An Insider/Outsider/Insider (sort of) view of CAPE-OPEN

Sergi Sama / Nicolau Goula VIRTUAL MATERIALS GROUP

Simulation Technologies and Services for the Process Industry

WHO IS VIRTUAL MATERIALS GROUP

VMG is a group of technology innovators that service the oil, gas & petrochemical industry with advanced process simulation solutions.

Founded in 1999 Head Office: Calgary, Canada

.....engineers helping engineers

GLOBAL CENTERS

Head Office

- R & D
- Corporate Admin
- Licensing
- JV participation

Head Office: Subsidiaries: Sales & Support:

VMG Europe

European subsidiary established in 2012

Virtual Materials Group Europe, S.L. Gran Vía Carles III, 98, P.1 08028 Barcelona, Spain

Phone: +34 934097286 Fax: +34 934909538

LinkedIn Profile: http://alturl.com/849p

Contact details:

Sergi Sama

.sama@virtualmaterials.com

Other:

sales@virtualmaterials.com support.europe@virtualmaterials.com

Main **PRODUCTS**

Fully interactive steady-state and dynamic process simulator

Robust thermo-physical property calculation engine

VMGThermo

Sergio Sama Rubio

Managing Director and co-founder

Sergi brings 20+ years of experience in the world of industrial software. After graduating from the Institut Químic de Sarrià (Chemical Institute of Sarria) with a dual degree in Chemical (1990) and Industrial (1992) Engineering.

Sergi joined m2r (since 2000 part of Aspen Technology) as a developer of manufacturing execution systems. In 1995, Sergi joined Hyprotech Europe, where he held various positions involving process simulation with HYSIM and HYSYS (Tactical Developer, Tactical Development Manager, and Technical Services Manager). After the acquisition of Hyprotech by Aspen Technology in 2002, Sergi focused on the applications of process simulation in the Upstream Oil & Gas sector. In 2009 Sergi joined Halliburton as Practice Manager for software systems for Integrated Operations.

including model-based operations decision support tools. Sergi also holds a postgraduate degree in executive management by IESE Business School.

Technical Services Manager at Virtual Materials Group Europe

sergi.sama@virtualmaterials.com

Phone: +34 934 097 286 Mobile: +34 670 662 946

Nicolau Goula i Masllorens

Nicolau brings 10+ years of experience in Process Engineering from both industrial plants and research centres. Nicolau graduated as a Chemical Engineer at Universitat de Barcelona and has a MSc in Process Systems Engineering from Imperial College. Nicolau started his career as an interim at Air Products while he was a student. After he got his MSc, he worked for 5 years at Catalonian Research and Innovation Centre managing projects for various industries (polymers, chemicals, industrial gases, etc). In 2007 he joined CELSA Group to work as a Process Engineer in the metallurgical industry, developing simulation models for direct Operations decisions and for Process improvement. He also collaborated in the development of the Manufacturing Execution System (MES), bringing the power of optimisation techniques to daily use at plant level.

nico.goula@virtualmaterials.com

- Test the maturity of the CAPE-OPEN standard
- Test the maturity of VMG implementation of CAPE-OPEN
- Test the availability of tools

Constraints

• Simple, yet, showing some valuable application

Test description

- Use COCO/COFE
- Use VMGThermo
- Port a sample simulation case (shipped with our process simulator VMGSim) to COFE
- Create a CAPE-OPEN thermo property package in VMGThermo
- Run the simulation case in COFE
- Compare results

Value of the test

- Demonstrate interoperability between PMC and PME
- Use "non-std" thermodynamics (solid CO2 formation)
- Identify points for further improvement

Figure 4. ProMax Three Phase Locus Compared to Experimental Data.

VMGThermo capable to predict CO2 VSE and VLE equilibrium, as well as to locate the three phase locus. 10%CO₂-90%Methane shown (plot from M.W. Hlavinka, V. N. Hernandez "*Proper interpretation of freezing and hydrate predictionresults from process simulation*". Bryan Research & Engineering, Inc.)

Block Diagram

		Flowsheet configuration	on:				×				
		Elowsheet Options		Stream or	der Í	Unit Opera	tion order				
densi Flow	Var	Property packs	Reaction packs	Compounds	Properties	Phase Info	Material types				
VING CAPE-OPEN Configuration											
File CAPE-OPEN package Help	:	SolidCO2 - V04					Add				
CAPE-OPEN package:	F						Bomovo				
SolidCO2 - DEMO Description: C1-C6 and N2			Info	ormation on SolidCO2 - V	/04:	×					
SolidCO2 - V01 Package: O Simple O Aggregate						(0500 (0054)	Edit				
SolidCO2 - V02 SolidCO2 - V03				CLSID = {41403AD CAPE-OPEN 1.1 Pro	/-C4/2-9E6E-8234-804 perty Package Manage	+8F3BAB8F1} er - Copyright 2007	Rename				
SolidCO2 - V04 SolidCO2 - V05 APR VMG model for hydrocarbon system	s modifed			Virtual Materials Gro	oup						
SolidCO2 - V07 solidCO2 - V07 dioxide phase.	oon aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa			Registered name: V CapeVersion: 1, 1	MG Thermo Property Pa	ackage Manager 1					
SolidCO2 - VMGTh7.0 - 2lic SolidCO2 - VMGTh7.0 - 3lic				ComponentVersion:	1.0						
SolidCO2 - VMGTh7.0 - 4lic Liquid phases: 2 liquid phases	💌 🕂 tre			Description: Virtual VendorURL: http://	Materials Group Thermo www.virtualmaterials.co	o package om/					
Solid phase: No solid	• es										
Ref state: Don't include heat of formation	V OV					ок					
	ole										
Compounds: CARBON DIOXIDE	Ole										
Add METHANE	ole										
Remove PROPANE											
	ole										
	Ole										
	ole										
	ole		1.1.0								
	016	Description: C1-C6 a	and N2								
	Mok										

VMG CAPE-OPEN Configuration utility (on the left) lets the user create a CO compliant Property Package (PP). This PP is available to any CO Simulation Environment (COCO shown on the right).

Flowsheet configuration:	mole fraction [n-FEINTANE]	0.002420022				
Flowsheet Options	Stream order	Unit Operation order		flow	3418.9269 18 525031	ka / h
Property packs Reaction packs	Compounds Properties	3 Phase Info Material types		Compound flows	10.020001	
Phase information Select phase: Solid Aggregation state: ID for SolidCO2 - V04: Liquid2		Rename		molar phaseFraction [Vapor] molar phaseFraction [Liquid] molar phaseFraction [Solid] Liquid composition Solid composition Overall properties	0.845604 0.15414252 0.00025347862	

VMGThermo throws the solid CO_2 to the second liquid slot. COCO lets the user rename the phases and any phase starting with "Sol" is actually considered a solid (i.e. solid separator UnitOp).

Cryogenic Demethaniser taken from the Plant Examples folder in VMGSim. A pipe rupture is modelled (orifice) and the possibility of solid CO₂ formation evaluated.

Cryogenic Demethaniser taken from the Plant Examples folder in VMGSim. Dynamic case.

Cryogenic Demethaniser taken from the Plant Examples folder in VMGSim. SS case, part ported into COCO has been highlighted

The column is modelled using ChemSep[™] (Lite). The thermo to ChemSep[™] is provided by COCO (i.e. VMGThermo via VMG CAPE-OPEN)

VMGThermo using the APRSolidCO2 Property Package has predicted the solid CO_2 formation in this release to the atmosphere (from a stream @ 815psia & -18F with C1 to C6, N₂ and CO₂)

Conclusions

- EXCELLENT JOB OF CO-LaN
- Able to connect COFE with VMGThermo easily even with phase mapping
- Able to use non-std thermodynamics and predict solid CO2 formation
- Special thanks to AmsterChem and Jasper van Baten

