
CAPE-OPEN
ponent software

and open standard interfaces
in Computer-Aided Process Engineering

Thermodynamic and Physical Properties

Delivering the power of com

v1.1

 www.colan.org

 1

ARCHIVAL INFORMATION

Filename CO Thermo 1.1 Specification.doc

Authors CO-LaN consortium

Status Public

Date 10 May 2011

Version version 3.11

Number of pages 124

Versioning version 3 edited by Richard Szczepanski (Infochem) and
Jasper van Baten (AmsterCHEM)

 Version 2.22 edited by Michel Pons (CO-LaN), Richard
Szczepanski (Infochem) and Jasper van Baten (AmsterCHEM)

Additional material COM IDL

Web location

Implementation
specifications version

1.1

Comments

 2

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample
software described or provided by CO-LaN --- in whatever form --- is provid
warranty of any kind. CO-LaN a

 code. Any such
ed "as-is" without

nd its partners and suppliers disclaim any warranties including
 entire risk arising out of

the use or performance of any sample code --- or any other software described by the CAPE-OPEN

Copyright © 2001-2011 CO-LaN. All rights are reserved unless specifically stated otherwise.

CO-LaN is a not for profit organization established under French law of 1901.

without limitation an implied warrant or fitness for a particular purpose. The

Laboratories Network --- remains with you.

Trademark Usage

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
aN publications, and the authors are aware

inted in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows
and Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

as trademarks. Where those designations appear in CO-L
of a trademark claim, the designations have been pr

 3

SUMMARY

This document describes the CAPE-OPEN Thermodynamic and Physical Pro
These interfaces allow software components

perties interfaces.
providing thermodynamic and physical property

calculations to be used in a Process Modelling Environment (PME). The first part of the document
describes a conceptual model that shows how these components are used in a PME. The second half
contains reference material for each method in the interfaces.

 4

ACKNOWLEDGEMENTS

Many individuals and t d to this document. The following were
 main ones:

nks ates, representing BP
z

Daniel Piñol then with Hyprotech S.L.

The CO-LaN Thermodynamics Special Interest Group has been active in reviewing and improving
the specification and has provided a great deal of valuable input.

heir organizations have contribute
amongst the

Peter Ba Peter Banks Associ
Werner Drewit

loran
BASF AG

 with AspenTechMichael Hal then

Michel Pons CO-LaN and previously TOTAL
Richard Szczepanski Infochem Computer Services Ltd.
Jasper van Baten AmsterCHEM

 5

 6

CONTENTS

1. 9

2. AUDIENCE ... 10

3. GLOSSARY.. 10

.................... 12

.................... 14

............................ 18

2 19
............................ 19

5. 20
............................ 21

5.2.4 Material Object behaviour... 22

3 23

4 26

5 26

.6 29

5.7 Property Package Component responsibilities ... 29

5.8 33

5.9 Property Package Manager responsibilities.. 33

1 34

1 35

6. INTERFACE REFERENCE .. 36

6.1 ICapeThermoMaterial .. 36

6.2 ICapeThermoMaterialContext... 57

6.3 ICapeThermoCompounds .. 61

6.4 ICapeThermoPhases ... 74

 INTRODUCTION...

4. SCOPE ...

5. CONCEPTUAL OBJECT MODEL..

5.1 The Description of Material ...

5. Material Object responsibilities ...
5.2.1 Interfaces used by a Physical Property Calculator to access Material Objects

2.2 Interfaces used by a Equilibrium Calculator to access Material Objects ..
5.2.3 Interfaces used by a Unit Operation to access Material Objects

5. Equilibrium Calculator component responsibilities...

5. Equilibrium Calculator behaviour...

5. Physical Property Calculator component responsibilities

5 Physical Property Calculator behaviour ...

 Property Package component behaviour...

5. 0 COM Implementation details ...

5. 1 CORBA Implementation details ..

6. ICapeThermoPropertyRoutine ...5 80

6 94

7 101

6.8 104

7. PROPERTY DESCRIPTIONS .. 107

1 107

2 107

3 107

.......................... 107

.......................... 108
.5 108
.5 108

.......................... 112

.......................... 113
.5 114

7.5.6 Non-constant two-phase properties... 117
.......................... 118

7.6 119
.......................... 121

7.6.2 Number of values returned and order.. 121

8. IMPLEMENTATION OF THE PERSISTENCE INTERFACE 122

9. BIBLIOGRAPHY... 124

6. ICapeThermoEquilibriumRoutine ..

6. ICapeThermoUniversalConstants ...

 ICapeThermoPropertyPackageManager ..

7. Case-sensitivity of identifiers..

7. Units of measurement ...

7. UNDEFINED interpretation ..

7.4 Identifiers for Basis ...

7.5 Property Identifiers ...
7 .1 Universal constants ...
7 .2 Pure compound constant properties ..
7.5.3 Temperature-dependent pure compound properties..

.57 .4 Pressure-dependent pure compound properties...
7 .5 Non-constant single-phase mixture properties ..

7.5.7 Notes ...

 Derivatives..
7.6.1 Basis and Units ...

 7

LIST OF FIGURES

Figure 1: Interface diagram ...14

16

.........................17

.........................21

.........................25

..28

Figure 7: PME is asked to import a PP..31

Figure 8: Streams connected to a UNIT and calculation...32

Figure 2: Object diagram on proprietary implementations..

Figure 3: Communication between sockets and plugs ...

Figure 4: Interfaces required on a software object ...

Figure 5: Conceptual Sequence Diagram ...

Figure 6: Conceptual Sequence Diagram ..

 8

1. Introduction

This interface specification is a complete revision of the previou
Thermodynamic and Physical Properties interface specification (version 1
reference [1]. The functionality covered by the interfaces is slightly extend
motivations for the changes are simplification, increased flexibility and
ambiguities. These are the issues that emerged most strongly from testing
of the original specification. This document is designed to m

s CAPE-OPEN
.0) described in
ed, but the main
 the removal of
 implementations

ake it easier to understand the
to make inter-

rfaces but fewer
lication and the

lity covered by the specification falls into two areas. Firstly, the interfaces
odate specialist

ical commercial
etter support for

f the previously published
hanges to the formal definition of the interfaces

e with the increasing number of implementations has shown

 Group has produced an ‘Errata
corporated in this updated text.

yNF.

ressure.

Phases to make a phase ‘present’ before any

nt the ICapeThermoPhases interface.

ethods.

• CheckEquilibriumSpec requires a prior SetPresentPhases call.

• Clarification of chemicalFormula property format.

• Expanded definition of “Normal” and “Retrograde” in CalcEquilibrium method.

• Clarification of SetMaterial method usage.

• Clarification of meaning and usage of Overall phase properties (section 7.5.7).

• New section on Implementation of the Persistence Interface (section 8).

interfaces, and therefore to implement CAPE-OPEN components, and
operability of CAPE-OPEN components more easily achievable.

Compared to previous versions of the specification, this one has more inte
methods. The methods are logically grouped in interfaces to remove dup
result is a cleaner and more abstract design.

The new functiona
and methods related to equilibrium calculations are expanded to accomm
equilibrium calculation tools, whose capabilities go beyond those of typ
simulators. Secondly, the description of phases is extended to provide b
multi-phase calculations.

The latest version of this document (version 3) is a revision o
version 1.1 specification [11]. There are no c
or methods. However, experienc
the need for clarifications of the expected behaviour of the software components described.
In response, the CO-LaN Thermodynamics Special Interest
and clarifications’ document [12] which is now in

The principal changes in the document are listed below.

• Addition of mole fraction derivatives.

• New property identifiers enthalpyF, enthalpyNF, entropyF, entrop

• New universal constant: idealGasStateReferenceP

• Removed requirement for SetPresent
properties are set.

• A Material Object must impleme

• Clarification of intended use of SetPresentPhases and GetPresentPhases m

 9

2. Audience
This document is intended primarily for software developers who want t
OPEN Property Package, Equilibrium Calculator and Physical Prop
components. It is also intended for the developers of other software com
Unit Operations and Reaction Packages, which make use of these Ther
Physical Properties software components. Finally, it is intended for devel
OPEN-complian

o build CAPE-
erty Calculator

ponents, such as
modynamic and
opers of CAPE-

t Process Modelling Environments because it describes how the interfaces
nd the external

ifications should read this document to

For any reader an understanding of UML diagrams is assumed.

nded for end-users of CAPE-OPEN software components or

more Phases. A
e the overall

ompounds within particular Phases. A Material often corresponds to a

bject is a software object that implements the interfaces and behaviour of a

se of a Material
ure.

al examples are
 described by the values of some subset of the set of

Note that at this
cal Properties used to describe the unique

mers, and petroleum fractions are not included in the set of possible
 is expanded to

The subset of Physical Properties used to describe a Material is not fixed: it will depend on
the aspect of the Material behaviour being studied.

Within simulation software, a Physical Property is usually calculated by a model selected
from some set of available models for that Physical Property.
Physical Property Calculation
A Physical Property Calculation is a calculation that determines the value of a Physical
Property in a Material, given temperature, pressure and composition.

are to be used to implement communication between the environment a
software components.

Designers of other CAPE-OPEN interface spec
ensure consistency across the various designs.

This document is not inte
process simulation software.

3. Glossary
Material
A Material is a mixture of one or more Compounds occurring in one or
Material is characterised by the values of Physical Properties, which can describ
Material or the C
stream in conventional process simulation software.
Material Object
A Material O
Material as defined in this interface specification.
Equilibrium Calculation
A calculation that determines the composition and amounts of each Pha
subject to specified constraints such as, for example, a particular temperature and press
Physical Property
A Physical Property is an attribute used to characterise a Material. Typic
Temperature and Pressure. A Material is
possible Physical Properties defined within section 7.5 of this document.
revision of the interface specification, the Physi
characteristics of poly
Physical Properties. These will be added later as the interface specification
cover these kinds of Material.

 10

Compound
A chemical substance as defined by a particular set of Physical Prope
methods and data. Compounds can be identified in various ways: by a com

rties, calculation
mon name, by a

ified interfaces,
endently of other software and which can be used in the

position of other software systems without modification. For the sake of clarity it is

 a defined amount of
ggregation, e.g.
nce of physical

 of matter with different characteristics, such as density.

stinguish multiple
milar Phases, such as liquids, the Phase can be associated with a number of

adro constant.
te of Aggregation

mpounds in that

PME is expected to use State of Aggregation to help distinguish one Phase of a Material

SE is an acronym for the term CAPE-OPEN Simulation Environment. It refers to any

are component
nit Operations,

s with COSE.

 System is a proprietary software system that includes a Physical
 for a number of
 information that
 and data for the

, using
different interfaces from the ones described in this document. For example, it may use the
CAPE-OPEN Physical Properties Data Base (PPDB) interfaces, which allow bulk access for
Thermodynamic and Physical Properties databases.
Physical Properties Executive
A Physical Properties Executive is the part of a Physical Properties System that provides the
user interface by which the methods, data and Compounds can be selected. It also organises
the computation so that, in calculating Material properties, the correct methods are employed
for the specific Material conditions. The Physical Properties Executive may provide access

CAS Registry number or by a chemical formula. Examples are water, hydrogen and oxygen.
Component
A piece of executable software whose functionality is accessed via spec
which can be deployed indep
com
often associated with the term software.
Phase
A Phase is a stable or metastable collection of Compounds with
substance and a homogeneous composition. It has an associated State of A
liquid. A given Phase can be distinguished from others through the prese
interfaces that separate states

In a Material, each Phase is given a unique identifier. In order to di
instances of si
attributes such as a ‘key compound’.
Universal Constant
A Universal Constant is any well-known physical constant, such as the Avog
Sta
The State of Aggregation of a Phase is the physical state in which the Co
Phase occur. Possible values for State of Aggregation are Vapor, Liquid, Solid or Unknown.
A
from another.
COSE
CO
software that makes use of CAPE-OPEN components.
PMC
PMC is an acronym for Process Modelling Component. A PMC is a softw
used to provide specific functionality within a PME. Examples are U
Numerical Solvers, and Property Packages.
PME
PME is an acronym for Process Modelling environment. PME is synonymou
Physical Properties System
A Physical Properties
Properties Executive, a set of Physical Property routines and access to data
chemical Compounds. A Physical Properties System is likely to include text
the user can access to help select the most appropriate properties, methods
particular application. It will often access a large Physical Properties data bank

 11

to additional services, such as the ability to correlate raw data to generate parameters for

tion of methods,
ysical Properties
d data, together

ant mixing rules and interaction parameters. A Property Package normally
pounds and methods accessible through a Physical

components, the
omponents.

dard defines the following primary CAPE-OPEN components:

certain Physical
pounds existing in particular

 composition of
es of particular

ns of a Property
ulator for a fixed set of Compounds and Phases. A

tants and may also provide universal

 – a software component that manages a set of Property
st and may allow

e edited and/or created.

ents which can

hat can calculate

s implemented by components that can

 by components that need to describe the
Phases that are present or could be present in a Material.

• ICapeThermoCompounds – methods implemented by components that need to describe
the Compounds that occur or can occur in a Material.

• ICapeThermoMaterial – methods implemented by components that need to provide
access to the Physical Properties of a particular Material.

• ICapeThermoMaterialContext – methods implemented by components that need to be
given a particular Material as the context for a calculation.

selected methods.
Property Package
A Property Package is a complete, consistent, reusable, ready-to-use collec
Compounds and model parameters for calculating any of a set of known Ph
for the Phases of a Material. It includes all the pure Compound methods an
with the relev
covers only a small subset of the Com
Properties System.

4. Scope
This section describes Thermodynamic and Physical Properties software
interfaces they support and the relationship between the different software c

The stan

• Physical Property Calculator – a software component that can calculate
Properties, possibly restricted to mixtures of particular Com
Phases.

• Equilibrium Calculator – a software component that can calculate the
non-reacting mixtures at equilibrium, possibly restricted to mixtur
Compounds existing in particular Phases and subject to certain constraints.

• Property Package – a software component that combines the functio
Calculator and an Equilibrium Calc
Property Package will provide compound cons
constants.

• Property Package Manager
Packages. It is responsible for instantiating Property Packages on reque
Property Packages to b

This document describes the following interfaces:

• ICapeThermoEquilibriumRoutine – methods implemented by compon
perform an Equilibrium Calculation.

• ICapeThermoPropertyRoutine – methods implemented by components t
values for Physical Properties.

• ICapeThermoUniversalConstants – method
supply the values of Universal Constants.

• ICapeThermoPhases – methods implemented

 12

• ICapeThermoPropertyPackageManager – methods implemented by a component that

ired to perform
s defined in this
the functionality
ar interfaces and

ponents. For example, a software component that implements the
or component or

 to communicate
ation between a
xchange of data
 Material Object
terfaces but it is

onent. A Material Object is a software object that is responsible for
holding the data describing the state of a Material. Each client that uses CAPE-OPEN
Thermodynamic and Physical Properties components must provide its own implementation
of a Material Object because the configuration and data storage used in a Material Object
will be different for each client.

can list and create instances of available Property Package components.

These interfaces are functional: they collect together the methods requ
particular types of calculation and data access. The software component
interface specification will support all the interfaces required to provide
they implement. There is not a one-to-one correspondence between particul
particular software com
ICapeThermoEquilibriumRoutine interface may be an Equilibrium Calculat
a Property Package component.

The interfaces allow clients of the four above defined types of components
with them independently of the component implementations. Communic
client and any type of thermodynamic software component requires the e
describing the Material for which calculations are required. The concept of a
is described for this purpose. A Material Object implements CAPE-OPEN in
not a CAPE-OPEN comp

 13

+GetPresentPhases()
+SetPresentPhases()

+GetSinglePhaseProp()
+SetSinglePhaseProp()
+GetTwoPhaseProp()
+SetTwoPhaseProp()
+GetOverallProp()
+SetOverallProp()
+ClearAllProps()
+GetTPFraction()
+GetOveralTPFraction()
+CreateMaterial()
+CopyFromMaterial()

ICapeThermoMaterial

<<CAPE-OPEN Interface>>

+GetPhaseList()
+GetPhaseInfo()
+GetNumPhases()

ICapeThermoPhases
<<CAPE-OPEN Interface>>

+CheckEquilibriumSpec()
+CalcEquilibrium()

ICapeThermoEquilibriumRoutine

<<CAPE-OPEN Interface>>

+CheckSinglePhasePropSpec()
+GetSinglePhasePropList()
+CalcSinglePhaseProp()

+CheckTwoPhasePropSpec()
+GetTwoPhasePropList()
+CalcTwoPhaseProp()

ICapeThermoPropertyRoutine
<<CAPE-OPEN Interface>>

+GetPropertyPackageList()
+GetPropertyPackage()

ICapeThermoPropertyPackageManager

<<CAPE-OPEN Interface>>

+GetCompoundList()
+GetCompoundConstant()
+GetConstPropList()
+GetNumCompounds()
+GetPDependentProperty()
+GetPDependentPropList()
+GetTDependentProperty()
+GetTDependentPropList()

ICapeThermoCompounds

<<CAPE-OPEN Interface>>

+GetUniversalConstant()
+GetUniversalConstantList()

ICapeThermoUniversalConstants

<<CAPE-OPEN Interface>>

+SetMaterial()
+UnsetMaterial()

ICapeThermoMaterialCo

<<CAPE-OPEN Interface>>

+CalcAndGetLnPhi()

This document does not cover the Physical Properties and interfaces required to implement
etroleum fractions, and polymers. Nor does it

aterial. Each of

o implement the
implementations

5. Conceptual Object Model
Before describing the detail of the interfaces, a Conceptual Object Model of the interaction
between a PME and an external CAPE-OPEN Thermodynamic and Physical Properties
component is required. This Conceptual Object Model is not concerned with how the
components are created, configured, selected or associated with the PME, its purpose is to
show what kinds of software components are required and to show how a PME and a
component interact. Much of this material will already be familiar to anyone who knows the
earlier versions of the CAPE-OPEN standard.

ntext

Figure 1: Interface diagram

support for complex materials such as solids, p
cover the interfaces required to describe a system of reactions within a M
these topics is covered in a separate document [3], [7].

This specification document does not provide detailed information on how t
software components it describes. Information and examples that support
will be available from the CO-LaN website: www.colan.org.

 14

An important concept in the Conceptual Object Model is that of a Ma
versions of this specification, Material was a central concept and, in fact, the
Material is characterised, in terms of a set of Compounds and the valu
Properties, is still the same here. The kinds of Material that can be repr
unchanged. However, in order to develop a more component-oriented mo
interface specification

terial. In earlier
 way in which a
es for Physical

esented are also
del to justify the

s described here, the role of Material is given less emphasis. Within
t implements the

ct Model. Each
ities:

the temperature,
te an additional
hysical Property
e that a Physical

rectly by a PME; rather, it is called via a CAPE-
r is to extend or
rty Package can
roperty Package

description of a
perature and

e Material. An
ypes of Material.
 a subset of the

ompounds occur
ific Equilibrium

als with solid Phases, or those containing
led directly by a
y Package. Like
to extend or to
rty Package can
with a Property

oftware component that is both a Physical Property Calculator and
of Compounds

will make use of
be configured to

s and/or Equilibrium Calculators.
Alternatively, it can provide the functionality of these two components internally without
making use of external components. Configuring the Compounds, Phases, models and
external components used in a Property Package is outside the scope of this CAPE-
OPEN interface specification.

For the purposes of this Conceptual Object Model, a PME is any piece of software that
needs to use the functionality of the immediately above listed three kinds of component. For
example the PME could be Microsoft Excel, or it could be a Simulation Environment, or it
could be a Unit Operation executing within a Simulation Environment.

this specification, the term Material Object refers to the software object tha
representation of a Material.

Three types of software component are considered in the Conceptual Obje
type of software component is meant to provide an aggregation of functional

 Physical Property Calculator – a software component, which, given
pressure and composition of a Phase of a Material, is able to calcula
Physical Property or Physical Properties of the Material. Again, a P
Calculator will be designed to work with certain kinds of Material. Not
Property Calculator is not called di
OPEN Property Package. The purpose of a Physical Property Calculato
to override the list of calculations that a CAPE-OPEN Physical Prope
perform. A CAPE-OPEN Property Calculator can only be used with a P
which supports the use of Property Calculators.

 Equilibrium Calculator – a software component, which, given a
Material, and a specification of constraints on the calculations such as tem
pressure, can calculate the composition of each Phase present in th
Equilibrium Calculator will typically be designed to work with certain t
That is, it will provide the Phase compositions for Materials containing
set of Compounds known to the Equilibrium Calculator, where those C
in Phases known to the Equilibrium Calculator. For example, a spec
Calculator may not be able to deal with Materi
polymeric Compounds. Note that an Equilibrium Calculator is not cal
PME. Like a Physical Property Calculator, it is only called via a Propert
a Property Calculator, the purpose of an Equilibrium Calculator is
override the list of Equilibrium Calculations that a CAPE-OPEN Prope
perform. A CAPE-OPEN Equilibrium Calculator can only be used
Package which supports the use of Equilibrium Calculators.

 Property Package – a s
an Equilibrium Calculator for Materials containing a specific set
occurring in a specific number of physical states. A Property Package
certain models to perform these calculations. A Property Package can
make use of external Physical Property Calculator

 15

To put the use of these components in context, the object diagram below sh
representation of the kinds of objects found in proprietary Simulation En
some of the relationships that exist between them. A flowsheet object is a
number of streams and with a number of Unit Operations. Each Unit Opera
has access to a Thermodynamics sub-system that provides Physical Prop
using various Physical Property models, equilibrium, or flash, calculation
Physical Property data. The flowsheet ob

ows a simplified
vironments and
ssociated with a
tion and stream

erty Calculations
s; and constant

ject also has access to the Thermodynamics sub-
system. There are various relationships between the streams and the streams are used to
connect blocks, but blocks may also contain streams.

:Thermodynamics sub-system

 :flowsheet

:unit

:Property Calculator

:stream

:Flash Calculator

:Property Data

Figure 2: Object diagram on proprietary implementations

The connection link between a stream and a Unit Operation exists because
must be given a description of the Material at its inlets so that it can calcul
of the Material at its outlets.

a Unit Operation
ate a description

The ownership link (which is not distinguished from a connection link on the diagram) be-
tween a Unit Operation and a stream exists because a Unit Operation may need to create a
representation of a Material in order to perform an internal calculation.

The Thermodynamics sub-system provides three main services: a way of calculating the
value of a non-constant Physical Property, a way of calculating equilibrium and, thirdly,
access to a database of constant Physical Property data. The Thermodynamics sub-system
does not know about Unit Operations and streams; when asked to perform a calculation it is
given a description of a Material as input. Equally, the Thermodynamics subsystem is not

 16

responsible for maintaining the description of any Material in a problem; it simply performs
eturns the result.

in a Simulation
l CAPE-OPEN

hows how proprietary
“socket” objects, which allow communication with the external CAPE-OPEN components,
can replace parts of the proprietary Thermodynamics sub-system and Unit Operations.

the requested calculation given the description of a particular Material and r

The CAPE-OPEN standard is intended to allow proprietary objects used with
or other Process Modelling Environment to be replaced with externa
components that implement the same functionality. The next diagram s

:Thermodynamics sub-system

:flowsheet

:CAPE-OPEN
unit Socket

:stream

:CAPE-OPEN
Equilibrium
Calculator

:CAPE-OPEN
Phy cal
Property

si

:CAPE-OPEN
Unit
Operation

Calculator

:CAPE-OPEN Property
Calculator Socket

:CAPE-OPEN Equilibrium
Calculator Socket

:Property Data

This line
represents the
boundary of the
original system

:CAPE-OPEN
Property Package

een sockets and plugs

s to each of the
omponents are

onality must be
available to proprietary objects within the PME, but also to any other external components
being used by the PME. One example of the importance of this requirement is the need for
consistent Physical Property Calculation routines to be used for both built-in Unit
Operations and CAPE-OPEN Unit Operations, whether the PME is using external Physical
Property Calculations, or its own internal calculation routines.

In this diagram, the proprietary Thermodynamics subsystem contains proprietary sockets,
which are software objects that allow communication with external CAPE-OPEN
components. This is an example of the “Adapter” design pattern [6]. Existing proprietary

Figure 3: Communication betw

In order to make use of external software components, standard interface
three types of CAPE-OPEN Thermodynamic and Physical Properties c
required. When such components are being used in a PME, their functi

 17

objects such as streams and Unit Operations still use the internal propr
implemented by the Thermodynamics subsystem. The stream and Unit O
therefore do not need to be changed. Internally, the Property Calculator
Calculator sockets translate any in-coming call to a call to an external CAP
using the standard interfaces that CAPE-OPEN defines. The diagram als
Proper

ietary interfaces
peration objects
and Equilibrium
E-OPEN object
o shows how a

ty Package, can itself make use of the CAPE-OPEN interfaces to call CAPE-OPEN
rium Calculator

 functionality of
for the list of compounds that the PME can use,

sical Properties.
ed in some other

nit Operations: a proprietary adapter, called “CAPE-OPEN
h its proprietary

mponents shown
res a description
escription of the

material outlet ports. An Equilibrium Calculator component,
ium Calculator,

amounts of each
ator component

culates the value

For example, a
ta describing the

 of a Material, or, in a spreadsheet, a particular arrangement of cells might be used.
o CAPE-OPEN
components in a
Thermodynamic
d to be able to

e data
of the Material

sed to describe a
Material. The list is presented in section 7.5 of this document. In addition to the values of
Physical Properties, a set of Compounds and a list of the Phases present also characterise a
Material. Some Physical Properties describe the overall state of a Material; others
characterise individual Compounds or Phases within it.

Earlier, the adapter design pattern was used to show how a PME could access external
software components. The same design pattern can be used to implement a Material Object.
As in the other examples of adapters, the Material Object is implemented by the PME. It
presents the CAPE-OPEN interfaces for accessing the description of a Material to the

components implementing the Physical Property Calculator and Equilib
interfaces.

Note that in this diagram the Thermodynamics sub-system still provides the
a Property database, that is, it is responsible
the Phases that can be present in Materials and the values for constant Phy
The Property database may be internal to the Thermo sub-system or provid
way for example through a CAPE-OPEN PPDB socket.

The same pattern is used for U
Unit Socket” in the diagram, is used to map calls made by the PME throug
unit interface to objects implementing the CAPE-OPEN unit interfaces.

5.1 The Description of Material
The description of a Material is both an input to and an output of all the co
in the diagrams. In a sequential modular simulator, a Unit Operation requi
of the Material at each of its material inlet ports so that it can calculate a d
Material at each of its
regardless of whether it is a Property Package or an independent Equilibr
takes the description of a Material and updates it with the composition and
Phase subject to specified constraints. Similarly, a Physical Property Calcul
takes the composition of a Material and its temperature and pressure and cal
of additional Physical Properties.

All PMEs will have their own proprietary representation of Material.
Simulation Environment might use an instance of a C++ class to hold the da
state
Whatever representation is used, this data has to be presented t
Thermodynamic and Physical Properties components and Unit Operation
standard way. As well as using the description of Material as input, both
and Physical Properties components and Unit Operation components nee
update the description as an output of their calculations. Providing access to th
describing a Material via CAPE-OPEN interfaces is the responsibility
Object.

The CAPE-OPEN standard defines a list of Physical Properties that can be u

 18

external components. Internally, it does what ever is required to access the data held in the
PME’s proprietary data structures.

ThermoMaterial
ry data structure
s that a Material
modynamic and

 of the different
sed in all these

components are
s supporting multiple interfaces. The implication is that if a client is passed one of

the supported interfaces, it also has access to all the others since each Material Object is
 not show the

ll CAPE-OPEN

terial Objects
e values of the

 Properties from a Material Object and to set the values that it calculates. To a
ta, but must also

hysical Property Calculations. The reason for
these requirements is to support Physical
supplementary data from a Physical Property Package in order to complete their own
calculations.

Therefore, to satisfy the requirements of CAPE-OPEN Physical Property Calculators, a
Material Object must implement the followin

The ICapeThermoMaterial interface is required to provide access to the values of the
Physical Properties that describe the Material.

The ICapeThermoCompounds interface is required so that the caller can: find out what
Compounds are present in the Material; check that they can be recognised; and, request the
values of Compound constants.

5.2 Material Object responsibilities
The primary interface implemented by a Material Object is the ICape
interface. Typically, a Material Object will be designed to access a proprieta
belonging to a PME, and it will itself be proprietary to a PME. The interface
Object needs to support vary depending on which type of CAPE-OPEN Ther
Physical Properties component is using the Material Object. The following sections describe
which interfaces a Material Object implementation must support for each
types of component. A single Material Object implementation can be u
circumstances as long as it implements all the interfaces that could be used.

Note that in the following object and component diagrams, objects and
shown a

passed as a CapeInterface (IDispatch in COM). The diagrams do
ICapeIdentification [4] and Error Interfaces [5] that should be supported by a
components.

5.2.1 Interfaces used by a Physical Property Calculator to access Ma
A CAPE-OPEN Physical Property Calculator needs to be able to get th
Physical
Physical Property Calculator, a Material Object must behave as a store of da
provide access to Compound constants and P

Property Calculator components that need

g interfaces:

ICapeThermoMaterial

ICapeThermoCompounds

ICapeThermoPhases

ICapeThermoUniversalConstants

ICapeThermoPropertyRoutine

 19

The ICapeThermoPhases interface is required so that the caller can: find out the Phases that
culations.

implemented to
hysical Property
k in a Property

ment this interface. The Material
erty Package or

 optional but may be implemented to provide
 ICapeThermo-

 is not supported,

hysical Property Calculator it can provide its
 the PME. However, a

required by the

 Objects
rial interfaces as
ues of Physical

es from a Material and it needs to set the values of the Physical Properties that it
calculates. Unlike a Physical Property Calculator, it will determine which Phases are present
in the Material and may therefore up of Phases. As part of performing
this calculation, it may need to call Physical Property Calculations. Performing Physical
Property Calculations requires the interfaces that define a Physical Property Calculator
component:

For an Equilibrium Calculator component, a Material has to behave both as a store of data
and as a Physical Property Calculator. As described earlier, a Material Object is expected to
implement the ICapeThermoPropertyRoutine methods by forwarding all the calculation calls
back to its creator, which could be the PME or the Property Package that is calling the
Equilibrium Calculator component.

are present in the Material in order to set properties and perform property cal

The ICapeThermoUniversalConstants interface is optional but may be
provide the caller with the values of Universal Constants. Note that a P
Calculator that requires the values of Universal Constants will not wor
Package that provides a Material Object that does not imple
Object may simply forward a request for universal constants to a Prop
provide constants through some proprietary mechanism, e.g. from a PME.

The ICapeThermoPropertyRoutine interface is
the caller with access to Physical Property Calculations. As with the
UniversalConstants interface, if the ICapeThermoPropertyRoutine interface
a Physical Property Calculator component may not work.

Note that when a Property Package calls a P
own Material Object or it can pass the Material Object passed to it by
Material Object provided by a PME may not support all the properties
Property calculator.

5.2.2 Interfaces used by a Equilibrium Calculator to access Material
A CAPE-OPEN Equilibrium Calculator component requires the same Mate
a Physical Property Calculator component because it needs to get val
Properti

date the Material’s list

ICapeThermoMaterial

ICapeThermoPhases

ICapeThermoCompounds

ICapeThermoUniversalConstants

ICapeThermoPropertyRoutine

 20

Note that when a Property Package calls an Equilibrium Calculator it can provide its own
Material Object or it can pass the Material Object passed to it by the PME.

a more complex
ion needs to get
to perform both

cal Property and Equilibrium Calculations. Therefore, in order to be used by Unit
fining a Property

nt, that presents
perform Physical
e same Physical
sumption that it

on calls to another component, passing itself as the context for
the calculation. This is only one of several possible arrangements. In practice, the software
object may call a proprietary interface to perform the actual calculation. The implementation
of the proprietary interface may then construct a second Material description to pass to an
external component for a calculation.

5.2.3 Interfaces used by a Unit Operation to access Material Objects
To satisfy the requirements of CAPE-OPEN Unit Operation components,
Material Object implementation is required. This is because a Unit Operat
and set the values of Physical Properties in a Material and it also needs
Physi
Operation components, a Material Object must implement the interfaces de
Package.

The diagram below shows a software object, rather than a software compone
the interfaces required to describe a Material and the interfaces required to
Property and Equilibrium Calculations. The object is shown as requiring th
Property and Equilibrium calculation interfaces as it presents on the as
simply forwards the calculati

ICapeThermoMaterial

ICapeThermoPropertyRoutine

ICapeThermoPhases

ICapeThermoCompounds

ICapeThermoEquilibriumRoutine

ICapeThermoUniversalConstants

ICapeThermoPropertyRoutine

outine

tants

ICapeThermoEquilibriumR

ICapeThermoUniversalCons

ICapeThermoMaterialContext

cause it does not
chanism for a PME to tell a Unit Operation which Property Calculator and

which Equilibrium Calculator to use for a specific inlet stream. Instead, it only allows the
PME to associate an object implementing the ICapeThermoMaterial interface with a Port.
As a result, an object that aggregates the Material interfaces and the calculation interfaces is
required.

Similarly, for a Property Package component, the only context that a PME can provide is an
object implementing the ICapeThermoMaterial interface. Since a Physical Property
Calculator needs to use other interfaces, the object passed to it must implement those
interfaces as well.

Figure 4: Interfaces required on a software object

This design is required by the CAPE-OPEN Unit Operation specification be
provide a me

 21

Note that a Material Object that meets the requirements of a CAPE-OPEN Unit Operation
 this document.

tation of objects
ation has to be
of the standard,

ty Packages and Unit Operations will be able to access other data and functionality
supplied by the PME, simply by being passed Material Objects which implement the new

 to implement to
ents. As well as supporting the required

be CAPE-OPEN
nsistency of the

upport (ie. allow a client to set/retrieve property values)
es are supported:
l Object that is

otalFlow properties. The

erty of a Material

t must:

.

sis with which it

basis conversion
ingful (e.g. in the case of cement), the Material Object must be able to return

y be requested in

in another basis,
ary. Where the basis conversion on a quantity is not

ith which it was

ed in earlier sections of this document, a software object implementing the CAPE-
 are some of the

 Implement the object as a store, or cache of data and exchange that data with both the
PME and external CAPE-OPEN components.

 Implement the object using the façade design pattern [6]. The resulting object does not
store any data, but it maintains a reference to a PME data structure that does store the
data.

The choice of implementation depends on the requirements of a particular PME, so this
document does not make a recommendation.

will meet the requirements of all Physical Property components described in

This design has advantages and disadvantages. It complicates the implemen
that support the ICapeThermoMaterial interface. But the extra complic
balanced against the fact that the design is extensible. In future versions
Proper

interfaces.

5.2.4 Material Object behaviour
So far, this section has described the interfaces that Material Objects need
meet the requirements of CAPE-OPEN compon
interfaces, a Material Object has to exhibit specific behaviour if it is to
compliant. These behavioural specifications are intended to ensure the co
data available to a client through the CAPE-OPEN interfaces.

A Material Object may optionally s
many Physical Properties but it is a requirement that the following properti
temperature, pressure, fraction and phaseFraction. In addition a Materia
passed to a Unit Operation component must support the flow and t
property identifiers are defined in section 7.5.

A Material Object client may get or set any basis-dependent Physical Prop
using any basis. It is the Material Object’s responsibility to ensure that the client sees
consistent values whatever basis is used. This means that the Material Objec

 Allow a client to set any basis-dependent Physical Property on any basis

 Allow a client to get any basis-dependent Physical Property using the ba
was stored.

 Perform basis conversions, or delegate basis conversion as necessary. If
is not mean
the quantity in its original basis and to return an error should the quantit
a different basis.

 Ensure that quantities set in one basis are consistent with quantities set
or delegate that function as necess
feasible, the Material Object must only store the quantity in the basis w
set most recently

As discuss
OPEN Material interfaces can be implemented in a number of ways. These
alternatives:

 22

5.3 Equilibrium Calculator component responsibilities
An Equilibrium Calculator component must implement the ICapeThe
Routine and ICapeThermoMaterialContext interfaces. In turn it uses th
Material interface passed to it via the ICapeThermoMaterialContext::SetMat
access the description of the Material

rmoEquilibrium-
e ICapeThermo-
erial interface to

 being worked on from a Material Object and to update
the Material’s properties. The ICapeIdentification [4] and Error Interfaces [5] must be
implemented by all CAPE-OPEN componen

ompounds must
roperty Package
t implement the

le to perform its calculations for any

articular Phases
same reason of
eThermoPhases

e. Typically, an

lculator requires
e method.

between a PME,
n

Equilibrium Calculation is performed using an Equilibrium Calculator component. This
sequence diagram is a sketch, so some operations are abbreviated for simplicity. Note that
the diagram does not use actual method names. The names used are intended to indicate the
nature of the call being made.

The diagram shows how an implementation of a Material Object is required in order to pass
data from the PME to the Property Package and from the Property Package to the external
Equilibrium Calculator component. The Equilibrium Calculator stores its results using the
Material Object. The diagram does not show the interaction between the Equilibrium

ts.

ICapeThermoEquilibriumRoutine

An Equilibrium Calculator whose calculations are restricted to particular C
implement support for the ICapeThermoCompounds interface so that any P
that uses it can check consistency. An Equilibrium Calculator that does no
ICapeThermoCompounds interface is assumed to be ab
Compound.

Similarly, an Equilibrium Calculator whose calculations are restricted to p
must implement support for the ICapeThermoPhases interface for the
consistency. An Equilibrium Calculator that does not implement the ICap
interface is assumed to be able to perform its calculations for any Phas
Equilibrium Calculator will need to implement ICapeThermoPhases.

The ICapeUtilities interface [17] may be implemented if the Equilibrium Ca
to make use of facilities provided by this interface, for example, the Initializ

The following conceptual sequence diagram shows the expected interaction
a Property Package, an Equilibrium Calculator component and a Material Object when a

ICapeThermoMaterial

ICapeThermoPhases (optional)

ICapeThermoCompounds (optional)

ICapeThermoMaterialContext

ICapeIdentification

Error interfaces

ICapeUtilities (optional)

 23

 24

ut typically the
ill call back to the Material Object for Property data, Property

Calculations and compound data.

Calculator and the Material Object during the CalcEquilibrium call, b
Equilibrium Calculator w

 S1:Stream

Request Flash <create> mS1:material object

 This represents an external
Property Package which
uses an Equilibrium
Calculator
Component. It can only
access the mS1 object via
CAPE-OPEN interfaces

:PME :PMEPropertySystem

Set Compounds :XYZPropertyPackage

Flash(t,p,z,…)

Set t, p, z,…

Set phases

Set Material(mS1)

Get Phases

Get compounds

Get t,p,z,…

Get Composition/Phases

Return composition
and Phases

Get Composition
and Phases

Check compounds

Check phases

Calculate Equilibrium

Using GetComponentList
From the
ICapeThermoCompounds
interface

All communication used to
configure a Material Object uses
proprietary methods, not CAPE-
OPEN interfaces because the CAPE-
OPEN interface do not define how a
Material Object is constructed.

Using GetPhaseList
From the
ICapeThermoPhases
interface Using GetSinglePhaseProp,

GetTwoPhaseProp,
SetSinglePhaseProp and
SetTwoPhaseProp
from the
ICapeThermoMaterial
interface

Using SetMaterial
From the
ICapeThermoMaterialConte
xt interface

Set Material(mo2)

Mo2:
XYZMaterialObject

<create>

:ABCFlash

Set Data

Set Composition/Phases

Get Composition/Phases

During its calculation the
Equilibrium Calculator will
call the Material Object it
has been passed to request
property calculations and
access to compound data.
This interaction is not shown
here.

Calculate Equilibrium

Set Composition/Phases

Figure 5: Conceptual Sequence Diagram
 25

5.4 Equilibrium Calculator behaviour
An Equilibrium Calculator component is expected to compute the amounts
and compositions of all Phases at equilibrium and it can be used to c
Temperature and Pressure if these are not specified. It must set Temperature
all Phases present at equilibrium as well as for “Overall” if not already sp
may be present in zero amount, for example the liquid phase in a dew point
calculation should not update or set any other Physical Property in the Mate

(phase fractions)
alculate overall

 and Pressure for
ecified. A phase
 calculation. The
rial Object it has

t. If it
ium Calculation,

aterial Object.

y come to rely on them, even

ICapeThermo-
faces. In turn it uses the

ICapeThermoMaterial interface passed to it via its ICapeThermoMaterialContext
SetMaterial method to access the data desc g worked on from a
Material Object and to update the Material’s properties. The ICapeIdentification [4] and
Error Interfaces [5] must be implemented by all CA nents.

ular Compounds
hermoCompounds interface so that any Property

Package that uses it can check consistency. A Property Calculator that does not implement
the ICapeThermoCompounds interface is assumed to be able to perform its calculations for
any Compound.

Similarly, a Property Calculator whose calculations are restricted to particular Phases must
implement support for the ICapeThermoPhases interface for the same reason of consistency.
A Property Calculator that does not implement the ICapeThermoPhases interface is assumed
to be able to perform its calculations for any Phase. Typically, a Property Calculator will
need to implement support for ICapeThermoPhases.

been passed. In particular it must not set any properties for phases that are not presen
requests a Physical Property Calculation as part of executing the Equilibr
the resulting value must not be stored in the M

The reason for insisting on no side effects is that clients ma
though they are not part of the CAPE-OPEN standards.

5.5 Physical Property Calculator component responsibilities
A Physical Property Calculator component must implement the
PropertyRoutine and ICapeThermoMaterialContext inter

ribing the Material bein

PE-OPEN compo

ICapeThermoPropertyRoutine

A Physical Property Calculator whose calculations are restricted to partic
must implement support for the ICapeT

ICapeThermoMaterial

ICapeThermoMaterialContext

ICapeIdentification

ICapeThermoCompounds (optional)

Error interfaces

ICapeThermoPhases (optional)

ICapeUtilities (optional)

 26

 27

ty Calculator requires to
ethod.

 between a PME,
al Object when a
m is a sketch, so

e operations are abbreviated for simplicity. As before, note that the diagram does not use
of the call being

here. The PME
hysical Property
hysical Property

 the Property Calculator.
According to this diagram, the lifetime of a Material Objects is very short; it only exists for
as long as the object that creates it needs to communicate with the external component. In
general, the creator of a Material Object will determine how long it needs to exist.

The ICapeUtilities interface [17] may be implemented if the Proper
make use of facilities provided by this interface, for example, the Initialize m

The following conceptual sequence diagram shows the expected interaction
a Property Package, a Physical Property Calculator component and a Materi
Physical Property Calculation is performed. As before, this sequence diagra
som
actual method names. The names used are intended to indicate the nature
made.

The pattern of calls used for the Equilibrium Calculation is used again
Material Object acts as an intermediary between the PME and the P
Calculator component. A second Material Object constructed by the P
Package act as intermediary between the Property Package and

 S1:Stream

Calculate Property <create> mS1:material object

 This represents an external
Property Package which uses a
Physical Property Calculator
component. It can only access the
mS1 object via
CAPE-OPEN interfaces

:PME :PMEPropertySystem

Set Compounds :XYZPropertyPackage

Calc(prop,t,p,z,

Set t, p, z,…

Set phases

Set Material(mS1)

Get Phases

Get compounds

Get t,p,z,…

Set Property

Get Property Return Property
Return Property

Check compounds

Check phases

Calculate Property

Using GetComponentList
From the
ICapeThermoCompounds
interface

All communication used to
configure a Material Object uses
proprietary methods, not CAPE-
OPEN interfaces because the CAPE-
OPEN interface do not define how a
Material Object is constructed.

Using GetPhaseList
From the
ICapeThermoPhases
interface Using GetSinglePhaseProp,

GetTwoPhaseProp,
SetSinglePhaseProp and
SetTwoPhaseProp
from the
ICapeThermoMaterial
interface

Using SetMaterial
From the
ICapeThermoMaterialContext
interface

Set Material(mo2)

Mo2:
XYZMaterialObject

<create>

:ANOPropertyCalculator

Set Data

Set Property

Get Property

 During its calculation the Physical
Property Calculator will call the
Material Object it has been passed to
request property calculations and
access to compound data but this
interaction is not shown here.

Calculate Property

Figure 6: Conceptual Sequence Diagram

 28

5.6 Physical Property Calculator behaviour
A Physical Property Calculator must calculate the requested Physical Prop
visible side effects on the Material Object it is passed. If the calculation it perf

erty without any
orms requires

 not be stored in

y on them even

nd properties it
ontext interface.

ysical properties of
 there is no way
he properties of
nterface [7].

t base reference
halpy (H) or Entropy (S) calculation. It is impossible to anticipate all the different

erty Calculator/
ther client of a

kage, can adjust for any difference in h and s zeros by the following simple

hysic lculator/Property
sponding to the

other Physical Property calculations, the results of these calculations must
the Material Object.

The reason for insisting on no side effects is that clients may come to rel
though they are not part of the standard.

A Property Calculator would typically obtain the values of any compou
requires using the Material Object supplied via the ICapeThermoMaterialC
However, this behaviour cannot be used to change the values of ph
compounds (for example pseudocomponents) dynamically. This is because
to ensure that a property calculator will reset its internal data structures. T
petroleum fractions can however be changed using the Petroleum Fractions I

Each Physical Property Calculator or Property Package may use a differen
for Ent
possible conventions that might be used by a PME and a Physical Prop
Property Package, so an automatic procedure is preferable. A PME, or o
property pac
procedure:

1. Evaluate h and s for each pure compound in the P al Property Ca
Package at the T, P and other conditions (e.g. perfect gas state) corre
PME's zeros.

2. Store the values for each compound i as ih0 and is0 .

3. Each time h or s is requested from the PP subtract ∑ ii hn 0 or ∑ ii sn 0

returned by the PP (where the
 from the value

in are amounts of substance expressed in
units).

5.7 Property Package Component responsibilities
A Property Package component can describe a set of Compounds and
properties, it can describe the Phases that it can deal with and it can beha
Property Calculator and/or an Equilibrium Calculator. In order t
ICap

 the appropriate

 their constant
ve as a Physical
o support the

eThermoPropertyRoutine and ICapeThermoEquilibriumRoutine interfaces, it must
support the ICapeThermoMaterialContext interface. For Physical Property and Equilibrium
Calculation functions, it uses the ICapeThermoMaterial interface passed to it via its
ICapeThermoMaterialContext::SetMaterial method to access the description of the Material
being worked on from a Material Object and to update the Material’s properties. The
ICapeIdentification [4] and Error interfaces [5] must be implemented by all CAPE-OPEN
components. The ICapeUtilities interface [17] may be implemented if the Property Package
requires to make use of facilities provided by this interface, for example, the Initialize
method.

29

between a PME,
nit Operation is
ith Equilibrium

ty Calculators already show the interaction between a PME and

 to be used by a
ility between the
ysical Properties

ion and the Unit
n is asked to perform a calculation. A Material Object that implements the Material

perty Calculator
 Unit Operation, so that

the Unit Operation can request Equilibrium and Physical Property Calculations for the
Materials connected to its Ports. Here, the Material Object is just a wrapper for the PME’s
representation of a stream, so the only data it holds is a stream name. Any requests made to
it are forwarded to the PME, for stream data, or to the PME ThermoSubsystem for
calculations.

Once again, these sequence diagrams are sketches, so some operations are abbreviated for
simplicity and the method names used are intended to describe the intent of the call.

ICapeThermoPropertyRoutine

ICapeThermoMaterial

ICapeThermoMaterialContext

ICapeThermoPhases

ICapeThermoCompounds

ICapeThermoEquilibriumRoutine

ICapeThermoUniversalConstants

The next two conceptual sequence diagrams show the expected interaction
a Property Package component and a Unit Operation component when the U
asked to calculate its outlets. The diagrams showing the interactions w
Calculators and Proper
Property Package for Equilibrium and Physical Property Calculations.

In the first diagram, a PME is asked to import a Property Package, which is
CAPE-OPEN Unit Operation. The PME has to check that there is compatib
Compounds and Phases that the Property Package contains and that the Ph
that it needs can be calculated.

In the second diagram, streams are connected to a CAPE-OPEN Unit Operat
Operatio
interfaces, the Equilibrium Calculator interfaces and the Physical Pro
interfaces is required as an intermediary between the PME and the

ICapeIdentification

Error interfaces

ICapeUtilities (optional)

30

Imp ort CAPE-
OP EN Property

Package

:PM E :PM ETherm oSu bSystem

GetP rop erties

< Crea teIm po rt :XYZProp ertyPackage

Tran slate
Com pou nds

Get Com pou nds

Transla te
P hases

Ge tP hases

Ch eck
P rop erties

Figure 7: PME is asked to import a PP

31

 :PME :PMEThermoSubSystem

Connect S1…

mS1:Material Object
<Create>

SetStream(S1)

Create
Material Object
For S1

mS2:Material Object
<Create>

SetStream(S2)

Create
Material Object
For S2

Connect S2…

:XYZPropertyPackage

:XYZUnitOperation

Return mS1

Connect(mS1)

Return mS2

Connect(mS2)

Validate Validate

Calculate Calculate

Get Properties<name>

Set Properties

CalculateProperty<name>CalculateProperty(<name>,ms2)

SetMaterial(ms2)

CalculateProperty<name>

GetProperties(<names>,S1)

SetProperties(<names>,S2)

Get Properties<name>

GetProperties(<names>,S2) Internal
Calculation

Set Calculated Properties

Figure 8: Streams connected to a UNIT and calculation

32

5.8 Property Package component behaviour
A Property Package is permitted to use the ICapeThermoCompound
UniversalConstants and ICapeThermoPropertyRoutine interfaces supported
Object passed to the Property Package by the PME. The PME is required
call backs in order to make it possible to write Property Packages with min
example just providing calculation routines and not pure compound ph

s, ICapeThermo
 by the Material
to support these
imum effort (for

ysical properties). It
E functionality:

Calculations.

 in order to pass

e Property Package to provide its own Material Object
pass it on to the
olution is that

ass the Material
mentation is that

or

rial Object is not
 that there is no

ulator behaviour

perty Calculator
rty Calculator components it must show the behaviour

ts resulting from
roperty package
 properties have

been requested explicitly. Unlike a Physical Property Calculator, a Property Package must
p unds and ICapeThermoPhases interfaces so

alculator without

and composition
culations.

5.9 Property Package Manager responsibilities
A Property Package Manager component is responsible for managing a set of Property
Packages. It implements the ICapeThermoPropertyPackageManager interface which allows
a client to get a list of the names of the Property Packages managed by the component and to
request that a Property Package be instantiated.

The main purpose of a Property Package Manager is to allow a component developer to
implement the instantiation of a Property Package in a proprietary way, which is
independent of the middleware being used.

allows the writer of a Property Package to take advantage of typical PM
providing Universal Constants, Compound constants and Physical Property

A Property Package that is configured to use external Property Calculator and Equilibrium
Calculator components must be able to provide them with Material Objects
and receive data.

One implementation would be for th
implementation so that it can decide whether to handle the call itself or to
PME via the PME’s Material Object. The disadvantage with this s
implementing a Material Object is not simple.

The alternative implementation would be for the Property Package to p
Object that it was given by its calling PME. The consequence of this imple
when the Property Calculator (or Equilibrium Calculator) calls a method of one of the
ICapeThermoCompounds, ICapeThermoUniversalConstants
ICapeThermoPropertyRoutine interfaces implemented by the Material Object, the call will
be handled by the PME, instead of the Property Package, because the Mate
aware of the Property Package. With this alternative, the PME should insure
loop arising any call back.

The sequence diagrams showing Property Calculator and Equilibrium Calc
both show this approach.

When a Property Package implements the functionality of a Physical Pro
without using external Prope
described for a Physical Property Calculator component in 5.6: no side effec
calculations and support for different enthalpy and entropy references. A P
component must only set properties on a passed Material Object if those

im lement support for the ICapeThermoCompo
that it can be used correctly by a PME.

When a Property Package implements the functionality of an Equilibrium C
using an external Equilibrium Calculator component it must show the behaviour described
for an Equilibrium Calculator component in 5.4: to set temperature pressure
for all Phases calculated to be present – with no side effects from internal cal

33

As an example, assume that a Property Package Manager stores the d
Property Packages in text files. When a client requests a Property Package t
the Property Package Manager instantiates a generic object that supports th

escription of its
o be instantiated,
e interfaces of a

As a primary CAPE-OPEN component, a Property Package Manager may allow a client to
ate new ones.

y the object or
OM interfaces.

ackage Manager
on’ registry entries specified in [8]. Since

ges do not have their own registry entries, their ‘CapeDescription’
f the registry entries for the Property Package Manager

ing structure of keys:
HKEY_CLASSES_ROOT\CLSID

ckage Manager Class id>}

ibing the Property Package Manager component>

 \<Name of first Property Package>

e first Property Package >

erty Package >

 of the registry,
ckage entries should be written to the

HKEY_CURRENT_USER area of the registry. The format of the entries is the same as
described above except that they are located under:

HKEY_CURRENT_USER\Software\Classes\CLSID

PMEs that present lists of available Property Packages to the user must aggregate the
contents of the HKEY_CURRENT_USER and HKEY_CLASSES_ROOT entries for each
Property Package Manager to show a complete list of the available Property Packages.
Where a Property Package with the same name occurs in both lists the
HKEY_CURRENT_USER entry takes precedence.

Property Package component. This component then reads the corresponding data file in
order to configure itself.

edit Property Packages and to cre

5.10 COM Implementation details
In COM the mechanism used to access any other interface supported b
component is a call to the QueryInterface method, which is inherited by all C

To aid identification, the Property Packages managed by a COM Property P
sing the ‘CapeDescriptineed to be described u

managed Property Packa
entries are written as part o
component using the follow

 \{<Property Pa

 \CapeDescription

 <values descr

 \PropertyPackages

 \CapeDescription

 <values describing th

 \<Name of second Property Package>

 \CapeDescription

 <values describing the second Prop

and so on for each Property Package.

Some users will not have the necessary privileges to write to “system” areas
in which case the Property Pa

34

Consistent with previous version of the CAPE-OPEN standard, COM C
defined for the Thermodynamic and Physical Property component types in o
mechanism to all

ategory Ids are
rder to provide a

ow a PME to identify installed components that are compliant with this
version of the standard.

ription Category ID Desc

CAPE-OPEN 1.1 Property Package
Manager

CF51E383-0110-4ed8-ACB7-B50CFDE6908E

CAPE-OPEN 1.1 Property Package CF51E384-0110-4ed8-ACB7-B50CFDE6908E

CAPE-OPEN 1.1 Physical Property
Calculator

CF51E385-0110-4ed8-ACB7-B50CFDE6908E

CAPE-OPEN 1.1 Equilibrium
Calculator

CF51E386-0110-4ed8-ACB7-B50CFDE6908E

Developers of CAPE-OPEN 1.1 Thermodynamic and Physical Property components must,
ese Category Ids
onents are being
re should create

For COM implementations, CO-LaN provides an installation kit that installs the CAPE-
 necessary Category ids for registering components.

an be integrated
ther components so that when the component is installed the

5.11 CORBA Implementation details
In CORBA implementations, a casting mechanism is used to select between the interfaces
inherited by an implementation class.

There are no other CORBA-specific implementation details.

as part of the installation procedures for their components, ensure that th
with these descriptions exist in the registry of the machine where the comp
installed. If these category ids do not exist, then the installation procedu
them.

OPEN type libraries and creates all the
For COM developers, CO-LaN also provides an install merge module that c
with the installation kit for o
type libraries will also be installed.

35

6. Interface Reference
In the following descriptions of the methods of each interface, some argu
nated as ‘ACTUALLYout’. The IDL definition of an ACTUALLYout argum

ments are desig-
ent is identical

 Yout is used for
o

ormance optimisation. An [in,out] declaration allows an array structure to be
each call of the

l Basic 6 do not

 is used in the argument
descriptions. For more information on the interpretation of this value see section 7.3.

 in the Bibliogra-
noted.

ial stream. Calcula-
ic properties are performed by a Property Package

tion stored in a Material Object. Results of such calculations may be stored in
bject for further usage. The ICapeThermoMaterial interface provides the
ther information and perform checks in preparation for a calculation, to

n and to retrieve results and information stored in the Material Object.

thods are exposed by this interface:

l

Material

ases

lProp

aseProp

 GetTPFraction

 GetTwoPhaseProp

 SetOverallProp

 SetPresentPhases

 SetSinglePhaseProp

 SetTwoPhaseProp

to [in, out] but the intent is that it is actually an output argument. ACTUALL
tw reasons:

• Perf
created only once by the client application and then reused in
method.

• Language limitations. Some programming languages such as Visua
allow an [out] designation for an argument.

It should be noted that the special value denoted by UNDEFINED

CAPE-OPEN data types are described in a CAPE-OPEN document (see [8]
phy). In particular the definition of the CapeArray types should be carefully

6.1 ICapeThermoMaterial
A Material Object is a container of information that describes a Mater
tions of thermophysical and thermodynam
using informa
the Material O
methods to ga
request a calculatio

The following me

 ClearAllProps

 CreateMateria

 CopyFrom

 GetPresentPh

 GetOveral

 GetOverallTPFraction

 GetSinglePh

36

ClearAllProps
Name ThermoMaterial

od Name ClearAllProps

-

scription

 set using the
thods. This means that any

until new values
not remove the

ration information for a Material, i.e. the list of Compounds and Phases.

e same state as
method but it is

 system resources.

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeUnknown - The error to be raised when other error(s), specified for this operation, are
not suitable.

Interface ICape

Meth

Returns

De

Remove all stored Physical Property values.

Notes

ClearAllProps removes all stored Physical Properties that have been
SetSinglePhaseProp, SetTwoPhaseProp or SetOverallProp me
subsequent call to retrieve Physical Properties will result in an exception
have been stored using one of the Set methods. ClearAllProps does
configu

Using the ClearAllProps method results in a Material Object that is in th
when it was first created. It is an alternative to using the CreateMaterial
expected to have a smaller overhead in operating
Exceptions

37

CreateMaterial
Nam ThermoMaterial

od Name Material

CapeInterface

tion

tes a Material Object with the s ration as the current Material Object.

Interface e ICape

Meth Create

Returns

Descrip

Crea ame configu

Arguments

Name Type Description
[out, retval] CapeInterface The interface for the Material Object.
materialObject

Notes

The Material Object created does not contai
has the

n any non-constant Physical Property value but
 same configuration (Compounds and Phases) as the current Material Object. These

oPhaseProp or
ey have been set

an be called for
tibility with the CAPE-OPEN standards. That is to say that the operation

al Object are not

ECapeOutOfResources - The physical resources necessary to the creation of the Material
Object are out of limits.

ECapeNoMemory - The physical memory necessary to the creation of the Material Object is
out of limit.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

Physical Property values must be set using SetSinglePhaseProp, SetTw
SetOverallProp. Any attempt to retrieve Physical Property values before th
will result in an exception.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compa
exists but it is not supported by the current implementation.

ECapeFailedInitialisation – The pre-requisites for the creation of the Materi
valid. The necessary initialisation has not been performed or has failed.

38

CopyFromMaterial
Nam rmoMaterial

od Name CopyFromMaterial

-

Copies all the stored non-constant Physical Properties (which have been set using the
lePhaseProp, SetTwoPhaseProp or SetOverallProp) from the source Material Object to the

ent instance Material Obj

Arguments

Interface e ICapeThe

Meth

Returns

Description

SetSing
curr of the ect.

Name Type Description
[in] source CapeInterface Source Material Object from which

will be copied.
stored properties

Notes

Before using this method, the Material Object must have been configured with the same
the method will
rough the PME

eMaterial on a Material
created Material
cate.

ethod is intended to be used by a client, for example a Unit Operation that needs a
l Object to have the same state as one of the Material Objects it has been connected

lumn.

ractions Interface [7] the petroleum fraction
 instance of the

can be called for
lity with the CAPE-OPEN standards. That is to say that the operation

isation – The pre-requisites for copying the non-constant Physical
isation, such as

ring the current Material with the same Compounds and Phases as the source, has not
been performed or has failed.

ECapeOutOfResources - The physical resources necessary to copy the non-constant Physical
Properties are out of limits.

ECapeNoMemory - The physical memory necessary to copy the non-constant Physical
Properties is out of limit.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

exact list of Compounds and Phases as the source one. Otherwise, calling
raise an exception. There are two ways to perform the configuration: th
proprietary mechanisms and with CreateMaterial. Calling Creat
Object S and subsequently calling CopyFromMaterial(S) on the newly
Object N is equivalent to the deprecated method ICapeMaterialObject.Dupli

The m
Materia
to. One example is the representation of an internal stream in a distillation co

If the Material Object supports the Petroleum F
properties are also copied from the source Material Object to the current
Material Object.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method
reasons of compatibi
exists but it is not supported by the current implementation.

ECapeFailedInitial
Properties of the Material Object are not valid. The necessary initial
configu

39

GetOverallProp
Name hermoMaterial

od Name GetOverallProp

-

tion

rieves non- nt Physical alues for the overall mixture.
ts

Interface ICapeT

Meth

Returns

Descrip

Ret consta Property v
Argumen

Name Type Description
The identif[in] property CapeString ier of the Physical Property for which values

of the single-phase
at can be stored for

dentifiers are listed

are requested. This must be one
Physical Properties or derivatives th
the overall mixture. The standard i
in sections 7.5.5 and 7.6.

[in] basis CapeString e: “Mass” for
le” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

 Basis of the results. Valid settings ar
Physical Properties per unit mass or “Mo

[ACTUALLYout]r
esults

CapeArrayDouble Results vector containing Physical P
SI units.

roperty value(s) in

Notes

The Physical Property values returned by GetOverallProp refer to the overa
values are set by calling the SetOverallProp method. Overall mixture Physic
not calculated by components that implement the ICapeThermoMateria

ll mixture. These
al Properties are
l interface. The

 method of a

ted that this method will normally be able to provide Physical Property values on
sis, i.e. it should be able to convert values from the basis on which they are stored to

example, if the
sible to convert

the return type is

single element.
Exceptions

ECapeNoImpl – The operation GetOverallProp is “not” implemented even if this method
can be called for reasons of compatibility with the CAPE-OPEN standards. That is to say
that the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable – The Physical Property required is not available from the
Material Object, possibly for the basis requested. This exception is raised when a Physical

property values are only used as input specifications for the CalcEquilibrium
component that implements the ICapeThermoEquilibriumRoutine interface.

It is expec
any ba
the basis requested. This operation will not always be possible. For
molecular weight is not known for one or more Compounds, it is not pos
between a mass basis and a molar basis.

Although the result of some calls to GetOverallProp will be a single value,
CapeArrayDouble and the method must always return an array even if it contains only a

40

Property value has not been set following a call to the CreateMaterial or ClearAllProps

o be used when an invalid argument value was passed, for

initialisation has
 performed or has failed.

ECapeUnknown – The error to be raised when other error(s), specified for this operation are
not suitable.

methods.

ECapeInvalidArgument – T
example UNDEFINED for property.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary
not been

41

GetOverallTPFraction
Name oMaterial

od Name GetOverallTPFraction

-

tion

ieves tempe pressure an on for the overall mixture.

Interface ICapeTherm

Meth

Returns

Descrip

Retr rature, d compositi

Arguments

Name Type Description
UALLYout] CapeDouble Temperature (in K) [ACT

temperature

[ACTUALLYout]
pressure

CapeDouble Pressure (in Pa)

[ACTUALLYout]
composition

CapeArrayDouble Composition (mole fractions)

Notes

This method is provided to make it easier for developers to make efficient use of the CAPE-
interfaces. It returns the most frequently requested information from a Material

eturned as mole

ted even if this
tandards. That is

entation.

hrmPropertyNotAvailable – One of the Physical Properties is not available from the
Material Object. This exception is raised when a Physical Property value has not been set
following a call to the CreateMaterial method or the value has been erased by a call to the
ClearAllProps methods.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialization has
not been performed, or has failed.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

OPEN
Object in a single call.

There is no choice of basis in this method. The composition is always r
fractions.

Exceptions

ECapeNoImpl – The operation GetOverallTPFraction is “not” implemen
method can be called for reasons of compatibility with the CAPE-OPEN s
to say that the operation exists but it is not supported by the current implem

ECapeT

42

GetPresentPhases
Name ermoMaterial

GetPresentPhases
 -

tion

urns Phase l for the Pha rently present in the Material Object.

Interface ICapeTh
Method Name
Returns

Descrip

Ret abels ses that are cur
Arguments

Name Type Description
[ACTUALLYout] CapeArray iers – names) for the

Material Object must be a
subset of the labels returned by the GetPhaseList
method of the ICapeThermoPhases interface.

String The list of Phase labels (identif
phaseLabels Phases present in the Material Object.

The Phase labels in the

[ACTUALLYout]
phaseStatus

CapeArrayEnumer
ation

Array of Phase status flags correspon
the Phase labels. See description below

ding to each of
.

Notes

A Phase is ‘present’ in a Material Object (or other component that
ICapeThermoMaterial interface) if it has been explicitly made present
SetPresentPhases method or if any properties have been set

implements the
 by calling the
by calling the
sent, it does not
e phaseStatus is

ntPhases
 in its

ven if previously present as a result of a SetSingle-

If no Phases are p uld be returned for both the phaseLabels and

Status ar ls. The valid
settings are listed in the following table:

SetSinglePhaseProp or SetTwoPhaseProp methods. Even if a Phase is pre
necessarily imply that any Physical Properties are actually set unless th
Cape_AtEquilibrium or Cape_Estimates (see below). Note that calling the SetPrese
method of the ICapeThermoMaterial interface will cause any phases not specified

 list to not present, ephaseLabels
PhaseProp or SetTwoPhaseProp call.

resent, UNDEFINED sho
phaseStatus arguments.

The phase gument contains as many entries as there are Phase labe

Identifier Meaning
Cape_UnknownPhaseStatus This is the normal setting when a Phase is specified as

for an Equilibrium Calculation.
 being available

Cape_AtEquilibrium The Phase has been set as present as a result of an Equ
Calculation.

ilibrium

Cape_Estimates Estimates of the equilibrium state have been set in the Material Object.

All the Phases with a status of Cape_AtEquilibrium have values of temperature, pressure,
composition and Phase fraction set that correspond to an equilibrium state, i.e. equal
temperature, pressure and fugacities of each Compound. Phases with a Cape_Estimates
status have values of temperature, pressure, composition and Phase fraction set in the
Material Object. These values are available for use by an Equilibrium Calculator component
to initialise an Equilibrium Calculation. The stored values are available but there is no
guarantee that they will be used.

43

GetPresentPhases is intended to be used in several contexts.

• A Property Package, Property Calculator or other PMC may use this m
whether a p

ethod to check
hase is present in the Material Object prior to requesting and/or calculating

lator component will use this method to obtain the list of phases to
um specification

es present as the
lation (see below for more details).

phases present at

ed to work
provide a means
 Calculator (or

oth interface). The
fol

etPresentPhases
the Equilibrium

Calculator may be
plication, it may

, if the complete
labels (with the obvious interpretation):

 model a liquid
queousLiquid.

 method of the
 of Phase labels corre-

ally co-exist at
sidered because
example, if the

amount of water is sufficiently small the aqueousLiquid Phase in the above example
id Phase.

to indicate the
 calculation (and sets the phase properties).

resent following
the calculation and it can then use the GetSinglePhaseProp or GetTPFraction
methods to get the Phase properties.

Exceptions
ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

some properties.

• An Equilibrium Calcu
consider in an equilibrium calculation or when checking an equilibri
(see below for more details).

• The method will be used by the PME or PMC to obtain the list of phas
result of an equilibrium calcu

• A Unit Operation (or other PMC) will use this method to get the list of
an inlet port or during its calculations.

In the context of Equilibrium Calculations the GetPresentPhases method is intend
in conjunction with the SetPresentPhases method. Together these methods
of communication between a PME (or another client) and an Equilibrium

er component that implements the ICapeThermoEquilibriumRoutine
lowing sequence of operations is envisaged.

1. Prior to requesting an Equilibrium Calculation, a PME will use the S
method to define a list of Phases that may be considered in
Calculation. Typically, this is necessary because an Equilibrium
capable of handling a large number of Phases but for a particular ap
be known that only certain Phases will be involved. For example
Phase list contains Phases with the following
vapour, hydrocarbonLiquid and aqueousLiquid and it is required to
decanter, the present Phases might be set to hydrocarbonLiquid and a

2. The GetPresentPhases method is then used by the CalcEquilibrium
ICapeThermoEquilibriumRoutine interface to obtain the list
sponding to the Phases that may be present at equilibrium.

3. The Equilibrium Calculation determines which Phases actu
equilibrium. This list of Phases may be a sub-set of the Phases con
some Phases may not be present at the prevailing conditions. For

may not exist because all the water dissolves in the hydrocarbonLiqu

4. The CalcEquilibrium method uses the SetPresentPhases method
Phases present following the equilibrium

5. The PME uses the GetPresentPhases method to find out the Phases p

44

GetSinglePhaseProp
Name

od Name GetSinglePhaseProp

-

tion

ieves single non-constan roperty values for a mixture.

s

Interface ICapeThermoMaterial

Meth

Returns

Descrip

Retr -phase t Physical P

Argument

Name Type Description
[in] property eString Property for which values

 the single-phase
es. The standard

are listed in sections 7.5.5 and 7.6.

Cap The identifier of the Physical
are requested. This must be one of
Physical Properties or derivativ
identifiers

[in] phaseLabe eString he Physical
l must be one of

resentPhases
 this interface.

l Cap Phase label of the Phase for which t
Property is required. The Phase labe
the identifiers returned by the GetP
method of

[in] basis CapeString e: “Mass” for
s or “Mole” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

 Basis of the results. Valid settings ar
Physical Properties per unit mas

[ACTUALLYout]
results

CapeVariant Results vector (CapeArrayDouble) co
Property value(s) in SI units or CapeI
notes).

ntaining Physical
nterface (see

Notes

The results argument returned by GetSinglePhaseProp is either a CapeA
contains one or more numerical values, e.g. temperature, or a CapeInterf
used to retrieve single-phase Physical Pr

rrayDouble that
ace that may be

operties described by a more complex data

al interface will

numerical value,
the return type for numerical values is CapeArrayDouble and in such a case the method must
return an array even if it contains only a single element.

A Phase is ‘present’ in a Material if its identifier is returned by the GetPresentPhases
method. An exception is raised by the GetSinglePhaseProp method if the Phase specified is
not present. Even if a Phase is present, this does not necessarily mean that any Physical
Properties are available.

The Physical Property values returned by GetSinglePhaseProp refer to a single Phase. These
values may be set by the SetSinglePhaseProp method, which may be called directly, or by

structure, e.g. distributed properties.

It is required that a component that implements the ICapeThermoMateri
always support the following properties: temperature, pressure, fraction, phaseFraction,
flow, totalFlow.

Although the result of some calls to GetSinglePhaseProp may be a single

45

other methods such as the CalcSinglePhaseProp metho
ICapeThermoPropertyRoutine interface or the CalcEquilibrium m
ICapeThermoEquilibriumRoutine interface. Note: Physical Properties that d

d of the
ethod of the
epend on more

 by the

perty values on
hey are stored to

s be possible. For example, if the
lar weight is not known for one or more Compounds, it is not possible to convert

ted even if this
andards. That is

om the Material
ception is raised when a

e value has been

ent – To be used when an invalid argument value was passed: for
Label.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialisation has
not been performed, or has failed. This exception is returned if the Phase specified does not
exist.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

than one Phase, for example surface tension or K-values, are returned
GetTwoPhaseProp method.

It is expected that this method will normally be able to provide Physical Pro
any basis, i.e. it should be able to convert values from the basis on which t
the basis requested. This operation will not alway
molecu
from mass fractions or mass flows to mole fractions or molar flows.
Exceptions

ECapeNoImpl – The operation GetSinglePhaseProp is “not” implemen
method can be called for reasons of compatibility with the CAPE-OPEN st
to say that the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable – The property required is not available fr
Object possibly for the Phase label or basis requested. This ex
property value has not been set following a call to the CreateMaterial or th
erased by a call to the ClearAllProps methods.

ECapeInvalidArgum
example UNDEFINED for property, or an unrecognised identifier for phase

46

GetTPFraction
Name ThermoMaterial

od Name GetTPFraction

 -

tion

ieves temperature, pressure and composition for a Phase.

Interface ICape

Meth

Returns

Descrip

Retr

Arguments

Name Type Description
[in] phaseLabe Strin label of the Phase for which the property is

 Phase label must be one of the identifiers
rned by the GetPresentPhases method of this

interface.

l Cape g Phase
required. The
retu

[ACTUALLY
tempera

o
ture

b K) ut] CapeDou le Temperature (in

[ACTUALLYout] CapeDouble Pressure (in Pa)
pressure
[ACTUALLYout]
composition

CapeArrayDouble Composition (mole fractions)

Notes

This method is provided to make it easier for developers to make efficient u
OPEN interfaces. It returns the most fre

se of the CAPE-
quently requested information from a Material

in a single call.

eturned as mole

Fraction method

ction is “not” implemented even if this method can
at is to say that

operties is not available from the Material
llowing a call to

teMaterial or the value has been erased by a call to the ClearAllProps methods.

ECapeInvalidArgument – To be used when an invalid argument value was passed: for
example an unrecognized identifier for phaseLabel.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialization has
not been performed, or has failed. This exception is returned if the phase specified does not
exist.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

Object

There is no choice of basis in this method. The composition is always r
fractions.

To get the equivalent information for the overall mixture the GetOverallTP
of the ICapeThermoMaterial interface should be used.
Exceptions

ECapeNoImpl – The operation GetTPFra
be called for reasons of compatibility with the CAPE-OPEN standards. Th
the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable – One of the pr
Object. This exception is raised when a property value has not been set fo
the Crea

47

GetTwoPhaseProp
Name ermoMaterial

od Name GetTwoPhaseProp

-

tion

ieves two-p on-constant P perty values for a mixture.

s

Interface ICapeTh

Meth

Returns

Descrip

Retr hase n hysical Pro

Argument

Name Type Description
[in]property ng for which values are

two-phase Physical
vatives listed in

s 7.5.6 and 7.6.

CapeStri The identifier of the property
requested. This must be one of the
Properties or Physical Property deri
section

[in]phaseLabel eArray r which the
ls must be two of

haseList method of
al Object.

s Cap String List of Phase labels of the Phases fo
property is required. The Phase labe
the identifiers returned by the GetP
the Materi

[in]basis CapeString e: “Mass” for
ss or “Mole” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See

 Basis of the results. Valid settings ar
Physical Properties per unit ma

section 7.5.5 for details.

[ACTUALLYout]
results

CapeVariant Results vector (CapeArrayDouble) c
value(s) in SI units or CapeInterface

ontaining property
(see notes).

Notes

The results argument returned by GetTwoPhaseProp is either a CapeArrayDouble that
contains one or more numerical values, e.g. kvalues, or a CapeInterface tha
retrieve 2-phase Physical Properties described by a more complex dat
distributed Physical Propertie

t may be used to
a structure, e.g.

s.

erical value, the
he method must

etPresentPhases
PhaseProp method if any of the Phases

specified is not present. Even if all Phases are present, this does not necessarily mean that
any Physical Properties are available.

The Physical Property values returned by GetTwoPhaseProp depend on two Phases, for
example surface tension or K-values. These values may be set by the SetTwoPhaseProp
method that may be called directly, or by other methods such as the CalcTwoPhaseProp
method of the ICapeThermoPropertyRoutine interface, or the CalcEquilibrium method of the
ICapeThermoEquilibriumRoutine interface. Note: Physical Properties that depend on a
single Phase are returned by the GetSinglePhaseProp method.

Although the result of some calls to GetTwoPhaseProp may be a single num
return type for numerical values is CapeArrayDouble and in such a case t
return an array even if it contains only a single element.

A Phase is ‘present’ in a Material if its identifier is returned by the G
method. An exception is raised by the GetTwo

48

It is expected that this method will normally be able to provide Physical Pr
any basis, i.e. it should be able to convert values from the basis on which th
the basis requested. This operation will not always be possible. For

operty values on
ey are stored to

example, if the

returned for both
 values returned
ty. For example,
 derivative will
 N composition

ive values for the second Phase. For K-value derivative there will be N2 derivative
 order defined in

s “not” implemented even if this method can be called for
hat the operation

rrent implementation. This could be the case if two-
d so there is no

rom the Material

 is raised when a
e SetTwoPhaseProp method has not been performed, or has failed, or when one or

more of the Phases referenced does not exist.

ECapeInvalidArgument – To be used when an invalid argument value was passed: for
example, UNDEFINED for property, or an unrecognised identifier in phaseLabels.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

molecular weight is not known for one or more Compounds, it is not possible to convert
between a mass basis and a molar basis.

If a composition derivative is requested this means that the derivatives are
Phases in the order in which the Phase labels are specified. The number of
for a composition derivative will depend on the dimensionality of the proper
if there are N Compounds then the results vector for the surface tension
contain N composition derivative values for the first Phase, followed by
derivat
values for the first phase followed by N2 values for the second phase in the
 7.6.2.
Exceptions

ECapeNoImpl – The operation i
reasons of compatibility with the CAPE-OPEN standards. That is to say t
exists, but it is not supported by the cu
phase non-constant Physical Properties are not required by the PME an
particular need to implement this method.

ECapeThrmPropertyNotAvailable – the property required is not available f
Object possibly for the Phases or basis requested.

ECapeFailedInitialisation - The pre-requisites are not valid. This exception
call to th

49

SetOverallProp
Name hermoMaterial

od Name SetOverallProp

-

tion

 non-constant property values f ll mixture.

ts

Interface ICapeT

Meth

Returns

Descrip

Sets or the overa

Argumen

Name Type Description
[in] property CapeString The identifier of the property for which values are set.

hase properties or
e overall mixture.
n sections 7.5.5 and

This must be one of the single-p
derivatives that can be stored for th
The standard identifiers are listed i
 7.6.

[in] basis g ults. Valid settings are: “Mass” for
le” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See

CapeStrin Basis of the res
Physical Properties per unit mass or “Mo

section 7.5.5 for details.

[in] values CapeArrayDouble Values to set for the property.

Notes

The property values set by SetOverallProp refer to the overall mixture. T
retrieved by calling the GetOverallP

hese values are
rop method. Overall mixture properties are not

ted by components that implement the ICapeThermoMaterial interface. The property
 of a component

alue, the type of
d with values as

tions

an be called for

n. This method may not be

ECapeInvalidArgument - To be used when an invalid argument value was passed, that is a
value that does not belong to the valid list described above, for example UNDEFINED for
property.

ECapeOutOfBounds – one or more of the entries in the values argument is outside of the
range of values accepted by the Material Object.

ECapeUnknown – The error to be raised when other error(s), specified for the
SetSinglePhaseProp operation, are not suitable.

calcula
values are only used as input specifications for the CalcEquilibrium method
that implements the ICapeThermoEquilibriumRoutine interface.

Although some properties set by calls to SetOverallProp will have a single v
argument values is CapeArrayDouble and the method must always be calle
an array even if it contains only a single element.
Excep

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementatio
required if the PME does not deal with any single-phase property.

50

SetPresentPhases
Name ermoMaterial

od Name tPresentPhases

CapeError

tion

ecify the list of Phases that are currently present.

Interface ICapeTh

Meth Se

Returns

Descrip

Allows the PME or the Property Package to sp

Arguments

Name Type Description
[in] phaseLabels CapeArray

Material Object must be a
subset of the labels returned by the GetPhaseList
method of the ICapeThermoPhases interface.

String The list of Phase labels for the Phases present.

The Phase labels in the

[in] phaseStatus CapeArrayEnumer
ation

Array of
the Phase labels. See des

Phase status flags corresponding to each of
cription below.

ium Calculation (using the CalcEquilibrium method of a
set

outine interface
 an Equilibrium

bject that is an
brium in steady-

ulations.

 by the action of
SetPresentPhases is called are removed from

the Material Object. This means that any Physical Property values that may have been stored
on the removed Phases are no longer available (i.e. a call to GetSinglePhaseProp or
GetTwoPhaseProp including this Phase will return an exception). A call to the
GetPresentPhases method of the Material Object will return the same list as specified by
SetPresentPhases.

The phaseStatus argument must contain as many entries as there are Phase labels. The valid
settings are listed in the following table:

Notes

SetPresentPhases is intended to be used in the following ways:

• To restrict an Equilibr
component that implements the ICapeThermoEquilibriumRoutine interface) to a sub
of the Phases supported by the Property Package component;

• When the component that implements the ICapeThermoEquilibriumR
needs to specify which Phases are present in a Material Object after
Calculation has been performed.

• In the context of dynamic simulations to specify the state of a Material O
output of a unit operation. This is the equivalent of calculating equili
state sim

If a Phase in the list is already present, its Physical Properties are unchanged
this method. Any Phases not in the list when

51

Identifier Meaning
Cape_UnknownPhase etting when a Phase is specified as being available Status This is the normal s

for an Equilibrium Calculation.

Cape_AtEquilibrium quilibrium The Phase has been set as present as a result of an E
Calculation.

Cape_Estimates Estimates of the equilibrium state have been set in the Material Object.

All the Phases with a status of Cape_AtEquilibrium must have properties th
an equilibrium state, i.e. equal temperature, pressure and fugacities of each
does not imply that the fugacities are set as a result of the Equilibrium C
Cape_AtEquilibrium status should be set by the CalcEquilibrium method
that implements the ICapeThermoEquilibriumRoutine interface followi

at correspond to
Compound (this
alculation). The

 of a component
ng a successful

rium Phase
the status of the
hase should not

 with an Estimates status must have values of temperature, pressure, composition and
 for use by an
ion. The stored

t they will be used.

ethod can be called for
hat the operation

ut it is not supported by the current implementation.

ECapeInvalidArgument - To be used when an invalid argument value was passed, that is a
value that does not belong to the valid list described above, for example if phaseLabels
contains UNDEFINED or phaseStatus contains a value that is not in the above table.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

Equilibrium Calculation. If the temperature, pressure or composition of an equilib
is changed, the Material Object implementation is responsible for resetting
Phase to Cape_UnknownPhaseStatus. Other property values stored for that P
be affected.

Phases
phase fraction set in the Material Object. These values are available
Equilibrium Calculator component to initialise an Equilibrium Calculat
values are available but there is no guarantee tha
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this m
reasons of compatibility with the CAPE-OPEN standards. That is to say t
exists, b

52

SetSinglePhaseProp
Name rmoMaterial

od Name SetSinglePhaseProp

-

tion

 single-phas -constant pro for a mixture.

s

Interface ICapeThe

Meth

Returns

Descrip

Sets e non perty values

Argument

Name Type Description
[in] property eString hich values are set.

e properties or
s are listed in

sections 7.5.5 and 7.6.

Cap The identifier of the property for w
This must be one of the single-phas
derivatives. The standard identifier

[in] phaseLabe eString he property is set.
strings returned by
peThermoPhases

l Cap Phase label of the Phase for which t
The phase label must be one of the
the GetPhaseList method of the ICa
interface.

[in] basis String are: “Mass” for
perties per unit mass or “Mole” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See

Cape Basis of the results. Valid settings
Physical Pro

section 7.5.5 for details.

[in] values CapeVariant Values to set for the property (CapeA
CapeInterface (see notes).

rrayDouble) or

Notes

The values argument of SetSinglePhaseProp is either a CapeArrayDouble that contains one
or more numerical values to be set for a property, e.g. temperature, or a C
may be used to set single-phase properties described by a more complex da
distributed

apeInterface that
ta structure, e.g.

 properties.

al interface will
, phaseFraction,

ingle numerical
uble and in such

a case the method must be called with values containing an array even if it contains only a
single element.

The property values set by SetSinglePhaseProp refer to a single Phase. Properties that de-
pend on more than one Phase, for example surface tension or K-values, are set by the
SetTwoPhaseProp method of the ICapeThermoMaterial Interface.

To set a property using SetSinglePhaseProp, a phaseLabel identifier should be passed that is
supported by the Property Package or Material Object, i.e. one that appears in the list
returned by the GetPhaseList method of the ICapeThermoPhases interface. Setting such a

It is required that a component that implements the ICapeThermoMateri
always support the following properties: temperature, pressure, fraction
flow, totalFlow.

Although some properties set by calls to SetSinglePhaseProp will have a s
value, the type of the values argument for numerical values is CapeArrayDo

53

property should cause the phase to be present on the Material Object, as if
in a call to SetPresentPhases with status Cape_UnknownPhaseStatus.

it were specified
 The SetPresentPhases

 of this interface does not need to be called before calling SetSinglePhaseProp.

an be called for
ards. That is to say that the operation

od may not be

passed, that is a
FINED for

of the entries in the values argument is outside of the
range of values accepted by the Material Object.

ECapeUnknown – The error to be raised when other error(s), specified for the
SetSinglePhaseProp operation, are not suitable.

method
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-OPEN stand
exists but it is not supported by the current implementation. This meth
required if the PME does not deal with any single-phase properties.

ECapeInvalidArgument - To be used when an invalid argument value was
value that does not belong to the valid list described above, for example UNDE
property or phaseLabel is not in the list returned by GetPhaseList.

ECapeOutOfBounds – one or more

54

SetTwoPhaseProp
Name ermoMaterial

od Name SetTwoPhaseProp

-

tion

 two-phase nstant prope r a mixture.

s

Interface ICapeTh

Meth

Returns

Descrip

Sets non-co rty values fo

Argument

Name Type Description
[in] property ing in the Material

se properties or
ded in sections 7.5.6 and 7.6.

CapeStr The property for which values are set
Object. This must be one of the two-pha
derivatives inclu

[in] phaseLabe eArrayS hich the property is set.
 identifiers returned

ls Cap tring Phase labels of the Phases for w
The Phase labels must be two of the
by the GetPhaseList method of the
ICapeThermoPhases interface.

[in] basis String re: “Mass” for
perties per unit mass or “Mole” for molar

properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See

Cape Basis of the results. Valid settings a
Physical Pro

section 7.5.5 for details.

[in] values CapeVariant Value(s) to set for the property (Cape
CapeInterface (see notes).

ArrayDouble) or

Notes

The values argument of SetTwoPhaseProp is either a CapeArrayDouble that contains one or
face that may be
, e.g. distributed

single numerical
uble and in such
 array even if it

ses, for example
ingle Phase are set by the

SetSinglePhaseProp method.

If a Physical Property with composition derivative is specified, the derivative values will be
set for both Phases in the order in which the Phase labels are specified. The number of
values returned for a composition derivative will depend on the property. For example, if
there are N Compounds then the values vector for the surface tension derivative will contain
N composition derivative values for the first Phase, followed by N composition derivative
values for the second Phase. For K-values there will be N2 derivative values for the first
phase followed by N2 values for the second phase in the order defined in 7.6.2.

more numerical values to be set for a property, e.g. kvalues, or a CapeInter
used to set two-phase properties described by a more complex data structure
properties.

Although some properties set by calls to SetTwoPhaseProp will have a
value, the type of the values argument for numerical values is CapeArrayDo
a case the method must be called with the values argument containing an
contains only a single element.

The Physical Property values set by SetTwoPhaseProp depend on two Pha
surface tension or K-values. Properties that depend on a s

55

To set a property using SetTwoPhaseProp, phaseLabels identifiers should b
supported by the Property Package or Material Object, i.e. one that appears in the l
GetPhaseList method of the ICapeThermoPhases interface. Setting such a propert
phases to be present on the Material Object, as if it were present in a call to SetPresentPhas

e passed that are
ist returned by the
y should cause the

es with
status Cape_UnknownPhaseStatus. The SetPresentPhases method of this interface does not need to

d before calling SetTwoPhaseProp.

hat the operation
 may not be re-

alue was passed, that is a
UNDEFINED is

 argument con-
seList.

ECapeOutOfBounds – One or more of the entries in the values argument is outside of the
range of values accepted by the Material Object, for example, negative K-values.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

be calle

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say t
exists, but it is not supported by the current implementation. This method
quired if the PME does not deal with any two-phase properties.

ECapeInvalidArgument – To be used when an invalid argument v
value that does not belong to the valid lists described above, for example if
used for identifying the property, or the calculation type, or the phaseLabels
tains only one item or the phaseLabels are not in the list returned by GetPha

56

6.2 ICapeThermoMaterialContext
This interface should be implemented by all Thermodynamic and Phy
components that need an ICapeThermoMaterial interfac

sical Properties
e in order to set and get a Material’s

lues. The following methods are described in this section:

 SetMaterial
 UnsetMaterial

property va

57

SetMaterial
Name peThermoMaterialContext

od Name SetMaterial

-

the client of a component that implements this interface to pass an ICapeThermoMaterial
rface to the nent, so th ess the properties of a Material.

Arguments

Interface ICa

Meth

Returns

Description

Allows
inte compo at it can acc

Name Type Description
[in] material CapeInterface The Material interface.

Notes

The SetMaterial method allows a Thermodynamic and Physical Properties
as a Property Package, to be given the ICapeThermoMaterial interface of

component, such
a Material Object.

terial for which
nent can access
ThermoMaterial
 ICapeThermo-
, respectively.

e SetMaterial method will be used to check that the Material Interface
k that there are

ose Compounds can be identified by the
initialisation that
omponent might
ired information

e ICapeThermo-
 compounds for
nsetMaterial().

Package is in the
s encountered is

Example: the Material Object performs a reference state correction, as outlined in section 5.6
“Physical Property Calculator behaviour”. The PME requires a PH equilibrium calculation.
The PME has a Material Object for this purpose, that is configured with the overall
temperature, pressure and composition. The PME sets the Material Object on the Property
Package and calls CalcEquilibrium with the request for enthalpy calculation. The Property
Package requests overall enthalpy from the Material Object. The Material Object determines
that it has not yet calculated the compound reference enthalpies (see section 5.6), and creates
a duplicate of itself to ask the Property Package to calculate the pure compound reference

This interface gives the component access to the description of the Ma
Property Calculations or Equilibrium Calculations are required. The compo
property values directly using this interface. A client can also use the ICape
interface to query a Material Object for its ICapeThermoCompounds and
Phases interfaces, which provide access to Compound and Phase information

It is envisaged that th
supplied is valid and useable. For example, a Property Package may chec
some Compounds in a Material Object and that th
Property Package. In addition a Property Package may perform any
depends on the configuration of a Material Object. A Property Calculator c
typically use this method to query the Material Object for any requ
concerning the Compounds.

Calling the UnsetMaterial method of the ICapeThermoMaterialContext interface has the
effect of removing the interface set by the SetMaterial method.

s been received, the object implementing th
MaterialContext interface can assume that the number, name and order of
that Material Object will remain fixed until the next call to SetMaterial() or U

A PME must not call SetMaterial on a Property Package while the Property
process of performing a calculation. A scenario in which this behavior wa
described below for clarification.

After a call to SetMaterial() ha

58

rty Package, and
er of the Equilibrium calculation will fail because it references the wrong

es for entropies
ckage is calling the

l Object to provide enthalpy or entropy values. The PME should calculate such
 calculation.

if this method can be called for

ECapeFailedInitialisation – The pre-requisites for the property calculation are not valid. For

that implements the ICapeThermoMaterial

The Compounds cannot be identified by the client (e.g. a Property Package). This
case is a possibility if the way a Material Object has been configured by a PME is
not consistent with the Property Package being used.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are
not suitable.

Material Object.

This example illustrates that if the Material Object requires reference valu
and enthalpies, it cannot postpone their calculations until the Property Pa
Materia
reference value before it asks the Property Package to perform an equilibrium
Exceptions

ECapeNoImpl – The operation is “not” implemented even
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeInvalidArgument – The input argument is not a valid CapeInterface.

example:

• There are no Compounds in the object
interface.

•

59

UnsetMaterial
ThermoMaterialContext

o setMaterial

s CapeError

scription

y a call to the
eans that any

ce, for example
riumRoutine

es, should behave in the same way as if the SetMaterial method had never been

nd no exception

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are
not suitable

.

Interface Name ICape

Meth d Name Un

Return

De

Removes any previously set Material interface.

Notes

The UnsetMaterial method removes any Material interface previously set b
SetMaterial method of the ICapeThermoMaterialContext interface. This m
methods of other interfaces that depend on having a valid Material Interfa
methods of the ICapeThermoPropertyRoutine or ICapeThermoEquilib
interfac
called.

If UnsetMaterial is called before a call to SetMaterial it has no effect a
should be raised.
Exceptions

60

6.3 ICapeThermoCompounds
Any component or object that maintains a list of Compounds must
ICapeThermoCompounds interface. Within the scope of this specification th
must be implemented by Property Package components and Material
implemented by a Property Package, this interface is used to access the lis
that the Property Package can deal wi

 implement the
is means that it
Objects. When

t of Compounds
th, as well as the Compounds Physical Properties.

e purpose but is

d of the ICapeThermoMaterialContext interface
ethods described below. A Property Package may

upports or it may rely on the
e data through the Material Object.

ribed in this section:
stant

t

 GetNumCompounds
 GetPDependentProperty
 GetPDependentPropList
 GetTDependentProperty
 GetTDependentPropList

When implemented by a Material Object, the interface is used for the sam
applied to the Compounds present in the Material.

It is recommended for the SetMaterial metho
to be called prior to calling any of the m

 for all the Compounds that it scontain Physical Property values
 thesPME to provide

The following methods are desc
 GetCompoundCon
 GetCompoundLis
 GetConstPropList

61

GetCompoundConstant
Name oCompounds

od Name oundConstant

CapeArrayVariant

tion

rns the valu constant Phys ies for the specified Compounds.

s

Interface ICapeTherm

Meth GetComp

Returns

Descrip

Retu es of ical Propert

Argument

Name Type Description
[in] props ayS rs. Valid

perties are listed in
CapeArr tring The list of Physical Property identifie

identifiers for constant Physical Pro
section 7.5.2.

[in] compIds yS which constants are to
be retrieved. Set compIds to UNDEFINED to denote
all Compounds in the component that implements the
ICapeThermoCompounds interface.

CapeArra tring List of Compound identifiers for

[out, retval]
propvals

CapeArrayVariant Values of constants for the specified Compounds.

Notes

The GetConstPropList method can be used in order to check which constant Physical

pounds is C, the
lues for the first
C values of con-

s returned
n 7.5.2.

 7.5.2.

operty values for
pounds interface

e compound order the same as that returned by the GetCompoundList method. For

operty Package

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECapeThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.
Exceptions

ECapeNoImpl – The operation GetCompoundConstant is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is

Properties are available.

If the number of requested Physical Properties is P and the number of Com
propvals array will contain C*P variants. The first C variants will be the va
requested Physical Property (one variant for each Compound) followed by
stants for the second Physical Property, and so on. The actual type of value
(Double, String, etc.) depends on the Physical Property as specified in sectio

Physical Properties are returned in a fixed set of units as specified in section

If the compIds argument is set to UNDEFINED this is a request to return pr
all compounds in the component that implements the ICapeThermoCom
with th
example, if the interface is implemented by a Property Package component the property
request with compIds set to UNDEFINED means all compounds in the Pr
rather than all compounds in the Material Object passed to the Property package.

62

to say that the operation exists, but it is not supported by the current implementation. This

 Properties is not

y the component
y element of the

 7.5.2 is not
r may be valid. If

validArgument – To be used when an invalid argument value is passed, for exam-
gument.

he operation, are

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetCompoundConstant method. The error would not
be raised when the GetCompoundConstant method is implemented by a Material Object.

exception should be raised if no compounds or no properties are supported.

ECapeThrmPropertyNotAvailable – At least one item in the list of Physical
available for a particular Compound. This exception is meant to be treated as a warning
rather than as an error.

ECapeLimitedImpl – One or more Physical Properties are not supported b
that implements this interface. This exception should also be raised if an
props argument is not recognised since the list of Physical Properties in section
intended to be exhaustive and an unrecognised Physical Property identifie
no Physical Properties at all are supported ECapeNoImpl should be raised (see above).

ECapeIn
ple, an unrecognised Compound identifier or UNDEFINED for the props ar

ECapeUnknown – The error to be raised when other error(s), specified for t
not suitable.

63

GetCompoundList
Name ermoCompounds

od Name GetCompoundList

-

 the list of all Compounds. This includes the Compound identifiers recognised and extra
rmation that e used to furt the Compounds.

ents

Interface ICapeTh

Meth

Returns

Description

Returns
info can b her identify

Argum

Name Type Description
[ACTUALLYout] CapeArrayString List of Compound identifiers
compIds

[ACTUALLY
formul

o
ae

yS ulae ut] CapeArra tring List of Compound form

[ACTUALLY
nam

o
es

yS pound names. ut] CapeArra tring List of Com

[ACTUALLYout
boilTemps

D] CapeArray ouble List of boiling point temperatures.

[ACTUALLYout] CapeArrayDouble List of molecular weights.
molwts

[ACTUALLYout]
casnos

CapeArrayString List of Chemical Abstract Service (C
numbers.

AS) Registry

Notes

If any item cannot be returned then the value should be set to UNDEFINE
formation can also be extracted using the GetCompoundConstant method. T
between GetCompoundList arguments and C

D. The same in-
he equivalences

ompound constant Physical Properties, as

l Object, the list

tain a limited set
Compounds that

component that implements the ICapeThermoCompounds interface. There is no restriction
on the length of the strings returned in compIds. However, it should be recognised that a
PME may restrict the length of Compound identifiers internally. In such a case the PME’s
CAPE-OPEN socket must maintain a method of mapping the, potentially long, identifiers
used by a CAPE-OPEN Property package component to the identifiers used within the PME.

In order to identify the Compounds of a Property Package, the PME, or other client, will use
the casnos argument rather than the compIds. This is because different PMEs and different
Property Packages may give different names to the same Compounds and the casnos is

specified in section 7.5.2, is given in the table below.

When the ICapeThermoCompounds interface is implemented by a Materia
of Compounds returned is fixed when the Material Object is configured.

For a Property Package component, the Property Package will normally con
of Compounds selected for a particular application, rather than all possible
could be available to a proprietary Properties System.

The compIds returned by the GetCompoundList method must be unique within the

64

(almost always) unique. If the casnos is not available (e.g. for petroleum f
unique, the other pieces of information returned by GetCompoundList
distinguish the Compounds. It should be noted, however, that for comm
Property Package a client must use the Compound identifiers returned
argument. It is the resp

ractions), or not
can be used to

unication with a
in the compIds

onsibility of the client to maintain appropriate data structures that
allow it to reconcile the different Compound identifiers used by different Property Packages

 property system. and any native

GetCompoundList
arguments Compound constant property
compIds s assigned by the

dList method.

ing must contain a unique Compound identifier such as
e". It must be used in all the arguments which are named

ompIds” in the methods of the ICapeThermoCompounds and
rmoMaterial interfaces.

No equivalence. compIds is an artefact, which i
component that implements the GetCompoun

This str
"benzen
“c
ICapeThe

Formulae alFormula chemic

names e iupacNam

boilTemps normalBoilingPoint

molwts molecularWeight

casnos casRegistryNumber

Exceptions

ECapeNoImpl –The operation GetCompoundList is “not” implemented eve
can be called for reasons of compatibility with the CAPE-OPEN standard

n if this method
s. That is to say

that the operation exists, but it is not supported by the current implementation.

ECapeUnknown –The error to be raised when other error(s), specified for the
GetCompoundList operation, are not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetCompoundList method. The error would not be
raised when the GetCompoundList method is implemented by a Material Object.

65

GetConstPropList
Name ermoCompounds

od Name tPropList

CapeArrayString

tion

rns the list ported constant Ph rties.

Interface ICapeTh

Meth GetCons

Returns

Descrip

Retu of sup ysical Prope

Arguments

Name Type Description
[out, retval] props CapeArrayString List of identifiers for all supported constant

Physical Properties. The standard constant
n section 7.5.2. property identifiers are listed i

Notes

GetConstPropList returns identifiers for all the constant Physical Proper
retrieved by the GetCompoundConstant method. If no properties
UNDEFINED should be returned. The CAPE-OPEN standards do not defin
of Phys

ties that can be
are supported,

e a minimum list
ical Properties to be made available by a software component that implements the
hermoCompounds interface.

t
n section 7.5.2.

by most of the clients of this

n if this method
N standards. That is to say

that the operation exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the Get-
ConstPropList operation, are not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetConstPropList method. The error would not be
raised when the GetConstPropList method is implemented by a Material Object.

ICapeT

A component that implements the ICapeThermoCompounds interface may return constan
Physical Property identifiers which do not belong to the list defined i
However, these proprietary identifiers may not be understood
component.
Exceptions

ECapeNoImpl –The operation GetConstPropList is “not” implemented eve
can be called for reasons of compatibility with the CAPE-OPE

66

GetNumCompounds
Name moCompounds

od Name tNumCompounds

CapeLong

tion

rns the num f Compounds supp

Interface ICapeTher

Meth Ge

Returns

Descrip

Retu ber o orted.

Arguments

Name Type Description
[out, retval] num CapeLong Number of Compounds supported.

Notes

The number of Compounds returned by this method must be equal to the number of
Compound identifiers that are returned by the GetCompoundList method of
must be zero or a positive number.

 this interface. It

can be called for
hat the operation

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetNumCompounds method. The error would not be
raised when the GetNumCompounds method is implemented by a Material Object.

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method
reasons of compatibility with the CAPE-OPEN standards. That is to say t
exists, but it is not supported by the current implementation.

67

GetPDependentProperty
Name Compounds

od Name GetPDependentProperty

-

tion

rns the valu ressure-depe ical Properties for the specified pure Compounds.

s

Interface ICapeThermo

Meth

Returns

Descrip

Retu es of p ndent Phys

Argument

Name Type Description
[in] props ArrayS entifiers. Valid

identifiers for pressure-dependent Physical Properties
Cape tring The list of Physical Property id

are listed in section 7.5.4

[in] pressure CapeDoubl sical Properties are e Pressure (in Pa) at which Phy
evaluated

[in] compIds yS for which Physical
Properties are to be retrieved. Set compIds to
UNDEFINED to denote all Compounds in the
component that implements the
ICapeThermoCompounds interface.

CapeArra tring List of Compound identifiers

[ACTUALLYout]
propvals

CapeArrayDouble Property values for the Compounds specified.

Notes

The GetPDependentPropList method can be used in order to check
Properties are available.

If the number of requested Physical Properties is P and the number Comp
propvals array will contain C*P values. The first C will be the values for th
Physical Property followed by C values for the second Physical Property, an

which Physical

ounds is C, the
e first requested
d so on.

 7.5.4.

operty values for
component that implements the ICapeThermoCompounds interface

with the compound order the same as that returned by the GetCompoundList method. For
example, if the interface is implemented by a Property Package component the property
request with compIds set to UNDEFINED means all compounds in the Property Package
rather than all compounds in the Material Object passed to the Property package.

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECapeThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.

Physical Properties are returned in a fixed set of units as specified in section

If the compIds argument is set to UNDEFINED this is a request to return pr
all compounds in the

68

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-OPEN standards. That is to say t

an be called for
hat the operation

y the component
d (rather than

 an unrecognised
ll are supported,

ment – To be used when an invalid argument value is passed, for example

nds – The value of the pressure is outside of the range of values accepted

 not available for

r the operation, are
not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetPDependentProperty method. The error would not
be raised when the GetPDependentProperty method is implemented by a Material Object.

exists, but it is not supported by the current implementation. This exception should be raised
if no Compounds or no Physical Properties are supported.

ECapeLimitedImpl – One or more Physical Properties are not supported b
that implements this interface. This exception should also be raise
ECapeInvalidArgument) if any element of the props argument is not recognised since the list
of Physical Properties in section 7.5.4 is not intended to be exhaustive and
Physical Property identifier may be valid. If no Physical Properties at a
ECapeNoImpl should be raised (see above).

ECapeInvalidArgu
UNDEFINED for argument props.

ECapeOutOfBou
by the Property Package.

ECapeThrmPropertyNotAvailable – at least one item in the properties list is
a particular compound.

ECapeUnknown – The error to be raised when other error(s), specified fo

69

GetPDependentPropList
Name Compounds

od Name endentPropList

CapeArrayString

tion

rns the list ported pressure-dependent properties.

Interface ICapeThermo

Meth GetPDep

Returns

Descrip

Retu of sup

Arguments

Name Type Description
[out, retval] props CapeArrayString The list of Physical Property identifiers for all

supported pressure-dependent properties. The standard
identifiers are listed in section 7.5.4

Notes

GetPDependentPropList returns identifiers for all the pressure-dependent pr
be retrieved by the GetPDependentProperty method. If no properties
UNDEFINED should be returned. The CAPE-OPEN standar

operties that can
 are supported

ds do not define a minimum list
sical Properties to be made available by a software component that implements the

return identifiers
section 7.5.4. However, these proprietary

can be called for
y that the operation

exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetPDependentPropList method. The error would not
be raised when the GetPDependentPropList method is implemented by a Material Object.

of Phy
ICapeThermoCompounds interface.

A component that implements the ICapeThermoCompounds interface may
which do not belong to the list defined in
identifiers may not be understood by most of the clients of this component.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method
reasons of compatibility with the CAPE-OPEN standards. That is to sa

70

GetTDependentProperty
Name Compounds

od Name GetTDependentProperty

-

tion

rns the valu emperature-d hysical Properties for the specified pure Compounds.

s

Interface ICapeThermo

Meth

Returns

Descrip

Retu es of t ependent P

Argument

Name Type Description
[in] props CapeArrayS fiers. Valid

ndent Physical
n 7.5.3

tring The list of Physical Property identi
identifiers for temperature-depe
Properties are listed in sectio

[in] temperature CapeDoubl K) at which properties are evaluated e Temperature (in

[in] compIds yS ich Physical
 to

UNDEFINED to denote all Compounds in the
component that implements the
ICapeThermoCompounds interface.

CapeArra tring List of Compound identifiers for wh
Properties are to be retrieved. Set compIds

[ACTUALLYout]
propvals

CapeArrayDouble Physical Property values for the Compounds specified.

Notes

The GetTDependentPropList method can be used in order to check which Physical
Properties are available.

If the number of requested Physical Properties is P and the number of Com
propvals array will contain C*P values. The first C will be the values for th
Physical Property followed by C values for the second Physical Property, an

pounds is C, the
e first requested
d so on.

operty values for
pounds interface

e compound order the same as that returned by the GetCompoundList method. For

roperty Package

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECapeThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation

Properties are returned in a fixed set of units as specified in section 7.5.3.

If the compIds argument is set to UNDEFINED this is a request to return pr
all compounds in the component that implements the ICapeThermoCom
with th
example, if the interface is implemented by a Property Package component the property
request with compIds set to UNDEFINED means all compounds in the P
rather than all compounds in the Material Object passed to the Property package.

71

exists, but it is not supported by the current implementation. This exception should be raised

 the component
ed (rather than
ised since the list

section 7.5.3 is not intended to be exhaustive and an unrecognised Physical
eNoImpl should

ssed, for example
props.

nds – The value of the temperature is outside of the range of values ac-

hrmPropertyNotAvailable – at least one item in the properties list is not available for

r the operation, are
not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetTDependentProperty method. The error would not
be raised when the GetTDependentProperty method is implemented by a Material Object.

if no Compounds or no Physical Properties are supported.

ECapeLimitedImpl – One or more Physical Properties are not supported by
that implements this interface. This exception should also be rais
ECapeInvalidArgument) if any element of the props argument is not recogn
of properties in
Property identifier may be valid. If no properties at all are supported ECap
be raised (see above).

ECapeInvalidArgument – To be used when an invalid argument value is pa
UNDEFINED for argument

ECapeOutOfBou
cepted by the Property Package.

ECapeT
a particular compound.

ECapeUnknown – The error to be raised when other error(s), specified fo

72

GetTDependentPropList
Compounds

o endentPropList

CapeArrayString

tion

rns the list ported tempe dent Physical Properties.

Interface Name ICapeThermo

Meth d Name GetTDep

Returns

Descrip

Retu of sup rature-depen

Arguments

Name Type Description
[out, retval] props CapeArrayString The list of Physical Property identifiers for all

supported temperature-dependent properties. The
n 7.5.3 standard identifiers are listed in sectio

Notes

GetTDependentPropList returns identifiers for all the temperature-dep
Properties that can be retrieved by the GetTDependentProperty method. If
supported UNDEFINED should be returned. The CA

endent Physical
no properties are

PE-OPEN standards do not define a
m list of properties to be made available by a software component that implements

return identifiers
n 7.5.3. However, these proprietary identifi-

can be called for
y that the operation

exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder – The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetTDependentPropList method. The error would not
be raised when the GetTDependentPropList method is implemented by a Material Object.

minimu
the ICapeThermoCompounds interface.

A component that implements the ICapeThermoCompounds interface may
which do not belong to the list defined in sectio
ers may not be understood by most of the clients of this component.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method
reasons of compatibility with the CAPE-OPEN standards. That is to sa

73

6.4 ICapeThermoPhases
This interface is designed to provide information about the number and type
ported by the component that implements it. It defines all the Phases that a
as a Physical Property Calculator can handle. It does not provide inform

s of Phases sup-
component such
ation about the

rial Object. This function is provided by the Get-
oMaterial interface.

g methods are described in this section:
 GetNumPhases
 GetPhaseInfo
 GetPhaseList

Phases that are actually present in a Mate
ethod of the ICapeThermPresentPhases m

The followin

74

GetNumPhases
Name ThermoPhases

od Name tNumPhases

CapeLong

tion

rns the num f Phases.

Interface ICape

Meth Ge

Returns

Descrip

Retu ber o

Arguments

Name Type Description
[out, retval] num CapeLong The number of Phases supported.

Notes

The number of Phases returned by this method must be equal to the numbe
that are returned by the GetPhaseList method of this interface. It must be ze
number.

r of Phase labels
ro, or a positive

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

Exceptions

75

GetPhaseInfo
Name eThermoPhases

od Name haseInfo

CapeVariant

 information on an attribute associated with a Phase for the purpose of understanding what
behind a Phase label.

Arguments

Interface ICap

Meth GetP

Returns

Description

Returns
lies

Name Type Description
[in] phaseLabel CapeString A (single) Phase label. This must be one of the values

returned by GetPhaseList method.

[in] phaseAttribute CapeString One of the Phase attribute identifiers from the table
below.

[out, retval] value CapeVariant The value corresponding to the Phase a
see table below.

ttribute identifier –

Notes

GetPhaseIn
trary la

fo is intended to allow a PME, or other client, to identify a Phase with an arbi-
bel. A PME , will need to do this to map stream data into a Material

age. If the client cannot identify the Phase, it can
ask the user to provide a mapping based on the values of these properties.

The list of supported Phase attributes is defined in the following table:

, or other client
Object, or when importing a Property Pack

Phase attribute
identifier Supported values
StateOfAggregation One of the following strings:

Vapor
Liquid
Solid
Unknown

KeyCompoundId d by
ted to be present in highest

concentration in the Phase. May be undefined in which case
UNDEFINED should be returned.

The identifier of the Compound (compId as returne
GetCompoundList) that is expec

ExcludedCompoundId The identifier of the Compound (compId as returned by
GetCompoundList) that is expected to be present in low or zero
concentration in the Phase. May not be defined in which case
UNDEFINED should be returned.

DensityDescription A description that indicates the density range expected for the Phase.
One of the following strings or UNDEFINED:

Heavy
Light

76

UserDescription the user or PME to identify the Phase. A description that helps
It can be any string or UNDEFINED.

TypeOfSolid solid Phase. For
hases with a “Solid” state of aggregation it may be one of the

wing standard strings or UNDEFINED:

olidSolution

 values may be returned for solid Phases but these may not be
understood by most clients.

t be

A description that provides more information about a
P
follo

PureSolid
S
HydrateI
HydrateII
HydrateH

Other

For Phases with any other state of aggregation it mus
UNDEFINED.

For example
that supports a vapour P

, the f orma e retu y a Property Package component
hase and an aqueous liquid Phase:

ollowing inf
hase, an organic li

tion might b
quid P

rned b

Phase label Gas Organic Aqueous
StateOfAggregatio r n Vapo Liquid Liquid

KeyCompoundId UNDEFIN UNDE Water ED FINED

ExcludedCompoundId UNDEFINE UNDEFINED D Water

DensityDescription UNDEFINED Light Heavy

UserDescription The gas Phase The organic liquid
Phase

The aqueo
Phase

us liquid

TypeOfSolid UNDEFINED UNDEFINED UNDEFINED

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeInvalidArgument – phaseLabel is not recognised, or UNDEFINED, or phaseAttribute
is not recognised.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

77

GetPhaseList
Name eThermoPhases

od Name GetPhaseList

s -

tion

rns Ph othe ve information for all the Phases supported.

Interface ICap

Meth

Return

Descrip

Retu ase labels and r important descripti

Arguments

Name Type Description
[ACTUALLYout]
phaseLabels

CapeArray hases supported. A
t each Phase must

for some reason, no Phases
 value should be

els. The number of Phase
ls must also be equal to the number of Phases

 method.

String The list of Phase labels for the P
Phase label can be any string bu
have a unique label. If,
are supported an UNDEFINED
returned for the phaseLab
labe
returned by the GetNumPhases

[ACTUALLYout]
stateOfAggregation

CapeArray ion associated with
of the Phases. This must be one of the

or “Unknown”. Each
f Aggregation.

fined, but may be

String The physical State of Aggregat
each
following strings:

”Vapor”, “Liquid”, “Solid”
Phase must have a single State o
The value must not be left unde
set to “Unknown”.

[ACTUALLYout]
keyCompoundId

CapeArray the Phase. This must be the
Compound identifier (as returned by
GetCompoundList), or it may be undefined in
which case a UNDEFINED value is returned. The
key Compound is an indication of the Compound

high concentration
eous liquid

gle key
Compound.

String The key Compound for

that is expected to be present in
in the Phase, e.g. water for an aqu
phase. Each Phase can have a sin

Notes

The Phase label allows the phase to be uniquely identified in methods of the ICapeThermo-
Phases interface and other CAPE-OPEN interfaces. The State of Aggregation and key
Compound provide a way for the PME, or other client, to interpret the meaning of a Phase
label in terms of the physical characteristics of the Phase.

All arrays returned by this method must be of the same length, i.e. equal to the number of
Phase labels.

To get further information about a Phase, use the GetPhaseInfo method.

78

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-OPEN

an be called for
 standards. That is to say that the operation

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

exists, but it is not supported by the current implementation.

79

6.5 ICapeThermoPropertyRoutine
Any Component or object that can calculate a Physical Property must
ICapeThermoPropertyRoutine interface. Within the scope of this specifica
that it must be implemented by Calculation Routine components, Pr
components

 implement the
tion this means
operty Package

 and Material Object implementations that will be passed to clients which may
eaction Package

erial Object, it is
 Get functions will be delegated either to

 methods in an associated CAPE-OPEN Property
ation Routine component.

ribed in this section:

rop
rop

 CheckSinglePhasePropSpec
 CheckTwoPhasePropSpec
 GetSinglePhasePropList
 GetTwoPhasePropList

need to perform Property Calculations, such as Unit Operations [2] and R
components [3].

When the ICapeThermoPropertyRoutine interface is implemented by a Mat
expected that the actual Calculate, Check and
proprietary methods within a PME or to
Package or Calcul

The following methods are desc
 CalcAndGetLnPhi
 CalcSinglePhaseP
 CalcTwoPhaseP

80

CalcAndGetLnPhi
Name ermoPropertyRoutine

od Name CalcAndGetLnPhi

-

 is used to calculate the natural logarithm of the fugacity coefficients (and
lly their derivatives) in a single Phase mixture. The values of temperature, pressure

 compositio specified i ent list and the results are also returned through
nt l

Arguments

Interface ICapeTh

Meth

Returns

Description

This method
optiona
and n are n the argum
the argume ist.

Name Type Description
[in] phaseLabe String for which the properties are to

ase label must be one of the
haseList method on the

l Cape Phase label of the Phase
be calculated. The Ph
strings returned by the GetP
ICapeThermoPhases interface.

[in] temperature CapeDoubl ulation. e The temperature (K) for the calc

[in] pressure CapeDouble (Pa) for the calculation. The pressure

[in] moleNumbers CapeArrayD Mole fractions of Compounds in the mixture. ouble

[in] fFlags CapeIntege al logarithm of the
 derivatives should be

r Code indicating whether natur
fugacity coefficients and/or
calculated (see notes).

[ACTUALLY
lnPhi

o yD ity coefficients (if ut] CapeArra ouble Natural logarithm of the fugac
requested).

[ACTUALLYout]
PhiDT

CapeArrayDouble Derivatives of natural logarithm of the fugacity
coefficients w.r.t. temperature (if requested). ln

[ACTUALLYout]
lnPhiDP

CapeArrayDouble Derivatives of natural logarithm of th
coefficients w.r.t. pressure (if reques

e fugacity
ted).

[ACTUALLYout]
lnPhiDn

CapeArrayDouble Derivatives of natural logarithm of the fugacity
coefficients w.r.t. mole numbers (if requested).

Notes

This method is provided to allow the natural logarithm of the fugacity coe
the most commonly used thermodynamic property, to be calculated and retu

fficient, which is
rned in a highly

efficient manner.

The temperature, pressure and composition (mole fractions) for the calculation are specified
by the arguments and are not obtained from the Material Object by a separate request. Note
that the moleNumbers argument should actually contain mole fractions. This inconsistency
in the argument name arises because the specification has been revised but it is desired to
keep the COM IDL unchanged.

Likewise, any quantities calculated are returned through the arguments and are not stored in
the Material Object. The state of the Material Object is not affected by calling this method. It

81

should be noted however, that prior to calling CalcAndGetLnPhi a valid M
must have been defined by calling the SetMaterial meth
ICapeThermoMaterialContext interface of the component that i
ICapeThermoPropertyRoutine interface. The compounds in the Material O
been identified and the number of mole fraction values supplied in th
argument must be equal to the number of Compounds in the Material Obje
be assumed that the mole fractions are normalized and values m

aterial Object
od on the

mplements the
bject must have
e moleNumbers
ct. It should not

ay also lie outside the range
range, it is the
n.

 of the fugacity
atural logarithm

d by an integer
ions for the property and each

derivative required using the enumerated constants eCapeCalculationCode (defined in the
Thermo version 1.1 IDL) shown in the following table. For example, to calculate log
fu icie ves the fFlags argument would be set to
C _FUG DERIVATIVE.

0 to 1. If fractions are not normalized, or are outside the expected
responsibility of the Property Package to decide how to deal with the situatio

The fugacity coefficient information is returned as the natural logarithm
coefficient. This is because thermodynamic models naturally provide the n
of this quantity and also a wider range of values may be safely returned.

The quantities actually calculated and returned by this method are controlle
code fFlags. The code is formed by summing contribut

gacity coeff nts and their T-derivati
APE_LOG ACITY_COEFFICIENTS + CAPE_T_

numerical

code value
latio 0 no calcu n CAPE_NO_CALCULATION

log fugacity
coefficients

CAPE_LOG_FUGACITY_COEFFICIENTS 1

2
4

T-derivative CAPE_T_DERIVATIVE
P-derivative CAPE_P_DERIVATIVE
mole number
derivatives

CAPE_MOLE_NUMBERS_DERIVATIVES 8

If CalcAndGetLnPhi is called with fFlags set to CAPE_NO_CALCULATION no property
pleteness and is

ed.

Th e identical to the equivalent quantities returned
by e on the Material
Ob c ated for a total of
one m

A by a Property Package

phaseLabel specified is valid.
- Check that the moleNumbers array contains the number of values expected

(should be consistent with the last call to the SetMaterial method).
- Calculate the requested properties/derivatives at the T/P/composition specified in

the argument list.
- Store values for the properties/derivatives in the corresponding arguments.

Note that this calculation can be carried out irrespective of whether the Phase actually exists
in the Material Object.

values are returned; the CAPE_NO_CALCULATION is provided for com
generally not us

e values returned by this method should b
th CalcSinglePhaseProp method with the same input information set

t. In particular, this means that the mole number derivativje es are evalu
ole of substance.

typical sequence of operations for this method when implemented
component would be:

- Check that the

82

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-OPEN

an be called for
 standards. That is to say that the operation

requested cannot

 pre-requisite operation has not been called prior to the
 been passed via

-requisites for the Property Calculation are not valid. For
mpounds in the
nt or any other

erties cannot be
cified conditions

 specified Phase. If the property calculation is not implemented then

as failed. For example if one of the
s converged to a

olution.

ECapeInvalidArgument – To be used when an invalid argument value is passed, for example
an unrecognised value, or UNDEFINED for the phaseLabel argument.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

exists, but it is not supported by the current implementation.

ECapeLimitedImpl – Would be raised if the one or more of the properties
be returned because the calculation is not implemented.

ECapeBadInvOrder - The necessary
operation request. For example, the ICapeThermoMaterial interface has not
a SetMaterial call prior to calling this method.

ECapeFailedInitialisation - The pre
example, the composition of the phase is not defined, the number of Co
Material Object is zero or not consistent with the moleNumbers argume
necessary input information is not available.

ECapeThrmPropertyNotAvailable – At least one item in the requested prop
returned. This could be because the property cannot be calculated at the spe
or for the
ECapeLimitedImpl should be returned.

ECapeSolvingError – One of the property calculations h
iterative solution procedures in the model has run out of iterations, or ha
wrong s

83

CalcSinglePhaseProp
Name moPropertyRoutine

od Name CalcSinglePhaseProp

-

CalcSinglePhaseProp is used to calculate properties and property derivatives of a mixture in
ase at the current values of temperature, pressure and composition set in the

erial Objec lcSinglePhaseProp does not perform phase Equilibrium Calculations.

Arguments

Interface ICapeTher

Meth

Returns

Description

a single Ph
Mat

t. Ca

Name Type Description
[in] props CapeArrayS gle-phase properties or

ections 7.5.5 and 7.6
tring The list of identifiers for the sin

derivatives to be calculated. See s
for the standard identifiers.

[in] phaseLabel CapeString Phase label of the Phase for which the properties are to
be calculated. The Phase label must be one of the
strings returned by the GetPhaseList method on the

e phase must be ICapeThermoPhases interface and th
present in the Material Object.

Notes

CalcSinglePhaseProp calculates properties, such as enthalpy or viscosity th
a single Phase. Physical Properties that depend on more than one Phase, for
tension or K-values, are handled by CalcTwoPhaseProp met

at are defined for
example surface

hod.

r the calculation
ject and set the

ackage or Prop-
face so that an

eThermoPropertyRoutine interface (e.g. a Property
ases interface so

t a list of supported phases. The phaseLabel passed to this method
u eturned by the GetPhaseList method of the

ICapeThermoPhases interface and it must also be present in the Material Object, ie. one of
the phase labels returned by the GetPresentPhases method of the ICapeThermoMaterial
interface. This latter condition will be satisfied if the phase is made present explicitly by
calling the SetPresentPhases method or if any phase properties have been set by calling the
SetSinglePhaseProp or SetTwoPhaseProp methods.

A typical sequence of operations for CalcSinglePhaseProp when implemented by a Property
Package component would be:

- Check that the phaseLabel specified is valid.

Components that implement this method must get the input specification fo
(temperature, pressure and composition) from the associated Material Ob
results in the Material Object.

Thermodynamic and Physical Properties Components, such as a Property P
erty Calculator, must implement the ICapeThermoMaterialContext inter
ICapeThermoMaterial interface can be passed via the SetMaterial method.

The component that implements the ICap
Package or Property Calculator) must also implement the ICapeThermoPh
that it is possible to ge
m st be one of the phase labels r

84

- Use the GetTPFraction method (of the Material Object specified in th
SetMateria

e last call to the
l method) to get the temperature, pressure and composition of the

bject using the

om the Material
t available, the

pertyNotAvailable. If this error occurs then the
 Material Object
oice of basis by

ractions are not
roperty Package

o simplify error
l efficiency gains
ne such example

ole call should
ack to the Mate-

le request can be satisfied.

nditions of tem-
ccording to the
The exception

ay be returned.
nce.

an be called for
PEN standards. That is to say that the operation

plemented. This
 props argument

sed because the list of properties in section 7.5.5 is not intended to be
exhaustive and an unrecognised property identifier may be valid. If no properties at all are
supported ECapeNoImpl should be raised (see above).

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. For example, the ICapeThermoMaterial interface has not been passed via
a SetMaterial call prior to calling this method.

ECapeFailedInitialisation - The pre-requisites for the property calculation are not valid. For
example, the composition of the phases is not defined or any other necessary input informa-
tion is not available.

specified Phase.
- Calculate the properties.
- Store values for the properties of the Phase in the Material O

SetSinglePhaseProp method of the ICapeThermoMaterial interface.

CalcSinglePhaseProp will request the input Property values it requires fr
Object through GetSinglePhaseProp calls. If a requested property is no
exception raised will be ECapeThrmPro
Property Package can return it to the client, or request a different property.
implementations must be able to supply property values using the client’s ch
implementing conversion from one basis to another.

Clients should not assume that Phase fractions and Compound fractions in a Material Object
are normalised. Fraction values may also lie outside the range 0 to 1. If f
normalised, or are outside the expected range, it is the responsibility of the P
to decide how to deal with the situation.

It is recommended that properties are requested one at a time in order t
handling. However, it is recognised that there are cases where the potentia
of requesting several properties simultaneously are more important. O
might be when a property and its derivatives are required.

If a client uses multiple properties in a call and one of them fails then the wh
be considered to have failed. This implies that no value should be written b
rial Object by the Property Package until it is known that the who

It is likely that a PME might request values of properties for a Phase at co
perature, pressure and composition where the Phase does not exist (a
mathematical/physical models used to represent properties).
ECapeThrmPropertyNotAvailable may be raised or an extrapolated value m
It is responsibility of the implementer to decide how to handle this circumsta
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method c
reasons of compatibility with the CAPE-O
exists, but it is not supported by the current implementation.

ECapeLimitedImpl – Would be raised if the one or more of the properties requested cannot
be returned because the calculation (of the particular property) is not im
exception should also be raised (rather than ECapeInvalidArgument) if the
is not recogni

85

ECapeThrmPropertyNotAvailable – At least one item in the requested prop
returned. This could be because the property cannot be calculated at the spec
or for the specified phase.

erties cannot be
ified conditions

 If the property calculation is not implemented then

ingError – One of the property calculations has failed. For example if one of the
s converged to a

mple
NDEFINED for

s argument.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

ECapeLimitedImpl should be returned.

ECapeSolv
iterative solution procedures in the model has run out of iterations, or ha
wrong solution.

ECapeInvalidArgument – To be used when an invalid argument value is passed, for exa
an unrecognised value or UNDEFINED for the phaseLabel argument or U
the prop

86

CalcTwoPhaseProp
Name rmoPropertyRoutine

od Name CalcTwoPhaseProp

-

CalcTwoPhaseProp is used to calculate mixture properties and property derivatives that depend on
ses at the current values of temperature, pressure and composition set in the Material Object.

es not perfo uilibrium C

Arguments

Interface ICapeThe

Meth

Returns

Description

two Pha
It do rm Eq alculations.

Name Type Description
String The list of identifiers for properties [in] props CapeArray to be calculated.

This must be one or more of the supported two-phase
by the
e standard identifiers

 section 7.5.6 and

properties and derivatives (as given
GetTwoPhasePropList method). Th
for two-phase properties are given in
7.6.

[in] phaseLabels CapeArrayString Phase labels of the phases for which the properties are
to be calculated. The phase labels must be two of the

on the
 phases must also

strings returned by the GetPhaseList method
ICapeThermoPhases interface and the
be present in the Material Object.

Notes

CalcTwoPhaseProp calculates the values of properties such as surface tens
Properties that pertain to a

ion or K-values.
single Phase are handled by the CalcSinglePhaseProp method of

is method must
mposition) from

 implement the
interface can be

eThermoPropertyRoutine interface (e.g. a Property
ases interface so

t a list of supported phases. The phaseLabels passed to this method
must be in the list of phase labels returned by the GetPhaseList method of the
ICapeThermoPhases interface and they must also be present in the Material Object, ie. in the
list of phase labels returned by the GetPresentPhases method of the ICapeThermoMaterial
interface. This latter condition will be satisfied if the phases are made present explicitly by
calling the SetPresentPhases method or if any phase properties have been set by calling the
SetSinglePhaseProp or SetTwoPhaseProp methods.

A typical sequence of operations for CalcTwoPhaseProp when implemented by a Property
Package component would be:

the ICapeThermoPropertyRoutine interface.Components that implement th
get the input specification for the calculation (temperature, pressure and co
the associated Material Object and set the results in the Material Object.

Components such as a Property Package or Property Calculator must
ICapeThermoMaterialContext interface so that an ICapeThermoMaterial
passed via the SetMaterial method.

The component that implements the ICap
Package or Property Calculator) must also implement the ICapeThermoPh
that it is possible to ge

87

- Check that the phaseLabels specified are valid.
- Use the GetTPFraction method (of the Material Object specified in the last call to the

perature, pressure and composition of the

tTwoPhaseProp

 Object through
vailable, the ex-

ertyNotAvailable. If this error occurs, then the
 Material Object
oice of basis by

 Material Object
fractions are not
roperty Package

o simplify error
l efficiency gains
e such example

ient uses multiple properties in a call and one of them fails, then the whole call should
ack to the Mate-
an be satisfied.

se groupings. For
om liquid-liquid

Phases are identical. It is the responsibility of the Property Package to check such conditions
raise an exception if appropriate.

nditions of tem-

The exception
ay be returned.

nce.

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeLimitedImpl – Would be raised if the one or more of the properties requested cannot
be returned because the calculation (of the particular property) is not implemented. This
exception should also be raised (rather than ECapeInvalidArgument) if the props argument
is not recognised because the list of properties in section 7.5.6 is not intended to be

SetMaterial method) to get the tem
specified Phases.

- Calculate the properties.
- Store values for the properties in the Material Object using the Se

method of the ICapeThermoMaterial interface.

CalcTwoPhaseProp will request the values it requires from the Material
GetTPFraction or GetSinglePhaseProp calls. If a requested property is not a
ception raised will be ECapeThrmProp
Property Package can return it to the client, or request a different property.
implementations must be able to supply property values using the client ch
implementing conversion from one basis to another.

Clients should not assume that Phase fractions and Compound fractions in a
are normalised. Fraction values may also lie outside the range 0 to 1. If
normalised, or are outside the expected range, it is the responsibility of the P
to decide how to deal with the situation.

It is recommended that properties are requested one at a time in order t
handling. However, it is recognised that there are cases where the potentia
of requesting several properties simultaneously are more important. On
might be when a property and its derivatives are required.

If a cl
be considered to have failed. This implies that no value should be written b
rial Object by the Property Package until it is known that the whole request c

CalcTwoPhaseProp must be called separately for each combination of Pha
example, vapour-liquid K-values have to be calculated in a separate call fr
K-values.

Two-phase properties may not be meaningful unless the temperatures and pressures of all

and to

It is likely that a PME might request values of properties for Phases at co
perature, pressure and composition where one or both of the Phases do not exist (according
to the mathematical/physical models used to represent properties).
ECapeThrmPropertyNotAvailable may be raised or an extrapolated value m
It is responsibility of the implementer to decide how to handle this circumsta

88

dentifier may be valid. If no properties at all are

alled prior to the
sed via

tion - The pre-requisites for the property calculation are not valid. For
 necessary input

ble – At least one item in the requested properties cannot be
cified conditions
plemented then

edImpl should be returned.

ple if one of the
s converged to a

validArgument – To be used when an invalid argument value is passed, for example
an unrecognised value or UNDEFINED for the phaseLabels argument or UNDEFINED for
the props argument.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

supported ECapeNoImpl should be raised (see above).

ECapeBadInvOrder - The necessary pre-requisite operation has not been c
operation request. For example, the ICapeThermoMaterial interface has not been pas
a SetMaterial call prior to calling this method.

ECapeFailedInitialisa
example, the composition of one of the Phases is not defined, or any other
information is not available.

ECapeThrmPropertyNotAvaila
returned. This could be because the property cannot be calculated at the spe
or for the specified Phase. If the property calculation is not im
ECapeLimit

ECapeSolvingError – One of the property calculations has failed. For exam
iterative solution procedures in the model has run out of iterations, or ha
wrong solution.

ECapeIn

89

CheckSinglePhasePropSpec
Name opertyRoutine

od Name kSinglePhasePropSpec

CapeBoolean

ion

whether it is possible to calculate a property with the CalcSinglePhaseProp method for a
n Phase.

Arguments

Interface ICapeThermoPr

Meth Chec

Returns

Descript

Checks
give

Name Type Description
[in] property eStrin k. To be valid this

ase properties or
n by the GetSinglePhasePropList

Cap g The identifier of the property to chec
must be one of the supported single-ph
derivatives (as give
method).

[in] phaseLabel CapeStrin calculation check. This must be
one of the labels returned by the GetPhaseList method on
the ICapeThermoPhases interface.

g The Phase label for the

[out, retval] valid CapeBoolean Set to True if the combination of proper
is supported or False if not supported.

ty and phaseLabel

Notes

The result of the check should only depend on the capabilities an
(Compounds and Phases supported) of the comp

d configuration
onent that implements the

d not depend on
ressure, composition

r configuration of a Material Object that might be set.

hether the prop-
 imported. If any

orted.

ognised by the component that
turn False.

ECapeNoImpl –The operation CheckSinglePhasePropSpec is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapeInvalidArgument – One or more of the input arguments is not valid: for example,
UNDEFINED value for the property argument or the phaseLabel argument.

ECapeUnknown – The error to be raised when other error(s), specified for the
CheckSinglePhasePropSpec operation, are not suitable.

ICapeThermoPropertyRoutine interface (e.g. a Property Package). It shoul
whether a Material Object has been set nor on the state (temperature, p
etc.), o

It is expected that the PME, or other client, will use this method to check w
erties it requires are supported by the Property Package when the package is
essential properties are not available, the import process should be ab

If either the property or the phaseLabel arguments are not rec
implements the ICapeThermoPropertyRoutine interface this method should re
Exceptions

90

CheckTwoPhasePropSpec
Name ropertyRoutine

od Name kTwoPhasePropSpec

 CapeBoolean

ion

whether it is possible to calculate a property with the CalcTwoPhaseProp method for a given
f Phases.

s

Interface ICapeThermoP

Meth Chec

Returns

Descript

Checks
set o

Argument

Name Type Description
[in] property ng . To be valid this

se properties
he

opList method.

CapeStri The identifier of the property to check
must be one of the supported two-pha
(including derivatives), as given by t
GetTwoPhasePr

[in] phaseLab rray ich the properties are to
ust be two of the

identifiers returned by the GetPhaseList method on the

els CapeA String Phase labels of the Phases for wh
be calculated. The Phase labels m

ICapeThermoPhases interface.

[out, retval] valid CapeBoolean Set to True if the combination of property and
phaseLabels is supported, or False if not supported.

Notes
The result of the check should only depend on the capabilities an
(Compounds and Phases supported) of the component that

d configuration
implements the

 not depend on
ure, composition

a Material Object that might be set.

pected that the PME, or other client, will use this method to check whether the
perty Package is
uld be aborted.

values in the phaseLabels arguments are not
outine interface

PhasePropSpec is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation. This
may be the case if no two-phase property is supported.

ECapeInvalidArgument – One or more of the input arguments is not valid. For example,
UNDEFINED value for the property argument or the phaseLabels argument or number of
elements in phaseLabels array not equal to two.

ECapeUnknown – The error to be raised when other error(s), specified for the
CheckTwoPhasePropSpec operation, are not suitable.

ICapeThermoPropertyRoutine interface (e.g. a Property Package). It should
whether a Material Object has been set nor on the state (temperature, press
etc.), or configuration of

It is ex
properties it requires are supported by the Property Package when the Pro
imported. If any essential properties are not available, the import process sho

If either the property argument or the
recognised by the component that implements the ICapeThermoPropertyR
this method should return False.
Exceptions

ECapeNoImpl – The operation CheckTwo

91

GetSinglePhasePropList
Name PropertyRoutine

od Name lePhasePropList

CapeArrayString

tion

rns the list orted non-cons hase Physical Properties.

Interface ICapeThermo

Meth GetSing

Returns

Descrip

Retu of supp tant single-p

Arguments

Name Type Description
[out, retval] props CapeArrayString List of all supported non-constant single-phase

property identifiers. The standard single-phase
ed in section 7.5.5. property identifiers are list

Notes

A non-constant property depends on the state of the Material Object.

Single-phase properties, e.g. enthalpy, only depend on the state
GetSinglePhasePropList must return all the single-phase properties that can b
CalcSinglePhaseProp. If derivatives can be calculated the

of one phase.
e calculated by

se must also be returned. The list
ies such as temperature,

 not usually calculated by the
t be returned by
n calls to the

e.

ngle-phase properties are supported this method should return UNDEFINED.

.

owever, these
tood by most of the clients of this component.

Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetSinglePhasePropList operation, are not suitable.

of standard property identifiers in section 7.5.5 also contains propert
pressure, fraction, phaseFraction, flow and totalFlow that are
CalcSinglePhaseProp method and hence these property identifiers would no
GetSinglePhasePropList. These properties would normally be used i
Set/GetSinglePhaseProp methods of the ICapeThermoMaterial interfac

If no si

To get the list of supported two-phase properties, use GetTwoPhasePropList

A component that implements this method may return non-constant single-phase property
identifiers which do not belong to the list defined in section 7.5.5. H
proprietary identifiers may not be unders

92

GetTwoPhasePropList
Name oPropertyRoutine

od Name PhasePropList

CapeArrayString

tion

rns the list orted non-constant two-phase properties.

Interface ICapeTherm

Meth GetTwo

Returns

Descrip

Retu of supp

Arguments

Name Type Description
[out, retval] props CapeArrayString List of all supported non-constant two-phase

property identifiers. The standard two-phase
n section 7.5.6. property identifiers are listed i

Notes

A non-constant property depends on the state of the Material Object. Two-phase properties

st return all the properties that can be calculated by
ned.

DEFINED.

et of phase labels use the
woPhasePropSpec method.

-phase property
However, these

ponent.

 properties, use GetSinglePhasePropList.
Exceptions

ECapeNoImpl – The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetTwoPhasePropList operation, are not suitable.

are those that depend on more than one co-existing phase, e.g. K-values.

GetTwoPhasePropList mu
CalcTwoPhaseProp. If derivatives can be calculated, these must also be retur

If no two-phase properties are supported this method should return UN

To check whether a property can be evaluated for a particular s
CheckT

A component that implements this method may return non-constant two
identifiers which do not belong to the list defined in section 7.5.6.
proprietary identifiers may not be understood by most of the clients of this com

To get the list of supported single-phase

93

6.6 ICapeThermoEquilibriumRoutine
Any component or object that can perform an Equilibrium Calculation mus
ICapeThermoEquilibriumRoutine interface. Within the scope of this sp
means that it must be implemented by Equilibrium Calculator components, Property

t implement the
ecification, this

passed to clients
ns [2].

e interface, it is
 that the methods will be delegated either to proprietary methods within a PME, or

to methods in an associated CAPE-OPEN Property Package or Equilibrium Calculator

 CalcEquilibrium
 CheckEquilibriumSpec

Package components and by Material Object implementations that will be
which may need to perform Equilibrium Calculations, such as Unit Operatio

When a Material Object implements the ICapeThermoEquilibriumRoutin
expected

component.

94

CalcEquilibrium
Name hermoEquilibriumRoutine

od Name CalcEquilibrium

-

CalcEquilibrium is used to calculate the amounts and compositions of Phases at equilibrium.
ilibrium will calculate temperature and/or pressure if these are not among the two

ifications that are mandatory f ilibrium Calculation considered.

Arguments

Interface ICapeT

Meth

Returns

Description

CalcEqu
spec or each Equ

Name Type Description
[in]specificatio ay Calculation. The

ation is used to retrieve the value of
bject. See below

n1 CapeArr String First specification for the Equilibrium
specification inform
the specification from the Material O
for details.

[in]specification2 CapeArray r the Equilibrium Calculation in
the same format as specification1.

String Second specification fo

[in]solutionType CapeString lution type. The
lowing list:

Normal
Retrograde

ned below in the
pported but their
ndard.

 The identifier for the required so
standard identifiers are given in the fol

Unspecified

The meaning of these terms is defi
notes. Other identifiers may be su
interpretation is not part of the CO sta

Notes

ca ion necessary to
retrieve the va d temperature, for the
Equilibrium C CheckEquilibriumSpec method can be used to check for

pported spec e of strings in the
order defined s may have 3 or 4
items):

The specifi tion1 and specification2 arguments provide the informat
lues of two specifications, for example the pressure an
alculation. The

su ifications. Each specification variable contains a sequenc
in the following table (hence, the specification argument

item meaning
property identifier The property identifier can be any of the identifiers listed in section 7.5.5 but

only certain property specifications will normally be supported by any
Equilibrium Routine.

basis The basis for the property value. Valid settings for basis are given in section
 7.4. Use UNDEFINED as a placeholder for a property for which basis does
not apply. For most Equilibrium Specifications, the result of the calculation
is not dependent on the basis, but, for example, for phase fraction
specifications the basis (Mole or Mass) does make a difference.

95

phase label n applies. It must
her be one of the labels returned by GetPresentPhases, or the special value

The phase label denotes the Phase to which the specificatio
eit
“Overall”.

compound ide
(optional)

depend on a particular
on array is optional and may be

omitted. In case of a specification without compound identifier, the array

ntifier The compound identifier allows for specifications that
Compound. This item of the specificati

element may be present and empty, or may be absent.

Some examp p tions are given in the table below. les of typical hase equilibrium specifica
Type of phase
equilibrium
calculation specification1 specification2 Comments
Fixed
temperature
pressure

rat

Overall

ssur
DEF

Overall
and

tempe
UNDEFI

ure
NED

pre
UN

e
INED

Fixed pressure
and enthalpy

pressure
UNDEFINED
Overall

enthalp
UNDEF
Overall

used as the basis for
ification because the

result of the calculation does not de-
pend on the basis (i.e.
CalcEquilibrium can request the
enthalpy from a Material Object on

 GetOverallProp
method)

y
INED

UNDEFINED is
the enthalpy spec

any basis using the

Fixed
temperature and
enthalpy

temperature
UNDEFINED
Overall

enthalp
UNDEF
Overall

 y
INED

Fixed
temperature and
molar fraction of

ase

temperature
UNDEFINED
Overall

phaseF
Mole
gas

 label of the vapour

lue of the Phase fraction
et in the Material
 point this would be

int it would be 0.0
t to any value in

etween. The basis setting indicates
that the specification is for phase

sis.

raction 1. Assumes Phase
Phase is “gas”

2. The vavapour ph must have been s
Object. For a dew
1.0, for a bubble po
and it could be se
b

fraction on a molar ba

Fixed pressure
and activity o

pressure activityCoefficient 1. Assumes Phase lab
f UNDEFINED UNDEFINED

el of the
aqueous Phase is “AqueousLiquid”

tivity coefficient
een set in the

Material Object.

water Overall AqueousLiquid
water 2. The value of the ac

for water must have b

The values corresponding to the specifications in the argument list and the overall
composition of the mixture must be set in the associated Material Object before a call to
CalcEquilibrium.

Components such as a Property Package or an Equilibrium Calculator must implement the
ICapeThermoMaterialContext interface, so that an ICapeThermoMaterial interface can be

96

passed via the SetMaterial method. It is the responsibility of the implementation of
ion.

 that exist in the
 This provides a
quid, or vapour-
ntPhases method
 status flags may
hether estimates

esentPhases and
tails. When the

, the SetPresentPhases method
hase status flags
 Phases that are

 one solution. A
the case of a dew point calculation. However, CalcEquilibrium

vide only one n through the M ject. The solutionType argument
al” or “Retrograde” solution to be explicitly requested. The following

itions are intended o n one of the specif ns includes a phase fraction and
the other is temperature or pressure.

ification Normal Retrograde

CalcEquilibrium to validate the Material Object before attempting a calculat

The Phases that will be considered in the Equilibrium Calculation are those
Material Object, i.e. the list of phases specified in a SetPresentPhases call.
way for a client to specify whether, for example, a vapour-liquid, liquid-li
liquid-liquid calculation is required. CalcEquilibrium must use the GetPrese
to retrieve the list of Phases and the associated Phase status flags. The Phase
be used by the client to provide information about the Phases, for example w
of the equilibrium state are provided. See the description of the GetPr
SetPresentPhases methods of the ICapeThermoMaterial interface for de
Equilibrium Calculation has been completed successfully
must be used to specify which Phases are present at equilibrium and the P
for the phases should be set to Cape_AtEquilibrium. This must include any
present in zero amount such as the liquid Phase in a dew point calculation.

Some types of Phase equilibrium specifications may result in more than
common example of this is
can pro solutio aterial Ob
allows the “Norm
defin f r use whe icatio

Spec

T and Fv
0>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

V

p
F

 0≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

V

p
F

T and FL
0≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

L

p
F

 0<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

L

p
F

T and Fs
0<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

S

p
F

 0≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T

S

p
F

P and Fv
0≥⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

p

V

T
0<⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

p

V

T
F

F

P and FL
0≤⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

p

L

T
F

 0>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

p

L

T
F

P and FS
0≤⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

p

S

T
F

 0>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

p

S

T
F

where FV is a vapor phase fraction, FL is a liquid phase fraction and FS is a solid phase
fraction. The derivatives are at equilibrium states. When none of the specifications includes
a phase fraction and P or T, the solutionType argument should be set to “Unspecified”.

97

CalcEquilibrium must set the amounts (phase fractions), compositions,
pressure for all Phases present at equilibrium, as well as the temperature and
overall mixture if not set as part of the calculation specifications. It m

temperature and
 pressure for the

ust not set any other
.

ight be performed by
xed pressure and temperature:

- W rial interface of the supplied Material Object:
the Equilibrium

eThermoCompounds interface of the Material Object use the
ethod to find which Compounds are present.

and composition

-
- Use SetPresentPhases to specify the Phases present at equilibrium and set the

ount (or Phase
es present.

eration is “not” implemented even if this method can be called for
at the operation

tion.

alled prior to the
via a SetMaterial

r example if the
as run out of iterations, or has converged to a trivial solution.

e to perform the
ut specifications

erature and a Compound
mSpec method,

 there to prevent calling CalcEquilibrium for a calculation which cannot be

sed. It would be
rai st of recognised
identifiers. It would also be raised if the value given to argument solutionType is not among
the three defined, or if UNDEFINED was used instead of a specification identifier.

ECapeFailedInitialisation - The pre-requisites for the Equilibrium Calculation are not valid.
For example:

• The overall composition of the mixture is not defined.

• The Material Object (set by a previous call to the SetMaterial method of the
ICapeThermoMaterialContext interface) is not valid. This could be because no

values – in particular it must not set any values for phases that are not present

As an example, the following sequence of operations m
CalcEquilibrium in the case of an Equilibrium Calculation at fi

ith the ICapeThermoMate
- Use the GetPresentPhases method to find the list of Phases that

Calculation should consider.
- With the ICap

GetCompoundList m
- Use the GetOverallProp method to get the temperature, pressure

for the overall mixture.
Perform the Equilibrium Calculation.

Phase status flags to Cape_AtEquilibrium.
- Use SetSinglePhaseProp to set pressure, temperature, Phase am

fraction) and composition for all Phas
Exceptions

ECapeNoImpl – The op
reasons of compatibility with the CAPE-OPEN standards. That is to say th
exists, but it is not supported by the current implementa

ECapeBadInvOrder - The necessary pre-requisite operation has not been c
operation request. The ICapeThermoMaterial interface has not been passed
call prior to calling this method.

ECapeSolvingError – The Equilibrium Calculation could not be solved. Fo
solver h

ECapeLimitedImpl – Would be raised if the Equilibrium Routine is not abl
flash it has been asked to perform. For example, the values given to the inp
are valid, but the routine is not able to perform a flash given a temp
fraction. That would imply a bad usage or no usage of CheckEquilibriu
which is
performed.

ECapeInvalidArgument – To be used when an invalid argument value is pas
sed, for example, if a specification identifier does not belong to the li

98

Phases are present or because the Phases present are not recognised by the
moEquilibriumRoutine interface.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

component that implements the ICapeTher

• Any other necessary input information is not available.

99

CheckEquilibriumSpec
Name oEquilibriumRoutine

Spec
 CapeBoolean

tion
cks whether roperty Package can support a particular type of Equilibrium Calculation.

Interface ICapeTherm
Method Name CheckEquilibrium
Returns

Descrip
Che the P

Arguments
Name Type Description
[in]specificatio Array ium Calculation. n1 Cape String First specification for the Equilibr
[in]specification2 CapeArray m Calculation. String Second specification for the Equilibriu
[in]solutionType CapeString The required solution type.
[out, retval] CapeBoolean Set to True if the combination of specifications and

lar combination of
d.

isSupported solutionType is supported for a particu
present phases or False if not supporte

Notes
The meaning of the specification1, specification2 and solutionType arguments is the sam
for the CalcEquilibrium method. If solutionType, specification1 and
arguments appear valid but the actual specifications are not supported or
False value should be returned.

The result of the check should depend primarily on the capabilities an
(compounds and phases supported) of the component that implements th
EquilibriumRoutine interface (egg. a Property package). A componen
calculation specifications for any combination of supported phases is capa
the specification without any reference to a Material Object. However, it
there may be restrictions on the com

e as
 specification2

not recognised a

d configuration
e ICapeThermo-
t that supports
ble of checking
 is possible that

binations of phases supported in an equilibrium
tion. For example a component may support vapor-liquid and liquid-liquid

fore a necessary
 method of the

that the SetPresentPhases method of the
of phases for the

epend on the state (temperature,

can be called for

 by the current implementation.

ECapeInvalidArgument – To be used when an invalid argument value is passed, for example
UNDEFINED for solutionType, specification1 or specification2 argument.

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. E.g. the ICapeThermoMaterial interface has not been passed via a
SetMaterial call prior to calling this method.

ECapeUnknown – The error to be raised when other error(s), specified for this operation, are
not suitable.

calcula
calculations but not vapor-liquid-liquid calculations. In general it is there
prerequisite that a Material Object has been set (using the SetMaterial
ICapeThermoMaterialContext interface) and
ICapeThermoMaterial interface has been called to specify the combination
equilibrium calculation. The result of the check should not d
pressure, composition etc.) of the Material Object.
Exceptions
ECapeNoImpl – The operation is “not” implemented even if this method
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported

100

6.7 ICapeThermoUniversalConstants
Any component that can return the value of a Universal Constant can
ICapeThermoUniversalConstants interface in order that clients can access th
interface is optional for all components. It is recommended that it is im

 implement the
ese values. This

plemented by
Property Package components and Material Objects being used by CAPE-OPEN Unit

 are described in this section:
 GetUniversalConstant
 GetUniversalConstantList

Operations.

The following methods

101

GetUniversalConstant
Name oUniversalConstants

od Name niversalConstant

CapeVariant

tion

iev a

Interface ICapeTherm

Meth GetU

Returns

Descrip

Retr es the value of Universal Constant.

Arguments

Name Type Description
[in] constantId Strin ist of constants

 by using the
GetUniversalConstantList method.

 Cape g Identifier of Universal Constant. The l
supported should be obtained

[out, retval] CapeVariant Value of Universal Constant. This could be a numeric or
nits of
5.1.

constantValue a string value. For numeric values the u
measurement are specified in section 7.

Notes

Universal Constants (often called fundamental constants) are quantities like the gas constant,
or the Avogadro constant.
Exceptions

ECapeNoImpl –The operation GetUniversalConstant is “not” implement
method can be called for reasons of co

ed even if this
mpatibility with the CAPE-OPEN standards. That is

to say that the operation exists, but it is not supported by the current implementation.

ECapeInvalidArgument –for example, UNDEFINED for constantId argument is used, or
value for constantId argument does not belong to the list of recognised values.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetUniversalConstant operation, are not suitable.

102

GetUniversalConstantList
Name niversalConstants

od Name ersalConstantList

CapeArrayString

tion

nts

Interface ICapeThermoU

Meth GetUniv

Returns

Descrip

Returns the identifiers of the supported Universal Constants.

Argume

Name Type Description
[out, retval] CapeArrayString List of identifiers of Universal Constants. The list of

 7.5.1. constantIds standard identifiers is given in section

Notes

A component may return Universal Constant identifiers that do not belong t
in section 7.5.1. However, these proprietary identifiers may not be understoo
clients of this component.
Exceptions

o the list defined
d by most of the

ndards. That is

ported by the current implementation. This
may occur when the Property Package does not support any Universal Constants, or if it
does not want to provide values for any Universal Constants which may be used within the
Property Package.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetUniversalConstantList operation, are not suitable.

ECapeNoImpl –The operation GetUniversalConstantList is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN sta
to say that the operation exists, but it is not sup

103

6.8 ICapeThermoPropertyPackageManager
The ICapeThermoPropertyPackageManager interface should only be imple
Property Package Manager co

mented by a
mponent. This interface is used to access the Property

ribed in this section:
 GetPropertyPackageList
 GetPropertyPackage

Packages managed by such a component.

The following methods are desc

104

GetPropertyPackageList
Name PropertyPackageManager

od Name ertyPackageList

CapeArrayString

tion

s the names of the Property Packages being managed by a Property Package Manager
ponent.

Interface ICapeThermo

Meth GetProp

Returns

Descrip

Retrieve
com

Arguments

Name Type Description
[out, retval] CapeArrayString The names of the managed Property Packages
PackageNames

Notes

If no packages are managed by the Property Package Manager UNDEF
returned.

INED should be

ECapeNoImpl –The operation GetPropertyPackageList is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetPropertyPackageList operation, are not suitable.

Exceptions

105

GetPropertyPackage
Name

od Name opertyPackage

s CapeInterface

 a new instance of a Property Package with the configuration specified by the
kageName ent.

Interface ICapeThermoPropertyPackageManager

Meth GetPr

Return

Description

Creates
Pac argum
Arguments

Name Type Description
[in] PackageName CapeStrin one of the Property Packages managed by

this Property Package Manager component.
g The name of

[out, retval]
Package

CapeInterface The ICapeThermoPropertyRoutine inte
named Property Package.

rface of the

Notes

The Property Package Manager is only an indirect mechanism to create Pro
After the Property Package has been created, the Property Package Manage

perty Packages.
r instance can be

ed even if this
tandards. That is

 that the operation exists, but it is not supported by the current implementation.

 should be returned if the Property Package cannot be
created for any reason.

ECapeInvalidArgument – This error will be returned if the name of the Property Package
asked for does not belong to the list of recognised names. Comparison of names is not case
sensitive.

ECapeUnknown – The error to be raised when other error(s), specified for the
GetPropertyPackage operation, are not suitable.

destroyed, and this will not affect the normal behaviour of the Property Packages.
Exceptions

ECapeNoImpl –The operation GetPropertyPackage is “not” implement
method can be called for reasons of compatibility with the CAPE-OPEN s
to say

ECapeFailedInitialisation – This error

106

7. Property Descriptions

re shown in a combination of lower- and
upper-case characters, all identifiers must be treated as case-independent in any

s described in this document.

 all properties are base SI units. The unit to be used for each
property is listed along with the property identifier in these appendices. For more

 Bureau International des Poids et Mesures website

7.1 Case-sensitivity of identifiers
Although the identifiers listed in this section a

implementation of the interface

7.2 Units of measurement
The units of measurement for

information on units refer to the
http://www.bipm.fr/enus/3_SI/si.html.

7.3 UNDEFINED interpretation
Be aware that the UNDEFINED value depends on the type of the corresponding argument.

es not include an interpretation of
is is NULL (Empty object for VB).

r the particular
or the Temperature property.

UNDEFINED is never allowed in the property/ies or phases qualifiers.

also be used when an argument type is CapeArray and its length is 0
wise VB has s).

Identifiers for Basis
The following strings or placeholder may be used for the basis argument of the methods
described in this document.

This special value is described in [8]. Reference [8] do
UNDEFINED for a CapeInterface. For COM th

UNDEFINED is only used when one of the arguments is irrelevant fo
method, such as basis f

UNDEFINED must not be used to express a default value.

UNDEFINED must
(other problem

7.4

Identifier Meaning
Mole molar basis
Mass mass basis
UNDEFINED basis does not apply to the property

107

7.5 Property Identifiers

7.5.1 Universal constants
The following constants are returned by the GetUniversalConstant
ICa

method of the
peThermoUniversalConstants interface. The possible return types are Double or String.

 only the units o ent are sp ed in t OPEN standards, not the Note: f measurem ecifi he CAPE-
values.
Identifier typical value units return type
avogadroConstant 6.022 141 99(× 023 Double 1/mol 47) 1
boltzmannConstant 1.380 6503(2 Double 4)×10-23 J /K

idealGasStateReferencePr 101325 Double essure Pa
molarGasConstant 8.314 472(15) J /mol/ K Double

speedOfLightInVacuum 2.99792458(1)×108 m/s Double
standardAccelerationOfGravity 9.806 65 2 Double m /s

7.5.2 Pure compound constant properties

STRING-VALUED PROPERTIES

The following pro as string values by the GetCompoundConstant method perties are returned
of the ICapeThermoCompounds interface:
Identifier meaning
casRegistryNumber Chemical Abstract Service Registry Number
chemicalFormula Chemical formula
iupacName Complete IUPAC Name
SMILESformula SMILES chemical structure formula

CASRegistryNumber
The value of this constant is a variable-length character string that contains
numbers separated by

 a sequence of 3
 hyphens. There must be no leading zeros and no leading spaces. The

mbers with a simple string

t

intention is that it should be possible to compare two CAS nu
comparison

CAS numbers and other properties are accessible a

http://webbook.nist.gov/chemistry

Compounds can also be accessed directly. For example, compounds with the formula
C10H22 can be located with

http://webbook.nist.gov/cgi/cbook.cgi?Formula=c10h22&NoIon=on&Units=SI

or compounds can be located by name. For example

http://webbook.nist.gov/cgi/cbook.cgi?Name=water&Units=SI

CAS numbers can be undefined, for example for petroleum fractions, in which case
comparison has to be done by looking at constant properties.

108

ChemicalFormula
The formula is delivered in Hill nomenclature [10]: organic compounds: first C, then H,

 the formula for
dioxide may be returned as CO2 or C1O2. The formula string must be case-sensitive

nd CO (carbon

ay be non-integer, eg. Fe0.947O should be represented as Fe0.947O. The
icity must be a

lue Book [15, 16] for
ounds and the IUPAC Red Book [14] for inorganic compounds. The Blue book

other atoms alphabetical; inorganic compounds: all atoms alphabetical.

It is not obligatory to specify unitary atomicities explicitly. For example,
carbon
so that it is possible to distinguish between cases such as Co (cobalt) a
monoxide).

icity mThe atom
decimal separator in the character string that represents the non-integer atom
period (decimal point).

iupacName
Name assigned in accordance with the recommendations of IUPAC B
organic comp
is available online at http://www.acdlabs.com/iupac/nomenclature/ and the
also has s

 acdlabs website
oftware that can be used to derive the IUPAC name for an organic compound.

SMILESformula
The Simplified Molecular Input Line Entry Specification that represents the structure of the
molecule [9].

109

PROPERTIES WITH NUMERICAL VALUES

The following properties are returned by the GetCompoundConstant method of the
ThermoCompounds interface as numerical (Double) values. ICape

Identifier meaning units
acentricFactor Pitzer acentric factor

associationParameter association-parameter (Hayden-
O’Connell)

bornRadius m

charge

criticalCompressibilityFactor al compressibility factor Z critic

criticalDensity critical density mol/m3

criticalPressure critical pressure Pa

criticalTemperature cal temperature K criti

criticalVolume m3/mol critical volume

diffusionVolume diffusion volume m3

dipoleMoment dipole moment C m

energyLennardJones meter
t)

K Lennard-Jones energy para
(divided by Boltzmann constan

gyrationRadius radius of gyration m

heatOfFusionAtNormalFreezingPoint enthalpy change on me t normal
freezing point (101325 Pa)

J/mol lting a

heatOfVaporizationAtNormalB change on vaporization at
iling point (10)

J/mol oilingP enthalpy
oint normal bo 1325 Pa

idealGasEnthalpyOfFormation J/mol At25C

idealGasGibbsFreeEnergyOfFormation J/
At25C

mol

liquidDensityAt25C mol/m3 liquid density at 25 ºC

liquidVolumeAt25C liquid volume at 25 ºC m3/mol

lengthLennardJones Lennard-Jones length parameter m

molecularWeight relative molar mass

normalBoilingPoint boiling point temperature at 101325 Pa K

normalFreezingPoint melting point temperature at 101325 Pa K

parachor Parachor m3 kg0.25/(s0.5
mol)

110

Identifier meaning units
standardEntropyGas opy of gas J/mol Standard entr
standardEntropyLiquid standard entropy of liquid J/mol
standardEntropySolid standard entropy of solid J/mol
standardEnthalpyAqueousDilu ion J/mol tion Standard aqueous infinite dilut

enthalpy
standardFormationEnthalpyGas standa ation J/mol rd enthalpy change on form

of gas
standardFormationEnthalpyLiq standard enthalpy change on formation J/mol uid

of liquid
standardFormationEnthalpySolid standard enthalpy change

of solid
on formation J/mol

standardFormationGibbsEnerg ange on
ion of gas

J/mol yGas standard Gibbs energ
format

y ch

standardFormationGibbsEnerg ange on
mation of liquid

J/mol yLiquid standard Gibbs energ
for

y ch

standardFormationGibbsEnergy n
f solid

J/mol Solid standard Gibbs energ
formation o

y change o

standardGibbsAqueousDilutio aqueous in dilution J/mol n Standard
Gibbs energy

finite

triplePointPressure triple point pressure Pa
triplePointTemperature triple point temperature K
vanderwaalsArea van der Waals area m2/mol

vanderwaalsVolume van der Waals volume m3/mol

Standard conditions are 298.15 K (25 ºC) and the pre
GetUniversalConstant m

ssure returned by the
ethod for the property idealGasStateReferencePressure. If this

property is not available a reference pressure of 101325 Pa (1 atm) may be assumed.

Note that the ‘standardFormationGibbsEnergyGas’, ‘standardFormationGibbsEnergyLiquid’
and ‘standardFormationGibbsEnergySolid’ identifiers respectively replace the
‘standardFreeFormationEnthalpyGas’, ‘standardFreeFormationEnthalpyLiquid’ and
‘standardFreeFormationEnthalpySolid’ identifiers used in previous versions of this
specification.

111

7.5.3 Temperature-dependent pure compound properties
The following properties are returned as numerical (Double) values by the

ependentProperty me he ICapeThermoCompounds interface: GetTD thod of t
Identifier Meaning units
cpAqueousInfiniteDilution an infinitely

J/(mol K) Heat capacity of a solute

dilute aqueous solution.
 in

dielectricConstant ty of a condenser
tan dielectric

ctric.

 The ratio of the capaci
with a particular subs
to the capacity of the same condenser
with a vacuum for diele

ce as

expansivity Coefficient of linear expansion for a

id:sol T
L∂1

L
1 atm

∂ (where L is the length) at

1/K

fugacityCoefficientOfVapor Fugacity coefficient of vapour on the
saturation line

glassTransitionPressure Pa Glass transition pressure
heatCapacityOfLiquid he J/(mol K) Heat capacity (Cp) of liq

saturation line
uid on t

heatCapacityOfSolid Solid heat capacity (Cp) m J/(mol K) at 1 at
heatOfFusion Enthalpy change on fus

on the melting
i the solid

 line
J/mol on for

heatOfSublimation change on evap n of the

J/mol Enthalpy oratio
solid on the sublimation line

heatOfSolidSolidPhaseTransiti on phase transition J/mol on Enthalpy change
heatOfVaporization ange on evap tion of the

 l
J/mol Enthalpy ch ora

liquid on the saturation ine
idealGasEnthalpy Enthalpy of ideal gas J/mol
idealGasEntropy Temperature-dependent part of entropy J/(mol K)

of ideal gas
idealGasHeatCapacity) of ide as J/(mol K) Heat capacity (Cp al g
meltingPressure ure on melting line Pa Press
selfDiffusionCoefficientGas fficien s phase m2/s Self-diffusion coe t in ga

at 1 atm
selfDiffusionCoefficientLiquid -diffusion coefficient in liquid phase m2/s self

on saturation line
solidSolidPhaseTransitionPres nsiti Pa sure Pressure at phase tra on
sublimationPressure Vapour pressure of solid on the

sublimation line
Pa

surfaceTensionSatLiquid Surface tension of liquid on the
saturation line

N/m

thermalConductivityOfLiquid Thermal conductivity of liquid on
saturation line

W/(m K)

thermalConductivityOfSolid Thermal conductivity of solid at 1 atm W/(m K)
thermalConductivityOfVapor Thermal conductivity of dilute gas W/(m K)

112

113

Identifier Meaning units
vaporPressure of satur id Pa Vapour pressure ated liqu
virialCoefficient ent as m3/mol Second virial coeffici of g
viscosityOfLiquid Viscosity of liquid on sat Pas uration line
viscosityOfVapor iscosity in dilute gas state Pas V
volumeChangeUponMelting Volume change for the s the

melting line
m3/mol olid on

volumeChangeUponSolidSolid so phase m3/mol PhaseTr Volume change upon
ansition

lid-solid
transition

volumeChangeUponSublimati lume change for the solid on the m3/mol on Vo
sublimation line

volumeChangeUponVaporizat nge for the l the
saturation line

m3/mol ion Volume cha iquid on

volumeOfLiquid Volume of liquid on saturation line m3/mol
volumeOfSolid Volume of solid at 1 atm m3/mol

The properties in the table above are independent of pressure. Properties like the perfect gas
For properties at
 the pressure for

zation property is given by the vaporPressure property at the same

lation of one of
esponsible for calculating the

re value.

ependent pure compound properties
merical (Double) values by the

GetPDependentProperty method of the ICapeThermoCompounds interface:

heat capacity or virial coefficient are independent of pressure by definition.
a phase transition, the pressure is implied by the temperature. For example,
the heatOfVapori
temperature.

If a software component requires the value of the pressure as part as the calcu
the properties listed above, the software component is r
pressu

7.5.4 Pressure-d
The following properties are returned as nu

Identifier Meaning units
boilingPointTemperature Temperature at liquid-vapour transition K
glassTransitionTemperature Glass transition temperature K
meltingTemperature Temperature on melting line K
solidSolidPhaseTransitionTemperature Temperature at phase transition K

The properties in the table above are independent of temperature. For properties at a phase
transition, the temperature is fixed by the pressure.

If a software component requires the value of the temperature as part as the calculation of
one of the properties listed above, the software component is responsible for calculating the
temperature value.

7.5.5 Non-constant single-phase mixture prop

114

erties
le. See section 7.5.7 for more information on entries in this tab

Identifier Meaning

type of
prop- dimens over-
erty ionality units basis all

activity Activity I 1 U
activityCoefficient t U Activity coefficien I 1
compressibility

pressibilityIsothermal com
TP

V
V

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂1

I 1/Pa U

compressibilityFactor mpressibility factor Co NRT
PVZ = I U Y

density Density I ol/m3 m le/mass Y m o
diffusionCoefficient es in

to all other species
I 2 2/s U Binary diffusion coefficients for all sp

mixture relative
eci m

dissociationConstant p ding t
a dissociation reaction.

I U Chemical equilibrium constant corres on o

enthalpy e halpy E m e/mass Y Enthalpy (may or may not include th ent
of formation)

J ol

enthalpyF r tion E m e/mass Y Enthalpy, including the enthalpy of fo ma J ol
enthalpyNF m e/mass Y Enthalpy, not including the enthalpy of

formation
E J ol

entropy Entropy (may or may not include the entropy of
)

m e/mass Y
formation

E J/K ol

entropyF Entropy, including the entropy of form on E m le/mass Y ati J/K o
entropyNF Entropy, not including the entropy of f ation E le/mass Y orm J/K mo
excessEnthalpy Excess enthalpy E J mole/mass
excessEntropy Excess entropy E J/K mole/mass
excessGibbsEnergy Excess Gibbs energy E J mole/mass

115

Identifier Meaning

type of
prop-
erty

dimens over-
ionality units basis all

excessHelmholtzEnergy energy E m le/mass Excess Helmholtz J o
excessInternalEnergy ternal energy E m le/mass Excess in J o
excessVolume E m e/mass Excess volume m3 ol
flow pound in a given Phase (or E 1 mol/s mole/mass Y Flows of each Com

the overall mixture)
fraction of each Compound in

ven Phase (or the overall mixture)
I 1 mole/mass Y Molar (or mass) fractions

a gi

fugacity Fugacity I 1 a U P
fugacityCoefficient U Fugacity coefficient I 1
gibbsEnergy Gibbs energy E m e/mass Y J ol
heatCapacityCp ty at constant pressure (Cp E m e/mass Y Heat capaci) J/K ol
heatCapacityCv acity at constant volume (Cv) E m e/mass Y Heat cap J/ K ol
helmholtzEnergy Helmholtz energy E m le/mass Y J o
internalEnergy nternal energy E J mole/mass Y I
jouleThomsonCoefficient I /Pa U

HP
⎟
⎠

⎜
⎝ ∂

T ⎞⎛ ∂ K

logFugacity Natural logarithm of fugacity (express in Pa) I 1 ed U
logFugacityCo logarithm of fugacity coefficient I 1 U efficient Natural
meanActivityCoefficient The

coefficients of the ions in an electrolyte
solution.

I 1 U geometrical mean of the activity

molecularWeight Mixture average molecular weight (relative
molar mass)

I U

116

Identifier Meaning

type of
prop-
erty

dimens over-
ionality units basis all

osmoticCoefficient ,
= - nW ln (xW fW)/(nS ∑νi)

oles of
r; fW is

νI is
the stoichiometric coefficient of component i.

I U A asure of activities, defined asme water
φ
where,
nW is the moles of water; nS is the m
solute; xW is the mole fraction of wate
the symmetric activity coefficient of water;

pH pH I U
pOH pOH I U
phaseFraction e molar (or mass) fraction of the flu that is I m e/mass Th id ol

in the specified phase
pressure Pressure I Pa U Y
speedOfSound odynamic speed of sound w, wh e

)/)(TMv β see [13]

I m/s U Therm er

/(2
vp CCw =

temperature U Y Temperature I K
thermalConductivity rmal conductivity I W/(m K) U The
totalFlow Matter flow of a Phase or the overall m xture E m e/mass Y i mol/s ol
viscosity Viscosity I Pa s U
volume Volume E m3 mole/mass Y

117

le.
7.5.6 Non-constant two-phase properties
See section 7.5.7 for more information on entries in this tab

Identifier meaning

type of
prop-
erty

dimens
ionality units basis

kvalue coefficients for a pair of
phases d a
Ratio of fugacity

 define s follows:

12 / iiiK φφ= where 1iφ is the fugacity

coefficient of compound i in phase 1 and 2iφ is
the fugacity coefficient in phase 2

I 1 U

logKvalue Natural logarithm of K-value I U 1
surfaceTension Interfacial tension for a pair of phases I N/m U

 118

7.5.7 Notes

IDENTIFIERS
The identifiers in sections and include most of those used in previous
specification but there are some changes. Partial molar properties no longer
identifiers because they can be identified as mole number derivatives of anoth
Gibbs free energy and Helmholtz free energy are now identified by their recomme
Gibbs energy and Helmholtz energy. The ‘energy’ identifier has been replaced by ‘i
The previous identifier of heatCapacity is changed to heatCapacityCp and th
heatCapacityCv has been added. The

 7.5.5 7.5.6 versions of this
have their own

er property. The
nded names of
nternalEnergy’.

e corresponding
identifiers ‘dewPointPressure/Temperature’ and

 of Equilibrium
CalcEquilibrium

enthalpy and entropy identifiers are still supported but it is not specified whether or not the
lude the enthalpy/entropy of formation. However the properties must always

ot permissible to

TYPE OF PROPERTY

‘boilingPointTemperature’ have been removed because these are the results
Calculations rather than phase properties. They should be evaluated using the
method of the ICapeThermoEquilibriumRoutine interface.

New property identifiers enthalpyF, entropyF, enthalpyNF and entropyNF have been added. The

properties inc
correspond to the ‘NF’ variant or always correspond to the ‘F’ variant. It is n
switch between the two.

 shows whether the property is extensive: E, or intensive: I. An extensive property, like

ntrast, an intensive
, is independent of the quantity of matter making up

This column
the volume, depends directly on the quantity of material involved. By co
property, such as the temperature or viscosity
the system

DIMENSIONALITY
The dimensionality of the property indicates whether it has a scalar, vector or highe

For properti

r-rank value.

es that are scalar quantities no entry is made.

1 indica r quantity (rank 1 tensor) where the number of values is equal to the number of
pounds.

f values is equal to the number of
 A are returned as a sequence of values in

ndable to higher-

tes a vecto
compounds. Values are returned as a 1-dimensional array in the same order as the com

2 indicates a rank 2 tensor quantity where the number o
compounds squared. The components of some quantity
the order: {a11, a21, … an1, a12, a22, … an2, …, a1n, a2n, … ann }. This convention is exte
rank quantities.

BASIS AND UNITS
The ‘Basis’ column shows the basis settings that may be used for each pro
UNDEFINED which is used when a molar or mass basis is not applicable.

perty. U means

For properties where only one basis is applicable, the units are fixed.

Extensive thermodynamic properties (enthalpy, entropy, volume etc.) may be expressed on a molar
or mass basis. The units shown must be changed to match the Basis setting: for a molar basis the
unit is divided by ‘mol’, for a ‘mass’ basis the unit is divided by ‘kg’. For example, the property
‘enthalpy’ with a basis of ‘mole’ has units of J/mol and with a basis of ‘mass’ it has units of J/kg.

For intensive properties where there is a choice of ‘mole’ or ‘mass’ basis, the unit shown
corresponds to the molar basis and ‘kg’ must be substituted for ‘mol’ if a mass basis is used.

 119

OVERALL
Properties which are allowed in the GetOverallProp or SetOverallProp methods of the

position and the
 on a material object before requesting an equilibrium calculation. In

he overall phase,

pressure, …) are
e that

pon calculation,
s well as set the

ny of its clients.
e that enable the

, and ask for the
e. The overall is calculated from

the contribution of each phase. For extensive properties, the overall value generally follows from
s times the phase properties; such summation being performed by

e, the client must

PHASE ORDER FOR TWO-PHASE PROPERTIES

ICapeThermoMaterial interface, are indicated by a Y entry in this column.

Overall properties are used as inputs to equilibrium calculations: the overall com
flash constraints must be set
addition, the equilibrium calculation must set overall pressure and temperature for t
if not part of the flash specification.

Overall properties (total flow and composition, or compound flows, temperature,
the ones that are typically transported in streams in a flowsheet. Unit operations can assum
feed streams are in equilibrium, and that the flow rate of the feeds are available. U
unit operation must perform an equilibrium calculation on the product streams, a
flow rate.

Calculation of overall properties cannot be requested on a Property Package by a
The client needs to obtain the necessary bits of information from a Property Packag
calculation overall properties, i.e. the client must iterate over all present phases
calculation by the Property Package of the property for each phas

summation of the phase fraction
the client. Typically the overall property is desired at phase equilibrium; in this cas
request the phase equilibrium calculation before calculating the overall property.

f the two-phase properties listed in section 7.5.6 and all the composition derivatives depend

ase 1, this is the
ethod of the

bels argument.

Some o
on the interpretation of phase order. When the definitions in section 7.5.6 refer to ph
first phase in the phaseLabels argument of the CalcTwoPhaseProp m
ICapeThermoPropertyRoutine interface. Phase 2 is the second phase in the phaseLa

FUGACITY
Section includes four different identifiers that may be used to request infor
fugacity of a compound in a mixtur

 7.5.5 mation about the
e (fugacity, fugacityCoefficient, logFugacity and

logFugacityCoefficient). It is not the intention to imply that all of these properties should
orted by components that implement the ICapeThermoPropertyRoutine

 mixtures is the
defined at zero

nge of numerical values to
It is t recommended that when a component supports any of these properties

gcit

ative
Derivatives are built from the property identifier: a point with a D meaning ”Derivative” and the
name for the independent variable. The only independent variables that may be specified are
temperature, pressure, and mole numbers or mole fractions, as shown in the table below.

necessarily be supp
interface. The natural quantity that arises from most thermodynamic models of
logFugacityCoefficient. Unlike the fugacity itself this quantity is also well-
concentration of a compound and the logarithmic form allows a wider ra
be represented. herefore
at least the logFu yCoefficient should be supported.

7.6 Deriv s

Derivative identifier meaning units
property.Dtemperature derivative of property with respect to temperature

with pressure and composition fixed
[property]/K

property.Dpressure derivative of property with respect to pressure
with temperature and composition fixed

[property]/Pa

 120

property.Dmoles ect to mole
perature and

ure containing
 material. For some property

H the ith element of derivative is

derivatives of property with resp
number keeping pressure and tem
other mole numbers fixed for a mixt
a total of one mole of

ijnTpi
i n

≠

⎟
⎠

⎜
⎝ ∂ ,,

i

For a two-phase property the m
deri

Hh ⎟
⎞

⎜
⎛ ∂

==H.Dmoles

ole number
vatives are evaluated independently for each

re of
 in the other

[property]/mol

phase by keeping the temperature an
both phases and the mole numbers
phase fixed

d pressu

Property.Dmo ect to mole
perature and
 fractions are
ables. These

uction and do
eaning. The
plementation

e property package and may
therefore not be unique. So mole fraction
derivatives from different Property Packages can’t

However they
atives with

directions d that lie in the plane

, i.e.

The directional derivative is the scalar product of the
derivative (“gradient”) and the direction
d:

lFraction derivatives of property with resp
fraction, keeping pressure and tem
other mole fractions fixed. The mole
therefore treated as independent vari
derivatives are a mathematical constr
not necessarily have a physical m
derivatives depend on the specific im
of the property in th

be expected to coincide in general.
should coincide as directional deriv

1=i
i

1=i
i 1=∑

N

x 0=∑
N

d .

∑∇
= ∂

⋅
∂

=⋅
N

i i
x x

xxH
dPTxH

1

1 ,,(
),,(

K
i

N d
PT),,rr

For some property H, the ith element of the
derivative is

i

N

PTijxi xx ∂
=⎟⎟

⎠
⎜⎜
⎝ ∂

=
≠

tionH.DmolFrac
,,

For a two-phase property the mole number
derivatives are evaluated independently for each

xxHH ∂⎞⎛ ∂ ,,(1 K

phase by keeping the temperature and pressure of
both phases and the mole fractions in the other phase
fixed.

[property]

Derivatives of two-phase properties are not equilibrium derivatives. That means that composition
derivatives are evaluated independently for each phase keeping the temperature and pressure of
both phases and the composition of the other phase fixed. Similarly a temperature (or pressure)
derivative does not imply any change in the phase compositions or the pressure (or temperature).

 121

re are the sum of the
derivatives for each phase even if the temperatures or pressures in both phases are not the same.

ature on a molar

For mole number derivatives the combination of basis and property type leads to a number of
possible combinations. The table below gives exampl .

For a two-phase property the derivatives with respect to temperature or pressu

7.6.1 Basis and Units
The units for a derivative property depend on the units of the property itself, the basis specified and
the type of derivative, as shown in the table above. For example, enthalpy.Dtemper
basis has units of J/(K mol) and on a mass basis it has units of J/(K kg).

es of all the possibilities

Property type Basis
Units of .Dmoles

Example of property derivative
e UNDE logFugacityCoefficient 1/mol Intensiv FINED

 mole density (mol/m3)/mol
)/mol mass density (kg/m3

Extensive mole enthalpy J/mol

r basis is allowed. This should be interpreted as the mole

T

ature and Dpressure derivatives return the same number of values and in the same order
n a single value,

same number of

lues as there are

 Dmoles derivatives of vector-valued mixture properties are, conceptually, a sequence of vectors.
le number of the
le number of the

tual representation of these values will be a single sequence
that contains all the values of these vectors as a one-dimensional array.

 For example, activity.Dmoles with respect to all compounds will return the following
values:

For extensive proper
num

ties only the mola
ber derivative of the extensive property for one mole of substance and it corresponds to a

partial molar property.

7.6.2 Number of values returned and order
he following rules apply.

 Dtemper
as the corresponding property. For example, enthalpy.Dtemperature will retur
whereas fugacityCoefficient.Dtemperature will return a vector of values.

 Dmoles derivatives of scalar properties return a vector of values with the
elements as there are compounds in the mixture. For example, enthalpy.Dmoles with a basis of
Mole will return a vector of the partial molar enthalpies containing as many va
compounds.

The first vector returns the derivatives of all properties with respect to the mo
first compound. The second vector returns the derivative with respect to the mo
second compound, and so on. The ac

{ },,,,,,,,,,,,, 321333231323222121312111 nnnnnnnn aaaaaaaaaaaaaaaa KLKKK

where the derivative of the activity of compound i with respect to the mole number of
compound j is

jp
j⎠

⎞

∂
∂
=

jknTpj

i
ij n

a
a

≠

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
,,

 122

nk-m quantity are returned as a sequence of values

e composition of
ves w.r.t. phase 2. The phase order is defined in the section Phase

 The rema to DmoleFraction derivatives.

urrent state of a
ynamic software
d. In addition to
onents (such as
ponent (such as

 of the Property
m one computer

e. For example,
ious version may

odynamic software component to function in a manner consistent with the saved

operty Packages)
erface document

ty, GetSizeMax
, InitNew. Implementation of persistence also allows modification of the

e component’s configuration while it is part of the simulation case, e.g. via
t ICapeUtilities; as
s h expose parameters
[18]. For Property Packages allowing Edit functionality or modification by means of changing
parameter values, persistence is a prerequisite, as otherwise the modifications will be lost between
simulation sessions.
Implementation tips:

lities::Initialize.
 allocate space for

failure.

8.1 Initialization and termination

A Property Package Manager software component is a top-level CAPE-OPEN object (or PMC primary
object as outlined in the Methods & Tools integrated Guidelines [8] documentation) and should therefore
implement the ICapeUtilities interface. For a stand-alone Property Package, this also holds. The simulation
environment is expected to call Initialize and Terminate on such objects.

A Property Package that is created from a Property Package Manager is, in accordance with the definition of
PMC primary objects and PMC secondary object in the also a top-level CAPE-OPEN object. Therefore, it is
expected of the Property Package to implement ICapeUtilities, and it is expected from the simulation

 In general, Dmoles derivatives of a ra
containing the components of a rank-m+1 quantity.

 For two-phase properties the mole number derivatives are returned w.r.t. th
phase 1 followed by derivati
order for two-phase properties in 7.5.7.

rks for Dmoles derivatives in this section also apply

8. Implementation of the Persistence Interface
It is expected that simulation environments will allow the possibility to store the c
simulation case in order to be able to restore it at any time in the future. Thermod
components such as Property Packages are a part of the simulation case being save
storing the information required to recreate the thermodynamic software comp
CLSID and Property Package name), the information specific to the software com
the content of the Property Package) should be stored along with the simulation case. This is
important to ensure consistency between simulation sessions in case the content
Package has been changed, but also to allow transfer of the simulation case fro
system to another.

Persistence may also help to preserve consistency of the simulation case over tim
when thermodynamic software component versions change, a stored state of a prev
allow the therm
version or, alternatively, it may issue an appropriate warning.

Therefore, it is recommended for thermodynamic software components (such as Pr
to implement the Persistence Interfaces as described in Persistence Common Int
[19].

The following methods should be implemented: Load, Save, GetClassID, IsDir
and, optionally
thermodynamic softwar
he Edit method of ICapeUtilities. Note that Property Packages should implement
uc , it is possible for a Property Package to have Edit functionality as well as to

• The Load or (if Implemented) InitNew methods should be called before ICapeUtiti
• The GetSizeMax method must be properly implemented as it is called by PMEs to

storing the content of a PMC . If GetSizeMax returns too small a value, this may lead to allocation

 123

ion (and possibly persistence) are performed for such Property
Packages as if it were a stand-alone Property Package.

environment that initialization and terminat

 124

mic and Physical Properties v1.0
9. Bibliography

1. “Open Interface Specification Thermodyna ”, CAPE-OPEN, 2002.

2. “Unit Operation Specification”, CAPE-OPEN, 2001.

3. “Open Interface Specification: Reactions Interface”, CAPE-OPEN, 2003.

4. “Open Interface Specification: Identification Common Interface”, CAPE-OPEN, 2003.

5. “Open Interface Specification: Error Common Interface”, CAPE-OPEN, 2003.

es, Addison-Wesley, 1995. 6. “Design Patterns”, Gamma, Helm, Johnson, Vlissed

7. “Open Interface Specification: Petroleum Fractions Interface”, CAPE-OPEN, 2003.

8. “Methods & Tools Integrated Guidelines”, CAPE-OPEN, 2003.

. 9 http://www.daylight.com/smiles/f_smiles.html , see also: D. Weininger, "SMILES 1.Introduction and

tion Division Of The

ion 1.11, 12 July 2008.

1 entific (1982)

Press, 1979. Edited
Rigaudy and S P Klesney. [ISBN 0-08-022369-9]

3”, Blackwell
d J C Richer. [ISBN 0-632-03488-2]

Encoding Rules", J. Chem. Inf. Comput. Sci., 28, 31 (1988).

10. Hill, J. “On A System Of Indexing Chemical Literature; Adopted By The Classifica
U. S. Patent Office”, Am. Chem. Soc. 22(8), 478-494 (1900).

11. “Thermodynamics and Physical Properties v1.1”, version 2.22, 23 October 2006.

12. “Errata and clarifications, Thermodynamics and Physical Properties v1.1”, vers

3. Rowlinson, J.S. and Swinton, F. L., “Liquids and Liquid Mixtures”, Butterworth Sci

14. “Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H”, Pergamon
by J

15. “A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 199
Scientific Publications, 1993. Edited by R Panico, W H Powell an

16. “Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005”, Royal Society of Chemistry,
2005. Edited by N G Connelly and T Damhus (with R M Hartshorn and A T Hutton) [ISBN 0-85404-
438-8].

17. “Open Interface Specification: Utilities Common Interface”, CAPE-OPEN, 2003.

18. Open Interface Specification: Parameter Common Interface, CAPE-OPEN 2003.

19. Open Interface Specification: Persistence Common Interface, CAPE-OPEN 2003

http://www.colan.org/Spec%2010/Unit%20Operations%20Interface%20Specification.pdf
http://www.colan.org/Spec%2010/Chemical%20Reactions%20Interface%20Specification.pdf
http://www.colan.org/Spec%2010/Petroleum%20Fractions%20Interface%20Specification.pdf
http://www.daylight.com/smiles/f_smiles.html
http://www.colan.org/Spec%2010/Persistence%20Common%20Interface.pdf

	1. Introduction
	2. Audience
	3. Glossary
	4. Scope
	5. Conceptual Object Model
	5.1 The Description of Material
	5.2 Material Object responsibilities
	5.2.1 Interfaces used by a Physical Property Calculator to access Material Objects
	5.2.2 Interfaces used by a Equilibrium Calculator to access Material Objects
	5.2.3 Interfaces used by a Unit Operation to access Material Objects
	5.2.4 Material Object behaviour

	5.3 Equilibrium Calculator component responsibilities
	5.4 Equilibrium Calculator behaviour
	5.5 Physical Property Calculator component responsibilities
	5.6 Physical Property Calculator behaviour
	5.7 Property Package Component responsibilities
	5.8 Property Package component behaviour
	5.9 Property Package Manager responsibilities
	5.10 COM Implementation details
	5.11 CORBA Implementation details

	6. Interface Reference
	6.1 ICapeThermoMaterial
	6.2 ICapeThermoMaterialContext
	6.3 ICapeThermoCompounds
	6.4 ICapeThermoPhases
	6.5 ICapeThermoPropertyRoutine
	6.6 ICapeThermoEquilibriumRoutine
	6.7 ICapeThermoUniversalConstants
	6.8 ICapeThermoPropertyPackageManager

	7. Property Descriptions
	7.1 Case-sensitivity of identifiers
	7.2 Units of measurement
	7.3 UNDEFINED interpretation
	7.4 Identifiers for Basis
	7.5 Property Identifiers
	7.5.1 Universal constants
	7.5.2 Pure compound constant properties
	String-valued properties
	Properties with numerical values

	7.5.3 Temperature-dependent pure compound properties
	7.5.4 Pressure-dependent pure compound properties
	7.5.5 Non-constant single-phase mixture properties
	7.5.6 Non-constant two-phase properties
	7.5.7 Notes
	Identifiers
	Type of property
	Dimensionality
	Basis and Units
	Overall
	Phase order for two-phase properties
	Fugacity

	7.6 Derivatives
	7.6.1 Basis and Units
	7.6.2 Number of values returned and order

	8. Implementation of the Persistence Interface
	9. Bibliography

