch* m_CAPEOPEN_PMC;
IStoragePtr openStorage();
_bstr_t persistStreamName();

STDMETHODIMP CCCAPEGUI::getPersistType(COMPersistType* persistenceSupported) {
HRESULT hr(S_OK);
IDispatch* comp;

comp = m_CAPEOPEN_PMC;
try {

IPersistStoragePtr ipstg;
if (ipstg = comp) {

*persistenceSupported = IPSTG;
} else {

IPersistStreamInitPtr ipsti;
if (ipsti = comp) {

*persistenceSupported = IPSTI;
} else {

IPersistStreamPtr ipstr;
if (ipstr = comp) {

*persistenceSupported = IPSTR;
} else {

*persistenceSupported = NO_PS;
}

}
}

}catch(...) {
//error

}
return S_OK;

}

STDMETHODIMP CCCAPEGUI::saveStorage() {
HRESULT hr(S_OK);

try{
IStoragePtr istg;
IStreamPtr stream;

istg = openStorage();
_bstr_t name;
name = persistStreamName();
switch (m_persistType) {

case IPSTG:{
IPersistStoragePtr ipstg;

ipstg = m_CAPEOPEN_PMC;
ASSERT(hr, ipstg->Save(istg, true));
ipstg->SaveCompleted(istg);
break;

}case IPSTI:{
IPersistStreamInitPtr ipsti;

ipsti = m_CAPEOPEN_PMC;
ASSERT(hr, istg->CreateStream(name, STGM_DIRECT | STGM_CREATE | STGM_READWRITE |

STGM_SHARE_EXCLUSIVE, 0, 0, &stream));
ASSERT(hr, ipsti->Save(stream, true));
ASSERT(hr, istg->Commit(STGC_DEFAULT));

break;

26

}case IPSTR:{
IPersistStreamPtr ipst;

ipst = m_CAPEOPEN_PMC;
ASSERT(hr, istg->CreateStream(name, STGM_DIRECT | STGM_CREATE | STGM_READWRITE |

STGM_SHARE_EXCLUSIVE, 0, 0, &stream));
ASSERT(hr, ipst->Save(stream, true));
ASSERT(hr, istg->Commit(STGC_DEFAULT));
break;

}
}
return hr;

}catch(...) {
//error

}
}

STDMETHODIMP CCCAPEGUI::loadStorage(bool isRecalling) {
HRESULT hr(S_OK);

try{
if (m_persistType==NO_PS) return hr;
IStoragePtr istg;

istg = openStorage();
if (!isRecalling)

return initStorage(istg);

_bstr_t name;
IStreamPtr stream;

name = persistStreamName();

switch (m_persistType) {
case IPSTG:{

IPersistStoragePtr ipstg;
ipstg = m_CAPEOPEN_PMC;

ASSERT(hr, ipstg->Load(istg));
break;

}case IPSTI:{
IPersistStreamInitPtr ipsti;

ipsti = m_CAPEOPEN_PMC;
ASSERT(istg->OpenStream(name, NULL, STGM_DIRECT | STGM_READ |

STGM_SHARE_EXCLUSIVE, 0, &stream));
if (hr == STG_E_FILENOTFOUND) return S_OK;
ASSERT(hr, ipsti->Load(stream));
break;

}case IPSTR:{
IPersistStreamPtr ipst;

ipst = m_CAPEOPEN_PMC;

ASSERT(istg->OpenStream(name, NULL, STGM_DIRECT | STGM_READ |
STGM_SHARE_EXCLUSIVE, 0, &stream));

if (hr == STG_E_FILENOTFOUND) return S_OK;
ASSERT(hr, ipst->Load(stream));
break;

}
}
return hr;

}catch(...) {
//error

}
}

HRESULT CCCAPEGUI::initStorage(IStorage* istg) {
HRESULT hr(S_OK);
switch (m_persistType) {

case IPSTI:{
IPersistStreamInitPtr ipsti;

Ipsti = m_CAPEOPEN_PMC;
ipsti->InitNew();

break;

27

}case IPSTG:{
IPersistStoragePtr ipstg;
Ipstg= m_CAPEOPEN_PMC;
ipstg->InitNew(istg);
break;

}
}
return hr;

}

28

7. Specific Glossary Terms

29

8. Bibliography

 OMG, 2000: Property Service Specification. Available online at:
http://www.omg.org/technology/ documents/formal/property_service.htm

 Schmidt, D.C.: Real-time CORBA with TAO (The ACE ORB). See online at
http://www.cs.wustl.edu/ ~schmidt/TAO.html

http://www.omg.org/technology/ documents/formal/property_service.htm
http://www.cs.wustl.edu/

30

9. Appendices

