Feedback on CAPE-OPEN use in implementing Gas Treatment components

S. Gonnard, L. Pigeon
Content

IFP Energies nouvelles in brief

Context and Objectives
- Gas Treatment
- Amine based process for gas sweetening
- Desulfo+ Project

Implemented components
- Unit Operations
- Thermo system and Physical Properties Package (PPP)
- Advanced development

Conclusion
IFP Energies nouvelles in brief

- Public-sector research, innovation and training center
- In the fields of energy, transport and the environment
- Five strategic priorities
 - Renewable energies
 - Producing fuels, chemical intermediates and energy from renewable sources
 - Eco-friendly production
 - Producing energy while mitigating the environmental footprint
 - Innovative transport
 - Developing fuel-efficient, environmentally-friendly transport
 - Eco-efficient processes
 - Producing environmentally-friendly fuels and chemical intermediates from fossil resources
 - Sustainable resources
 - Providing environmentally-friendly technologies and pushing back the current boundaries of oil and gas reserves
Content

- IFP Energies nouvelles in brief
- Context and Objectives
 - Gas Treatment
 - Amine based process for gas sweetening
 - Desulfo+ Project
- Implemented components
 - Unit Operations
 - Thermo system and Physical Properties Package (PPP)
 - Advanced development
- Conclusion
Natural Gas Processing

- **Gas treating**
- **Gas conditioning**
- **Sulfur recovery**

Natural Gas + Water, oil, solid ...

First Separation

GOSP

Sweetening Process
- Amines
 - Physical solvents
 - Dry beds, Redox, ...

Dehydration unit
- Physical Solvents: Glycols, Adsorption

Sulfur Removal Unit
- Claus unit
 - Tail gas treatment unit

CO2 → **H2S**

Natural Gas → **Dry gas**

Gas Liquids recovery
- NGL extraction
 - NGL fractionation

Gas Liquefaction

LNG

Sales gas

- Ethane
- Propane
- Butane
- Gasoline

Residual Water

Water, Oil, Solid

Sweet Gas

- **Sales gas**
 - **Ethane**
 - **Propane**
 - **Butane**
 - **Gasoline**

- **Sweet Gas**
 - **Physical Solvents**: Glycols, Adsorption

- **Dry beds, Redox, ...**

- **Sour Gas**

- **CO2**

- **H2S**

- **Elemental Sulfur**
Amine based process for gas sweetening

- **Treated gas**
- **Fuel Gas**
- **Acid Gas**
- **Lean Amine**
- **Absorber Column**
- **Stripper Column**

Flow diagram shows the process sequence from raw gas to treated gas.
Desulfo+ Project: Advamine™

Partnership

- **TOTAL**
 - Engages in all aspects of the petroleum industry
 - Upstream operations (oil and gas exploration, development and production, LNG)
 - Downstream operations (refining, marketing and the trading and shipping of crude oil and petroleum products).
 - One of the world’s largest integrated chemical producers

- **PROSERNAT**
 - Subsidiary of HEURTEY PETROCHEM and IFP Energies Nouvelles
 - Supplies equipments and technologies to natural gas industry
 - Process Licensor of Acid Gas Removal units and Sulfur plants
 - Supplier of Modular Units in O&G Processing facilities
Desulfo+ Project: Advamine™

- **What is Desulfo+**
 - Amine based processes for gas sweetening simulator
 - Inclusive of mass transfer rate-based models for acid gas reactions with liquids
 - Upgraded version of in-house software “Desulfo”, initially developed by TOTAL
 - Models rated by more than 40 years experience of plant operation and process data from on-running Gas Sweetening Units

- **Existing Standalone software "Desulfo"**
 - Implemented in Fortran
 - No user interface (input and output as keywords file)
 - No interoperability with other process tools

- **Existing software needs:**
 - More user-friendly GUI
 - Advanced features (eg. controller / optimizer / reporting / ...)
Desulfo+ Project: Advamine™

Why CAPE-OPEN Standard?

- Interoperability with process tools
- Portability in most of process simulation environment
- Modularity / Maintainability

New software "Desulfo+"

- Keeps the proprietary models from Desulfo
- Uses the PME Interfaces for input (GUI) and outputs (reporting facilities)
- Uses some native UO from PME (Flash drum, HX, Pumps, ...)
- Offers more interoperability with other process tools
Desulfo+ in simulation of amine based process

Mass transfer model interfaced with thermodynamics:
- Consider thermal transfer models
- Consider rated calculations of hydraulics on various types of tower internals
Desulfo+ Project – Integration in PROII

Absorber

Regenerator

Reboiler Computation

Water Make up Computation
Content

- IFP Energies Nouvelles in brief
- Context and Objectives
 - Gas Treatment
 - Amine based process for gas sweetening
 - Desulfo+ Project

- Implemented components
 - Unit Operations
 - Thermo system and Physical Properties Package (PPP)
 - Advanced development

- Conclusion
Implemented Components

- **Unit Operations**
 - Regenerator
 - Absorber

- **Thermo System / Physical Property Package (PPP)**
 - Extended in-house thermodynamic server (CARNOT)
 - Delegate equilibrium computation to PME built-in thermo using properties computed by our PPP
 - CAPE-OPEN thermodynamics v1.0
Unit Operations

Absorber

- **3 input ports**
 - Raw Gas (mandatory)
 - Lean Amine (mandatory)
 - Other Amine (optional)

- **3 output ports**
 - Treated Gas (mandatory)
 - Rich Amine (mandatory)
 - Draw off (optional)
Unit Operations

Regenerator

- **3 input ports**
 - Rich Amine Gas phase (mandatory)
 - Rich Amine Liq. phase (mandatory)
 - Reflux (mandatory)

- **3 output ports**
 - Acid Gas (mandatory)
 - Lean Amine (mandatory)
 - Draw off (optional)
Interoperability within PME

- **PRO/II (Invensys)**
 - Begin project with v8.x
 - Some CAPE-OPEN defects
 - Currently, using Pro/II v9.1.1
 - Better CAPE-OPEN compliance

- **Aspen HYSYS (AspenTech)**
 - Tests in progress with v7.3
Advanced Development

- **Performance**
 - Cached computation in calcProp from PPP
 - No computation if input thermodynamics conditions are the same

- **Dynamic ports**
 - Pro/II allows dynamic ports management on editing UO GUI

- **Future developments**
 - Multithreading
Feedback

- Not so difficult
 - Business approach (Modular in terms of business entities)
 - Only few methods to implement
 - Some tools to spy on what happen (eg, COLTT)

- Not so easy
 - Integration into black box software
 - Where is the bug?
 - How to implement specifications?
 - Management of supporting industrial simulator, itself under upgrade and delivery of new releases of CAPE-OPEN compliant simulator
 - Delay to fix bugs if from third-party supplier
 - Not same delay from owner company (few days) to third-party (few months)
Content

- IFP Energies nouvelles in brief
- Context and Objectives
 - Gas Treatment
 - Amine based process for gas sweetening
 - Desulfo+ Project
- Implemented components
 - Unit Operations
 - Thermo system and Physical Properties Package (PPP)
 - Advanced development
- Conclusions and perspectives
Conclusions and perspectives

- IFPEN and its partners have developed models and tools for Amine based processes for Gas Sweetening simulation
 - Based on CAPE-OPEN Standard
 - Gain
 - User Friendly software
 - Improved flexibility to implement adds
 - Difficulties
 - Interface with third party supplier and management of support software
 - Need lot of time
 - Development / Testing (compare to monolithic codes)
Conclusions and perspectives

■ Perspectives
 ■ Use in design of gas sweetening plants & analysis of industrial logs
 ■ New developments
 ▪ New Unit Operations models
 ▪ New Thermodynamic models
 ▪ Multithreaded computation
 ■ Portability studies (Aspen Plus, ProSimPlus, ...)

© 2012 - IFP Energies nouvelles
Innovating for energy

www.ifpenergiesnouvelles.com