CAPE-OPEN

Thermodynamic and Physical Properties
vl.l

‘o)
-
™ id

ARCHIVAL INFORMATION

Filename CO Thermo 1.1 Specification.doc
Authors CO-LaN consortium

Status Public

Date 10 May 2011

Version version 3.11

Number of pages 124

Versioning

version 3 edited by Richard Szczepanski (Infochem) and
Jasper van Baten (AmsterCHEM)

Version 2.22 edited by Michel Pons (CO-LaN), Richard
Szczepanski (Infochem) and Jasper van Baten (AmsterCHEM)

Additional material

COM IDL

Web location

Implementation
specifications version

11

Comments

IMPORTANT NOTICES

Disclaimer of Warranty

CO-LaN documents and publications include software in the form of sample code. Any such
software described or provided by CO-LaN --- in whatever form --- is provided "as-is" without
warranty of any kind. CO-LaN and its partners and suppliers disclaim any warranties including
without limitation an implied warrant or fitness for a particular purpose. The entire risk arising out of
the use or performance of any sample code --- or any other software described by the CAPE-OPEN
Laboratories Network --- remains with you.

Copyright © 2001-2011 CO-LaN. All rights are reserved unless specifically stated otherwise.

CO-LaN is a not for profit organization established under French law of 1901.

Trademark Usage

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in CO-LaN publications, and the authors are aware
of a trademark claim, the designations have been printed in caps or initial caps.

Microsoft, Microsoft Word, Visual Basic, Visual Basic for Applications, Internet Explorer, Windows
and Windows NT are registered trademarks and ActiveX is a trademark of Microsoft Corporation.

Netscape Navigator is a registered trademark of Netscape Corporation.

Adobe Acrobat is a registered trademark of Adobe Corporation.

SUMMARY

This document describes the CAPE-OPEN Thermodynamic and Physical Properties interfaces.
These interfaces allow software components providing thermodynamic and physical property
calculations to be used in a Process Modelling Environment (PME). The first part of the document
describes a conceptual model that shows how these components are used in a PME. The second half
contains reference material for each method in the interfaces.

ACKNOWLEDGEMENTS

Many individuals and their organizations have contributed to this document. The following were
amongst the main ones:

Peter Banks Peter Banks Associates, representing BP
Werner Drewitz BASF AG

Michael Halloran then with AspenTech

Daniel Pifiol then with Hyprotech S.L.

Michel Pons CO-LaN and previously TOTAL
Richard Szczepanski Infochem Computer Services Ltd.
Jasper van Baten AmsterCHEM

The CO-LaN Thermodynamics Special Interest Group has been active in reviewing and improving
the specification and has provided a great deal of valuable input.

CONTENTS

51

52
521
522
523
524

53

54

55

5.6

5.7

58

5.9

5.10

5.11

6.1

6.2

6.3

6.4

INTRODUCTION. ..ttt a e e e e e e e ean s 9
AUDIENCE ... e e e e et e e e e e e aans 10
GO S S A R Y ittt 10
1] 12
CONCEPTUAL OBJECT MODEL ...cccuiiiiiiiici et 14
The Description Of MAterialcccviieieieic e 18
Material Object reSPONSIDIIITIESciiiiiiiee s 19

Interfaces used by a Physical Property Calculator to access Material Objectsc..ccceeveveiennnnne. 19

Interfaces used by a Equilibrium Calculator to access Material ObJectscccvvvivviveciercrererenn, 20

Interfaces used by a Unit Operation to access Material ObJectScccccevvvivvviiv i, 21

Material OBJECt DENAVIOUL..........c.eiiiiiiiieieees sttt re e era e enee s 22
Equilibrium Calculator component responsibilities..........cccoviiiieiiciiicic e 23
Equilibrium Calculator BENAVIOUTcoviiiii e e 26
Physical Property Calculator component responsibilities ..o, 26
Physical Property Calculator Behaviourcccviveiiici s 29
Property Package Component reSponSibDIlItIeSccveriieiineie i 29
Property Package component DENAVIOUNccccvvviieieiie s 33
Property Package Manager reSponSibilities..........cocviiiiiiiiiiii e 33
COM ImpIementation etailS ..o e 34
CORBA Implementation detailscooeiiiiiiiiiceiee e e 35
INTERFACE REFERENCE ... 36
1CAPETHEIMOMALEIIAL ...t sre st reeneera e e eneeneens 36
1CapeThermoMaAterialCONTEXL..........ciii it sreere e eneeneens 57
1CaPeTherMOCOMPOUNGSvvieierieiiiesiesteste et e e ete st st e e e e e e e e srestesreeaeereessenseseestesreaneesannseneeseens 61
1CAPETNEIMOPRASES ..ottt et b e et eb e et b ettt sb et b nnene s 74

6.5
6.6
6.7

6.8

7.

7.1
7.2
7.3
7.4

75
7.5.1
7.5.2
7.5.3
754
7.5.5
7.5.6
7.5.7

7.6
7.6.1
7.6.2

8.

9.

1CapPeThermMOPIrOPErtYROULINEc.c.ccuiiiciiece et ettt s beste e enee e 80

1CapeThermoEqUIlIDIIUMROULINEcciiiicc e 94
1CapeThermoUNiVErsalCONSTANTScccccviieieierere et ee s 101
1CapeThermoPropertyPackageManagErccvcueierereieieeeereee e sie e e se e sresre e naesaeseeneenes 104
PROPERTY DESCRIPTIONS ... 107
Case-SensSitivity OF IHENTITIEIS.ooi i bbb 107
UNItS OF MEBASUTEIMENT ..ottt ettt st et et b abe e ene e 107
UNDEFINED INTEIPIEtationcceciiieiieiiiiiie et e ettt e st e e etestesbe e snesresneensesnens 107
o LT oL) T g (0] gl =T T SRS 107
g o]0 T= YA o LT 0] T 108
UNIVEISAL CONSEANTS ...ttt ettt s b e bbbt e st e e e sb et e sbe bt eb e e bt e s e e e ennas 108
Pure compound CONSLANT PIrOPEITIEScveviiveriiiieiecteeee e ete e ste e te e et e et e st st e b e sbeereere e e eseesneeas 108
Temperature-dependent pure COMPOUNT PrOPEITIESccvcvireierierese st e e re e 112
Pressure-dependent pure COMPOUNG PrOPEITIES.......eiiiieieieiieiese e e ete e e et re e sre e e e e e nas 113
Non-constant single-phase MIXtUre PrOPErtieSccocvviveveieierererie e s se s e sreeneas 114
NON-constant tWo-Phase PrOPEITIESveuerierererere st et ee et aesresae e sneereaneeneas 117
N[0 (=TT TP TSSOSO PP PP URPRPROPOY 118
DBIIVALIVES. ...ttt sttt bbbt bt b e b e b e b et e b e e b et et e e b et et e ebe e be et e et e ebe e rennes 119
BaSiS QNG UNILSeciiiiicic ettt te e re b e s ar e sbe e s be e s beebeesbeetbesteesbeesteeneeas 121
Number of values returned and OFUEI...........oieiiie i 121
IMPLEMENTATION OF THE PERSISTENCE INTERFACE 122
BIBLIOGRAPHY ..o 124

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8:

INEITACE QIAQIAMooveee e st sre e b ne e 14
Object diagram on proprietary implementations.............ccooerieiiierenienie e 16
Communication between sockets and PIUGScocvviveieiicic e 17
Interfaces required on a SOFtWare ODJECEcocviiiiiccce e 21
Conceptual SEqUENCE DIAGIAMcvviiiiiieriiiteieeeeee et 25
Conceptual SEqUENCE DIAGIAMcveiiiiiiriiiieie e 28
PME is asked t0 IMPOIT @ PP........ooiiiiie ettt nnee s 31
Streams connected to @ UNIT and calculation..............ccocooeveiiiiiiiiiiceecc e 32

1. Introduction

This interface specification is a complete revision of the previous CAPE-OPEN
Thermodynamic and Physical Properties interface specification (version 1.0) described in
reference [1]. The functionality covered by the interfaces is slightly extended, but the main
motivations for the changes are simplification, increased flexibility and the removal of
ambiguities. These are the issues that emerged most strongly from testing implementations
of the original specification. This document is designed to make it easier to understand the
interfaces, and therefore to implement CAPE-OPEN components, and to make inter-
operability of CAPE-OPEN components more easily achievable.

Compared to previous versions of the specification, this one has more interfaces but fewer
methods. The methods are logically grouped in interfaces to remove duplication and the
result is a cleaner and more abstract design.

The new functionality covered by the specification falls into two areas. Firstly, the interfaces
and methods related to equilibrium calculations are expanded to accommodate specialist
equilibrium calculation tools, whose capabilities go beyond those of typical commercial
simulators. Secondly, the description of phases is extended to provide better support for
multi-phase calculations.

The latest version of this document (version 3) is a revision of the previously published
version 1.1 specification [11]. There are no changes to the formal definition of the interfaces
or methods. However, experience with the increasing number of implementations has shown
the need for clarifications of the expected behaviour of the software components described.
In response, the CO-LaN Thermodynamics Special Interest Group has produced an “Errata
and clarifications” document [12] which is now incorporated in this updated text.

The principal changes in the document are listed below.

e Addition of mole fraction derivatives.

e New property identifiers enthalpyF, enthalpyNF, entropyF, entropyNF.
e New universal constant: idealGasStateReferencePressure.

e Removed requirement for SetPresentPhases to make a phase ‘present’ before any
properties are set.

e A Material Object must implement the 1CapeThermoPhases interface.

o Clarification of intended use of SetPresentPhases and GetPresentPhases methods.
e CheckEquilibriumSpec requires a prior SetPresentPhases call.

e Clarification of chemicalFormula property format.

e Expanded definition of “Normal” and “Retrograde” in CalcEquilibrium method.
e Clarification of SetMaterial method usage.

e Clarification of meaning and usage of Overall phase properties (section 7.5.7).

¢ New section on Implementation of the Persistence Interface (section 8).

2. Audience

This document is intended primarily for software developers who want to build CAPE-
OPEN Property Package, Equilibrium Calculator and Physical Property Calculator
components. It is also intended for the developers of other software components, such as
Unit Operations and Reaction Packages, which make use of these Thermodynamic and
Physical Properties software components. Finally, it is intended for developers of CAPE-
OPEN-compliant Process Modelling Environments because it describes how the interfaces
are to be used to implement communication between the environment and the external
software components.

Designers of other CAPE-OPEN interface specifications should read this document to
ensure consistency across the various designs.

For any reader an understanding of UML diagrams is assumed.

This document is not intended for end-users of CAPE-OPEN software components or
process simulation software.

3. Glossary

Material

A Material is a mixture of one or more Compounds occurring in one or more Phases. A
Material is characterised by the values of Physical Properties, which can describe the overall
Material or the Compounds within particular Phases. A Material often corresponds to a
stream in conventional process simulation software.

Material Object
A Material Object is a software object that implements the interfaces and behaviour of a
Material as defined in this interface specification.

Equilibrium Calculation
A calculation that determines the composition and amounts of each Phase of a Material
subject to specified constraints such as, for example, a particular temperature and pressure.

Physical Property

A Physical Property is an attribute used to characterise a Material. Typical examples are
Temperature and Pressure. A Material is described by the values of some subset of the set of
possible Physical Properties defined within section 7.5 of this document. Note that at this
revision of the interface specification, the Physical Properties used to describe the unique
characteristics of polymers, and petroleum fractions are not included in the set of possible
Physical Properties. These will be added later as the interface specification is expanded to
cover these kinds of Material.

The subset of Physical Properties used to describe a Material is not fixed: it will depend on
the aspect of the Material behaviour being studied.

Within simulation software, a Physical Property is usually calculated by a model selected
from some set of available models for that Physical Property.

Physical Property Calculation
A Physical Property Calculation is a calculation that determines the value of a Physical
Property in a Material, given temperature, pressure and composition.

10

Compound

A chemical substance as defined by a particular set of Physical Properties, calculation
methods and data. Compounds can be identified in various ways: by a common name, by a
CAS Registry number or by a chemical formula. Examples are water, hydrogen and oxygen.

Component

A piece of executable software whose functionality is accessed via specified interfaces,
which can be deployed independently of other software and which can be used in the
composition of other software systems without modification. For the sake of clarity it is
often associated with the term software.

Phase

A Phase is a stable or metastable collection of Compounds with a defined amount of
substance and a homogeneous composition. It has an associated State of Aggregation, e.g.
liquid. A given Phase can be distinguished from others through the presence of physical
interfaces that separate states of matter with different characteristics, such as density.

In a Material, each Phase is given a unique identifier. In order to distinguish multiple
instances of similar Phases, such as liquids, the Phase can be associated with a number of
attributes such as a ‘key compound’.

Universal Constant
A Universal Constant is any well-known physical constant, such as the Avogadro constant.

State of Aggregation

The State of Aggregation of a Phase is the physical state in which the Compounds in that
Phase occur. Possible values for State of Aggregation are Vapor, Liquid, Solid or Unknown.
A PME is expected to use State of Aggregation to help distinguish one Phase of a Material
from another.

COSE
COSE is an acronym for the term CAPE-OPEN Simulation Environment. It refers to any
software that makes use of CAPE-OPEN components.

PMC

PMC is an acronym for Process Modelling Component. A PMC is a software component
used to provide specific functionality within a PME. Examples are Unit Operations,
Numerical Solvers, and Property Packages.

PME
PME is an acronym for Process Modelling environment. PME is synonymous with COSE.

Physical Properties System

A Physical Properties System is a proprietary software system that includes a Physical
Properties Executive, a set of Physical Property routines and access to data for a number of
chemical Compounds. A Physical Properties System is likely to include text information that
the user can access to help select the most appropriate properties, methods and data for the
particular application. It will often access a large Physical Properties data bank, using
different interfaces from the ones described in this document. For example, it may use the
CAPE-OPEN Physical Properties Data Base (PPDB) interfaces, which allow bulk access for
Thermodynamic and Physical Properties databases.

Physical Properties Executive

A Physical Properties Executive is the part of a Physical Properties System that provides the
user interface by which the methods, data and Compounds can be selected. It also organises
the computation so that, in calculating Material properties, the correct methods are employed
for the specific Material conditions. The Physical Properties Executive may provide access

11

to additional services, such as the ability to correlate raw data to generate parameters for
selected methods.

Property Package

A Property Package is a complete, consistent, reusable, ready-to-use collection of methods,
Compounds and model parameters for calculating any of a set of known Physical Properties
for the Phases of a Material. It includes all the pure Compound methods and data, together
with the relevant mixing rules and interaction parameters. A Property Package normally
covers only a small subset of the Compounds and methods accessible through a Physical
Properties System.

4, Scope

This section describes Thermodynamic and Physical Properties software components, the
interfaces they support and the relationship between the different software components.

The standard defines the following primary CAPE-OPEN components:

e Physical Property Calculator — a software component that can calculate certain Physical
Properties, possibly restricted to mixtures of particular Compounds existing in particular
Phases.

e Equilibrium Calculator — a software component that can calculate the composition of
non-reacting mixtures at equilibrium, possibly restricted to mixtures of particular
Compounds existing in particular Phases and subject to certain constraints.

e Property Package — a software component that combines the functions of a Property
Calculator and an Equilibrium Calculator for a fixed set of Compounds and Phases. A
Property Package will provide compound constants and may also provide universal
constants.

e Property Package Manager — a software component that manages a set of Property
Packages. It is responsible for instantiating Property Packages on request and may allow
Property Packages to be edited and/or created.

This document describes the following interfaces:

e |CapeThermoEquilibriumRoutine — methods implemented by components which can
perform an Equilibrium Calculation.

e |CapeThermoPropertyRoutine — methods implemented by components that can calculate
values for Physical Properties.

e [CapeThermoUniversalConstants — methods implemented by components that can
supply the values of Universal Constants.

e [CapeThermoPhases — methods implemented by components that need to describe the
Phases that are present or could be present in a Material.

e ICapeThermoCompounds — methods implemented by components that need to describe
the Compounds that occur or can occur in a Material.

e |CapeThermoMaterial — methods implemented by components that need to provide
access to the Physical Properties of a particular Material.

e [CapeThermoMaterialContext — methods implemented by components that need to be
given a particular Material as the context for a calculation.

12

e |CapeThermoPropertyPackageManager — methods implemented by a component that
can list and create instances of available Property Package components.

These interfaces are functional: they collect together the methods required to perform
particular types of calculation and data access. The software components defined in this
interface specification will support all the interfaces required to provide the functionality
they implement. There is not a one-to-one correspondence between particular interfaces and
particular software components. For example, a software component that implements the
ICapeThermoEquilibriumRoutine interface may be an Equilibrium Calculator component or
a Property Package component.

The interfaces allow clients of the four above defined types of components to communicate
with them independently of the component implementations. Communication between a
client and any type of thermodynamic software component requires the exchange of data
describing the Material for which calculations are required. The concept of a Material Object
is described for this purpose. A Material Object implements CAPE-OPEN interfaces but it is
not a CAPE-OPEN component. A Material Object is a software object that is responsible for
holding the data describing the state of a Material. Each client that uses CAPE-OPEN
Thermodynamic and Physical Properties components must provide its own implementation
of a Material Object because the configuration and data storage used in a Material Object
will be different for each client.

13

<<CAPE-OPEN Interface>>
<<CAPE-OPEN Interface>>

ICapeThermoPropertyRoutine

ICapeThermoPropertyPackageManager

+GetPropertyPackageL.ist()

| GetPropertyPackage() +GetSinglePhasePropList()

+CalcSinglePhaseProp()

+CheckSinglePhasePropSpec()

<<CAPE-OPEN Interface>> <<CAPE-OPEN Interface>> +CheckTwoPhasePropSpec()
ICapeThermoPhases +GetTwoPhasePropList()
ICapeThermoMaterial +CalcTwoPhaseProp()
+GetPhaseList() +CalcAndGetLnPhi()
+GetPresentPhases() +GetPhaselnfo()
+SetPresentPhases() +GetNumPhases()
+GetSinglePhaseProp() <<CAPE-OPEN Interface>>
Iéeetts‘ll'r\:vgolgzggsgigg?)o ICapeThermoEquilibriumRoutine
+SetTwoPhaseProp() <<CAPE-OPEN Interface>>
+GetOverallProp() ICapeThermoCompounds +CheckEquilibriumSpec()
+SetOverallProp() +CalcEquilibrium()
+ClearAllProps() +GetCompoundList()
+GetTPFraction() +GetCompoundConstant()
+GetOveral TPFraction() +GetConstPropList() <<CAPE-OPEN Interface>>
+CreateMater|aI()_ +GetNumCompounds()
+CopyFromMaterial() +GetPDependentProperty() ICapeThermoUniversalConstants
+GetPDependentPropList()
i +GetTDependentProperty() +GetUniversalConstant()
<<CAPE-OPEN Interface>> +GetTDependentPropList() +GetUniversalConstantList()

ICapeThermoMaterialContext

+SetMaterial()
+UnsetMaterial()

Figure 1: Interface diagram

This document does not cover the Physical Properties and interfaces required to implement
support for complex materials such as solids, petroleum fractions, and polymers. Nor does it
cover the interfaces required to describe a system of reactions within a Material. Each of
these topics is covered in a separate document [3], [7].

This specification document does not provide detailed information on how to implement the
software components it describes. Information and examples that support implementations
will be available from the CO-LaN website: www.colan.org.

5. Conceptual Object Model

Before describing the detail of the interfaces, a Conceptual Object Model of the interaction
between a PME and an external CAPE-OPEN Thermodynamic and Physical Properties
component is required. This Conceptual Object Model is not concerned with how the
components are created, configured, selected or associated with the PME, its purpose is to
show what kinds of software components are required and to show how a PME and a
component interact. Much of this material will already be familiar to anyone who knows the
earlier versions of the CAPE-OPEN standard.

14

An important concept in the Conceptual Object Model is that of a Material. In earlier
versions of this specification, Material was a central concept and, in fact, the way in which a
Material is characterised, in terms of a set of Compounds and the values for Physical
Properties, is still the same here. The kinds of Material that can be represented are also
unchanged. However, in order to develop a more component-oriented model to justify the
interface specifications described here, the role of Material is given less emphasis. Within
this specification, the term Material Object refers to the software object that implements the
representation of a Material.

Three types of software component are considered in the Conceptual Object Model. Each
type of software component is meant to provide an aggregation of functionalities:

o Physical Property Calculator — a software component, which, given the temperature,
pressure and composition of a Phase of a Material, is able to calculate an additional
Physical Property or Physical Properties of the Material. Again, a Physical Property
Calculator will be designed to work with certain kinds of Material. Note that a Physical
Property Calculator is not called directly by a PME; rather, it is called via a CAPE-
OPEN Property Package. The purpose of a Physical Property Calculator is to extend or
to override the list of calculations that a CAPE-OPEN Physical Property Package can
perform. A CAPE-OPEN Property Calculator can only be used with a Property Package
which supports the use of Property Calculators.

o Equilibrium Calculator — a software component, which, given a description of a
Material, and a specification of constraints on the calculations such as temperature and
pressure, can calculate the composition of each Phase present in the Material. An
Equilibrium Calculator will typically be designed to work with certain types of Material.
That is, it will provide the Phase compositions for Materials containing a subset of the
set of Compounds known to the Equilibrium Calculator, where those Compounds occur
in Phases known to the Equilibrium Calculator. For example, a specific Equilibrium
Calculator may not be able to deal with Materials with solid Phases, or those containing
polymeric Compounds. Note that an Equilibrium Calculator is not called directly by a
PME. Like a Physical Property Calculator, it is only called via a Property Package. Like
a Property Calculator, the purpose of an Equilibrium Calculator is to extend or to
override the list of Equilibrium Calculations that a CAPE-OPEN Property Package can
perform. A CAPE-OPEN Equilibrium Calculator can only be used with a Property
Package which supports the use of Equilibrium Calculators.

o Property Package — a software component that is both a Physical Property Calculator and
an Equilibrium Calculator for Materials containing a specific set of Compounds
occurring in a specific number of physical states. A Property Package will make use of
certain models to perform these calculations. A Property Package can be configured to
make use of external Physical Property Calculators and/or Equilibrium Calculators.
Alternatively, it can provide the functionality of these two components internally without
making use of external components. Configuring the Compounds, Phases, models and
external components used in a Property Package is outside the scope of this CAPE-
OPEN interface specification.

For the purposes of this Conceptual Object Model, a PME is any piece of software that
needs to use the functionality of the immediately above listed three kinds of component. For
example the PME could be Microsoft Excel, or it could be a Simulation Environment, or it
could be a Unit Operation executing within a Simulation Environment.

15

To put the use of these components in context, the object diagram below shows a simplified
representation of the kinds of objects found in proprietary Simulation Environments and
some of the relationships that exist between them. A flowsheet object is associated with a
number of streams and with a number of Unit Operations. Each Unit Operation and stream
has access to a Thermodynamics sub-system that provides Physical Property Calculations
using various Physical Property models, equilibrium, or flash, calculations; and constant
Physical Property data. The flowsheet object also has access to the Thermodynamics sub-
system. There are various relationships between the streams and the streams are used to
connect blocks, but blocks may also contain streams.

:flowsheet

e

:stream

unit

A\

:Thermodynamics sub-system

:Property Calculator

:Flash Calculator

:Property Data

Figure 2: Object diagram on proprietary implementations

The connection link between a stream and a Unit Operation exists because a Unit Operation
must be given a description of the Material at its inlets so that it can calculate a description
of the Material at its outlets.

The ownership link (which is not distinguished from a connection link on the diagram) be-
tween a Unit Operation and a stream exists because a Unit Operation may need to create a
representation of a Material in order to perform an internal calculation.

The Thermodynamics sub-system provides three main services: a way of calculating the
value of a non-constant Physical Property, a way of calculating equilibrium and, thirdly,
access to a database of constant Physical Property data. The Thermodynamics sub-system
does not know about Unit Operations and streams; when asked to perform a calculation it is
given a description of a Material as input. Equally, the Thermodynamics subsystem is not

16

responsible for maintaining the description of any Material in a problem; it simply performs
the requested calculation given the description of a particular Material and returns the result.

The CAPE-OPEN standard is intended to allow proprietary objects used within a Simulation
or other Process Modelling Environment to be replaced with external CAPE-OPEN
components that implement the same functionality. The next diagram shows how proprietary
“socket” objects, which allow communication with the external CAPE-OPEN components,
can replace parts of the proprietary Thermodynamics sub-system and Unit Operations.

flowsheet

A

:stream d :CAPE-OPEN :CAPE-OPEN
- unit Socket Unit
Operation

~\

:Thermodynamics sub-system

This line
:CAPE-OPEN Property represents the
Calculator Socket boundary of the
—— / original system
:CAPE-OPEN Equilibrium

Calculator Socket

:Property Data

:CAPE-OPEN
Physical

.......... Property
Calculator

:CAPE-OPEN
Property Package -CAPE-OPEN
Equilibrium
Calculator

Figure 3: Communication between sockets and plugs

In order to make use of external software components, standard interfaces to each of the
three types of CAPE-OPEN Thermodynamic and Physical Properties components are
required. When such components are being used in a PME, their functionality must be
available to proprietary objects within the PME, but also to any other external components
being used by the PME. One example of the importance of this requirement is the need for
consistent Physical Property Calculation routines to be used for both built-in Unit
Operations and CAPE-OPEN Unit Operations, whether the PME is using external Physical
Property Calculations, or its own internal calculation routines.

In this diagram, the proprietary Thermodynamics subsystem contains proprietary sockets,
which are software objects that allow communication with external CAPE-OPEN
components. This is an example of the “Adapter” design pattern [6]. Existing proprietary

17

objects such as streams and Unit Operations still use the internal proprietary interfaces
implemented by the Thermodynamics subsystem. The stream and Unit Operation objects
therefore do not need to be changed. Internally, the Property Calculator and Equilibrium
Calculator sockets translate any in-coming call to a call to an external CAPE-OPEN object
using the standard interfaces that CAPE-OPEN defines. The diagram also shows how a
Property Package, can itself make use of the CAPE-OPEN interfaces to call CAPE-OPEN
components implementing the Physical Property Calculator and Equilibrium Calculator
interfaces.

Note that in this diagram the Thermodynamics sub-system still provides the functionality of
a Property database, that is, it is responsible for the list of compounds that the PME can use,
the Phases that can be present in Materials and the values for constant Physical Properties.
The Property database may be internal to the Thermo sub-system or provided in some other
way for example through a CAPE-OPEN PPDB socket.

The same pattern is used for Unit Operations: a proprietary adapter, called “CAPE-OPEN
Unit Socket” in the diagram, is used to map calls made by the PME through its proprietary
unit interface to objects implementing the CAPE-OPEN unit interfaces.

5.1 The Description of Material

The description of a Material is both an input to and an output of all the components shown
in the diagrams. In a sequential modular simulator, a Unit Operation requires a description
of the Material at each of its material inlet ports so that it can calculate a description of the
Material at each of its material outlet ports. An Equilibrium Calculator component,
regardless of whether it is a Property Package or an independent Equilibrium Calculator,
takes the description of a Material and updates it with the composition and amounts of each
Phase subject to specified constraints. Similarly, a Physical Property Calculator component
takes the composition of a Material and its temperature and pressure and calculates the value
of additional Physical Properties.

All PMEs will have their own proprietary representation of Material. For example, a
Simulation Environment might use an instance of a C++ class to hold the data describing the
state of a Material, or, in a spreadsheet, a particular arrangement of cells might be used.
Whatever representation is used, this data has to be presented to CAPE-OPEN
Thermodynamic and Physical Properties components and Unit Operation components in a
standard way. As well as using the description of Material as input, both Thermodynamic
and Physical Properties components and Unit Operation components need to be able to
update the description as an output of their calculations. Providing access to the data
describing a Material via CAPE-OPEN interfaces is the responsibility of the Material
Obiject.

The CAPE-OPEN standard defines a list of Physical Properties that can be used to describe a
Material. The list is presented in section 7.5 of this document. In addition to the values of
Physical Properties, a set of Compounds and a list of the Phases present also characterise a
Material. Some Physical Properties describe the overall state of a Material, others
characterise individual Compounds or Phases within it.

Earlier, the adapter design pattern was used to show how a PME could access external
software components. The same design pattern can be used to implement a Material Object.
As in the other examples of adapters, the Material Object is implemented by the PME. It
presents the CAPE-OPEN interfaces for accessing the description of a Material to the

18

external components. Internally, it does what ever is required to access the data held in the
PME’s proprietary data structures.

5.2 Material Object responsibilities

The primary interface implemented by a Material Object is the 1CapeThermoMaterial
interface. Typically, a Material Object will be designed to access a proprietary data structure
belonging to a PME, and it will itself be proprietary to a PME. The interfaces that a Material
Obiject needs to support vary depending on which type of CAPE-OPEN Thermodynamic and
Physical Properties component is using the Material Object. The following sections describe
which interfaces a Material Object implementation must support for each of the different
types of component. A single Material Object implementation can be used in all these
circumstances as long as it implements all the interfaces that could be used.

Note that in the following object and component diagrams, objects and components are
shown as supporting multiple interfaces. The implication is that if a client is passed one of
the supported interfaces, it also has access to all the others since each Material Object is
passed as a Capelnterface (IDispatch in COM). The diagrams do not show the
ICapeldentification [4] and Error Interfaces [5] that should be supported by all CAPE-OPEN
components.

5.2.1 Interfaces used by a Physical Property Calculator to access Material Objects

A CAPE-OPEN Physical Property Calculator needs to be able to get the values of the
Physical Properties from a Material Object and to set the values that it calculates. To a
Physical Property Calculator, a Material Object must behave as a store of data, but must also
provide access to Compound constants and Physical Property Calculations. The reason for
these requirements is to support Physical Property Calculator components that need
supplementary data from a Physical Property Package in order to complete their own
calculations.

Therefore, to satisfy the requirements of CAPE-OPEN Physical Property Calculators, a
Material Object must implement the following interfaces:

4@ ICapeThermoMaterial

—() ICapeThermoCompounds
40 ICapeThermoPhases

4@ ICapeThermoUniversalConstants

4@ ICapeThermoPropertyRoutine

The ICapeThermoMaterial interface is required to provide access to the values of the
Physical Properties that describe the Material.

The 1CapeThermoCompounds interface is required so that the caller can: find out what
Compounds are present in the Material; check that they can be recognised; and, request the
values of Compound constants.

19

The 1CapeThermoPhases interface is required so that the caller can: find out the Phases that
are present in the Material in order to set properties and perform property calculations.

The ICapeThermoUniversalConstants interface is optional but may be implemented to
provide the caller with the values of Universal Constants. Note that a Physical Property
Calculator that requires the values of Universal Constants will not work in a Property
Package that provides a Material Object that does not implement this interface. The Material
Object may simply forward a request for universal constants to a Property Package or
provide constants through some proprietary mechanism, e.g. from a PME.

The 1CapeThermoPropertyRoutine interface is optional but may be implemented to provide
the caller with access to Physical Property Calculations. As with the 1CapeThermo-
UniversalConstants interface, if the ICapeThermoPropertyRoutine interface is not supported,
a Physical Property Calculator component may not work.

Note that when a Property Package calls a Physical Property Calculator it can provide its
own Material Object or it can pass the Material Object passed to it by the PME. However, a
Material Object provided by a PME may not support all the properties required by the
Property calculator.

5.2.2 Interfaces used by a Equilibrium Calculator to access Material Objects

A CAPE-OPEN Equilibrium Calculator component requires the same Material interfaces as
a Physical Property Calculator component because it needs to get values of Physical
Properties from a Material and it needs to set the values of the Physical Properties that it
calculates. Unlike a Physical Property Calculator, it will determine which Phases are present
in the Material and may therefore update the Material’s list of Phases. As part of performing
this calculation, it may need to call Physical Property Calculations. Performing Physical
Property Calculations requires the interfaces that define a Physical Property Calculator
component:

—() ICapeThermoMaterial
40 ICapeThermoPhases

40 ICapeThermoCompounds

40 ICapeThermoUniversalConstants

4@ ICapeThermoPropertyRoutine

For an Equilibrium Calculator component, a Material has to behave both as a store of data
and as a Physical Property Calculator. As described earlier, a Material Object is expected to
implement the 1CapeThermoPropertyRoutine methods by forwarding all the calculation calls
back to its creator, which could be the PME or the Property Package that is calling the
Equilibrium Calculator component.

20

Note that when a Property Package calls an Equilibrium Calculator it can provide its own
Material Object or it can pass the Material Object passed to it by the PME.

5.2.3 Interfaces used by a Unit Operation to access Material Objects

To satisfy the requirements of CAPE-OPEN Unit Operation components, a more complex
Material Object implementation is required. This is because a Unit Operation needs to get
and set the values of Physical Properties in a Material and it also needs to perform both
Physical Property and Equilibrium Calculations. Therefore, in order to be used by Unit
Operation components, a Material Object must implement the interfaces defining a Property
Package.

The diagram below shows a software object, rather than a software component, that presents
the interfaces required to describe a Material and the interfaces required to perform Physical
Property and Equilibrium Calculations. The object is shown as requiring the same Physical
Property and Equilibrium calculation interfaces as it presents on the assumption that it
simply forwards the calculation calls to another component, passing itself as the context for
the calculation. This is only one of several possible arrangements. In practice, the software
object may call a proprietary interface to perform the actual calculation. The implementation
of the proprietary interface may then construct a second Material description to pass to an
external component for a calculation.

O ICapeThermoPropertyRoutine
ICapeThermoMaterial

_O

_O ICapeThermoPhases

_O ICapeThermoCompounds

_O ICapeThermoEquilibriumRoutine
_O ICapeThermoUniversalConstants
_________ .,O ICapeThermoPropertyRoutine
_________ .,O ICapeThermoEquilibriumRoutine

_________ .,O ICapeThermoUniversalConstants

"O ICapeThermoMaterialContext

Figure 4: Interfaces required on a software object

This design is required by the CAPE-OPEN Unit Operation specification because it does not
provide a mechanism for a PME to tell a Unit Operation which Property Calculator and
which Equilibrium Calculator to use for a specific inlet stream. Instead, it only allows the
PME to associate an object implementing the ICapeThermoMaterial interface with a Port.
As a result, an object that aggregates the Material interfaces and the calculation interfaces is
required.

Similarly, for a Property Package component, the only context that a PME can provide is an
object implementing the ICapeThermoMaterial interface. Since a Physical Property
Calculator needs to use other interfaces, the object passed to it must implement those
interfaces as well.

21

Note that a Material Object that meets the requirements of a CAPE-OPEN Unit Operation
will meet the requirements of all Physical Property components described in this document.

This design has advantages and disadvantages. It complicates the implementation of objects
that support the ICapeThermoMaterial interface. But the extra complication has to be
balanced against the fact that the design is extensible. In future versions of the standard,
Property Packages and Unit Operations will be able to access other data and functionality
supplied by the PME, simply by being passed Material Objects which implement the new
interfaces.

5.2.4 Material Object behaviour

So far, this section has described the interfaces that Material Objects need to implement to
meet the requirements of CAPE-OPEN components. As well as supporting the required
interfaces, a Material Object has to exhibit specific behaviour if it is to be CAPE-OPEN
compliant. These behavioural specifications are intended to ensure the consistency of the
data available to a client through the CAPE-OPEN interfaces.

A Material Object may optionally support (ie. allow a client to set/retrieve property values)
many Physical Properties but it is a requirement that the following properties are supported:
temperature, pressure, fraction and phaseFraction. In addition a Material Object that is
passed to a Unit Operation component must support the flow and totalFlow properties. The
property identifiers are defined in section 7.5.

A Material Object client may get or set any basis-dependent Physical Property of a Material
using any basis. It is the Material Object’s responsibility to ensure that the client sees
consistent values whatever basis is used. This means that the Material Object must:

o Allow a client to set any basis-dependent Physical Property on any basis.

o Allow a client to get any basis-dependent Physical Property using the basis with which it
was stored.

o Perform basis conversions, or delegate basis conversion as necessary. If basis conversion
is not meaningful (e.g. in the case of cement), the Material Object must be able to return
the quantity in its original basis and to return an error should the quantity be requested in
a different basis.

o Ensure that quantities set in one basis are consistent with quantities set in another basis,
or delegate that function as necessary. Where the basis conversion on a quantity is not
feasible, the Material Object must only store the quantity in the basis with which it was
set most recently

As discussed in earlier sections of this document, a software object implementing the CAPE-
OPEN Material interfaces can be implemented in a number of ways. These are some of the
alternatives:

o Implement the object as a store, or cache of data and exchange that data with both the
PME and external CAPE-OPEN components.

o Implement the object using the fagcade design pattern [6]. The resulting object does not
store any data, but it maintains a reference to a PME data structure that does store the
data.

The choice of implementation depends on the requirements of a particular PME, so this
document does not make a recommendation.

22

5.3 Equilibrium Calculator component responsibilities

An Equilibrium Calculator component must implement the 1CapeThermoEquilibrium-
Routine and ICapeThermoMaterialContext interfaces. In turn it uses the ICapeThermo-
Material interface passed to it via the 1CapeThermoMaterialContext::SetMaterial interface to
access the description of the Material being worked on from a Material Object and to update
the Material’s properties. The ICapeldentification [4] and Error Interfaces [5] must be
implemented by all CAPE-OPEN components.

—O ICapeThermoEquilibriumRoutine

............. >O |CapeThermoMaterial

ICapeThermoMaterialContext

ICapeThermoCompounds (optional)

ICapeldentification

ICapeThermoPhases (optional)

ICapeUtilities (optional)

-0
—O
-0
40 Error interfaces
—0
—O

An Equilibrium Calculator whose calculations are restricted to particular Compounds must
implement support for the 1CapeThermoCompounds interface so that any Property Package
that uses it can check consistency. An Equilibrium Calculator that does not implement the
ICapeThermoCompounds interface is assumed to be able to perform its calculations for any
Compound.

Similarly, an Equilibrium Calculator whose calculations are restricted to particular Phases
must implement support for the ICapeThermoPhases interface for the same reason of
consistency. An Equilibrium Calculator that does not implement the ICapeThermoPhases
interface is assumed to be able to perform its calculations for any Phase. Typically, an
Equilibrium Calculator will need to implement 1CapeThermoPhases.

The ICapeUTtilities interface [17] may be implemented if the Equilibrium Calculator requires
to make use of facilities provided by this interface, for example, the Initialize method.

The following conceptual sequence diagram shows the expected interaction between a PME,
a Property Package, an Equilibrium Calculator component and a Material Object when an
Equilibrium Calculation is performed using an Equilibrium Calculator component. This
sequence diagram is a sketch, so some operations are abbreviated for simplicity. Note that
the diagram does not use actual method names. The names used are intended to indicate the
nature of the call being made.

The diagram shows how an implementation of a Material Object is required in order to pass
data from the PME to the Property Package and from the Property Package to the external
Equilibrium Calculator component. The Equilibrium Calculator stores its results using the
Material Object. The diagram does not show the interaction between the Equilibrium

23

Calculator and the Material Object during the CalcEquilibrium call, but typically the
Equilibrium Calculator will call back to the Material Object for Property data, Property
Calculations and compound data.

24

Using SetMaterial This represents an external During its calculation the
:PME S1:Stream :PMEPropertySystem Fromthe Property Package which Equilit?rium Calculatorwill'l

ICapeThermoMaterialConte uses an Equilibrium call the Material Object it

xt interface ggﬁ%‘g;g;t It can only has been passed to request

: roperty calculations and

Request Flash Flash(t,p,z,...) <create> A\ access the mSJ, object via propery
< create> mS1:material\obiect CAPE-OPEM mterf access to compound data.
> : \\({] - Interfaces This interaction is not shown

All communication used to
configure a Material Object uses
proprietary methods, not CAPE-

From the
ICapeThermoPhases
interface

Return compositi
and Phases

here.

Calculate Equilibrium

Get compounds

i
Set Compounds \i :X'Y ZPropertyPackage
1
1
Sett, p, z,... o | \
' i [Using GetComponentList [N :ABCFlash
Set phases o ! | From the
“a i | ICape ThermoCompounds
et Material(mS1) | | interface
1 \I
1]
! ,
:
1
[P2
)

Using GetSinglePhaseProp
GetTwoPhaseProp,
SetSinglePhaseProp and
SetTwoPhaseProp

from the
ICapeThermoMaterial

>

A
Set Material(mo2)

OPEN interfaces because the CAPE-
OPEN interface do not define how a] Check compounds
Material Object is constructed. ! ! Get Phases
1 S
: E I Check phases
I | Mo2:
] <create> . .
! i >| XYZMaterialObject
Using GetPhaseList ' Data '
)

Calculate Equilibrium

N

1
interface |
1
1
1

Get Composition
and Phases

A —

R ..

D il ? X

Figure 5: Conceptual Sequence Diagram
25

5.4 Equilibrium Calculator behaviour

An Equilibrium Calculator component is expected to compute the amounts (phase fractions)
and compositions of all Phases at equilibrium and it can be used to calculate overall
Temperature and Pressure if these are not specified. It must set Temperature and Pressure for
all Phases present at equilibrium as well as for “Overall” if not already specified. A phase
may be present in zero amount, for example the liquid phase in a dew point calculation. The
calculation should not update or set any other Physical Property in the Material Object it has
been passed. In particular it must not set any properties for phases that are not present. If it
requests a Physical Property Calculation as part of executing the Equilibrium Calculation,
the resulting value must not be stored in the Material Object.

The reason for insisting on no side effects is that clients may come to rely on them, even
though they are not part of the CAPE-OPEN standards.

5.5 Physical Property Calculator component responsibilities

A Physical Property Calculator component must implement the 1CapeThermo-
PropertyRoutine and ICapeThermoMaterialContext interfaces. In turn it uses the
ICapeThermoMaterial interface passed to it via its ICapeThermoMaterialContext
SetMaterial method to access the data describing the Material being worked on from a
Material Object and to update the Material’s properties. The ICapeldentification [4] and
Error Interfaces [5] must be implemented by all CAPE-OPEN components.

40 ICapeThermoPropertyRoutine

_____________ ,O ICapeThermoMaterial

]
i

ICapeThermoMaterialContext

ICapeldentification

—O
—O
—() Error interfaces

40 ICapeThermoCompounds (optional)
—O

—O

ICapeThermoPhases (optional)

ICapeUtilities (optional)

A Physical Property Calculator whose calculations are restricted to particular Compounds
must implement support for the 1CapeThermoCompounds interface so that any Property
Package that uses it can check consistency. A Property Calculator that does not implement
the ICapeThermoCompounds interface is assumed to be able to perform its calculations for
any Compound.

Similarly, a Property Calculator whose calculations are restricted to particular Phases must
implement support for the ICapeThermoPhases interface for the same reason of consistency.
A Property Calculator that does not implement the 1CapeThermoPhases interface is assumed
to be able to perform its calculations for any Phase. Typically, a Property Calculator will
need to implement support for ICapeThermoPhases.

N

6

The ICapeUtilities interface [17] may be implemented if the Property Calculator requires to
make use of facilities provided by this interface, for example, the Initialize method.

The following conceptual sequence diagram shows the expected interaction between a PME,
a Property Package, a Physical Property Calculator component and a Material Object when a
Physical Property Calculation is performed. As before, this sequence diagram is a sketch, so
some operations are abbreviated for simplicity. As before, note that the diagram does not use
actual method names. The names used are intended to indicate the nature of the call being
made.

The pattern of calls used for the Equilibrium Calculation is used again here. The PME
Material Object acts as an intermediary between the PME and the Physical Property
Calculator component. A second Material Object constructed by the Physical Property
Package act as intermediary between the Property Package and the Property Calculator.
According to this diagram, the lifetime of a Material Objects is very short; it only exists for
as long as the object that creates it needs to communicate with the external component. In
general, the creator of a Material Object will determine how long it needs to exist.

27

PVE SISt b Using SetMeterial This represents an external

. -olream . VEPropertySystem Fromthe Property Package which uses a . - -
. ICapeThermolVeterialContext Physical Property Calculator During its calwlatlm_the Physi

i 1 i interface comporet. It can only access the Prope(ty (hl_wlqtorvull call tre

! 1 ! L object via Meterial Object it has been passed to

1 Calculate Property ! | , request property calculations and

|) Calc(proptpz, S <oede> | nSl:rmterig(\ o | CAPE-OPEN jpterfaces o bocnpoern s g i

i " | / interaction is not shown here.

: 1 : :

| : | SaComponds | XYZPropertyPackage

! 1 I rdl

1 1 1

i : LSt pz... : :

| 1 T vl]

1 1 1 : - . .

. i - et : | %nmg ﬂ(?tOor‘rponentIJst .AI\UDrdﬁertyCalwlator

' | ' “ ¢ | ICapeThermoCorpounds '

5 ! ; Meterial(mS1) ¢ |interface ;

! [All communication used to ! operty | : i

! | configure a Meterial Object uses ! Calaulate Pr ! ! '

! | proprietary methods, not CAPE- ' ' '

i | OPENinterfaces because the CAPE- i \ : i

1 | OPENinterface do not define howa : i Check compounds i

' | Material Object is constructed. ! ! '

i : : ! Check phases '

: [: . : Mo2: l

i ' ' <create> o '

: ' : : : XYZNeterialObject |\ !

i Using GetPreseL st : ! . Sé\DBIa : i

| Fromthe : ' ; N >i

' ICapeThermoPhases ' : . | i

i incia:;;‘ce - i | Set Meterial(mo2) ' :

I 1 ' : E

i : SetSinglePhaseProp and : 1 Calculate Property i :

' ! SetTwoPhaseProp H ' . '

5 ! fromthe _ ! i Set Property :

! 1 |CapeThermolViterial 1 ! ! |

' ! interface H ! 1< !

: ' ; - A it promtToees 1

: l ! ! Set Property | GetProperty R :

i ! G A s 3 i€ i

i i GetPr ' i ' '

: | RetumProperty | oty : X :

1 RetumProperty v ____ ! X : :

T ; ' | |

Figure 6: Conceptual Sequence Diagram

28

5.6 Physical Property Calculator behaviour

A Physical Property Calculator must calculate the requested Physical Property without any
visible side effects on the Material Object it is passed. If the calculation it performs requires
other Physical Property calculations, the results of these calculations must not be stored in
the Material Object.

The reason for insisting on no side effects is that clients may come to rely on them even
though they are not part of the standard.

A Property Calculator would typically obtain the values of any compound properties it
requires using the Material Object supplied via the 1CapeThermoMaterialContext interface.
However, this behaviour cannot be used to change the values of physical properties of
compounds (for example pseudocomponents) dynamically. This is because there is no way
to ensure that a property calculator will reset its internal data structures. The properties of
petroleum fractions can however be changed using the Petroleum Fractions Interface [7].

Each Physical Property Calculator or Property Package may use a different base reference
for Enthalpy (H) or Entropy (S) calculation. It is impossible to anticipate all the different
possible conventions that might be used by a PME and a Physical Property Calculator/
Property Package, so an automatic procedure is preferable. A PME, or other client of a
property package, can adjust for any difference in h and s zeros by the following simple
procedure:

1. Evaluate h and s for each pure compound in the Physical Property Calculator/Property
Package at the T, P and other conditions (e.g. perfect gas state) corresponding to the
PME's zeros.

2. Store the values for each compound i as hoi and Soi.

3. Each time h or s is requested from the PP subtract 2NNy or D.NiSe from the value

returned by the PP (where the i are amounts of substance expressed in the appropriate
units).

5.7 Property Package Component responsibilities

A Property Package component can describe a set of Compounds and their constant
properties, it can describe the Phases that it can deal with and it can behave as a Physical
Property Calculator and/or an Equilibrium Calculator. In order to support the
ICapeThermoPropertyRoutine and 1CapeThermoEquilibriumRoutine interfaces, it must
support the 1ICapeThermoMaterialContext interface. For Physical Property and Equilibrium
Calculation functions, it uses the ICapeThermoMaterial interface passed to it via its
ICapeThermoMaterialContext::SetMaterial method to access the description of the Material
being worked on from a Material Object and to update the Material’s properties. The
ICapeldentification [4] and Error interfaces [5] must be implemented by all CAPE-OPEN
components. The ICapeUtilities interface [17] may be implemented if the Property Package
requires to make use of facilities provided by this interface, for example, the Initialize
method.

29

ICapeThermoPropertyRoutine

!

_____________ »() ICapeThermoMaterial

1
ICapeThermoMaterialContext
1
ICapeThermoPhases
ICapeThermoCompounds

ICapeThermoEquilibriumRoutine

ICapeThermoUniversalConstants

ICapeldentification

Error interfaces

9999999

ICapeUtilities (optional)

The next two conceptual sequence diagrams show the expected interaction between a PME,
a Property Package component and a Unit Operation component when the Unit Operation is
asked to calculate its outlets. The diagrams showing the interactions with Equilibrium
Calculators and Property Calculators already show the interaction between a PME and
Property Package for Equilibrium and Physical Property Calculations.

In the first diagram, a PME is asked to import a Property Package, which is to be used by a
CAPE-OPEN Unit Operation. The PME has to check that there is compatibility between the
Compounds and Phases that the Property Package contains and that the Physical Properties
that it needs can be calculated.

In the second diagram, streams are connected to a CAPE-OPEN Unit Operation and the Unit
Operation is asked to perform a calculation. A Material Object that implements the Material
interfaces, the Equilibrium Calculator interfaces and the Physical Property Calculator
interfaces is required as an intermediary between the PME and the Unit Operation, so that
the Unit Operation can request Equilibrium and Physical Property Calculations for the
Materials connected to its Ports. Here, the Material Object is just a wrapper for the PME’s
representation of a stream, so the only data it holds is a stream name. Any requests made to
it are forwarded to the PME, for stream data, or to the PME ThermoSubsystem for
calculations.

Once again, these sequence diagrams are sketches, so some operations are abbreviated for
simplicity and the method names used are intended to describe the intent of the call.

30

=
<
m

:PMEThermoSubSystem

Import

<Create [-xyZPropertyPackage

Y

>

Import CAPE-
OPEN Property
Package

Get Compounds

v

Translate
Compounds

\ 4

Translate
Phases

GetProperties

e Y NN

Check

I
I
I
I
+ GetPhases
:
:
i Properties

/

Figure 7: PME is asked to import a PP

31

Connect S1...

Material Object

Create
For S2

5
2
o)
@)
<
5]
C
MI||
gl (2
Q
£
=
&
S
[a
= S
z a| &
< 8| 8
5] ®) B
V =
2 3
= B =
& £ | g ¢
g0 | Fi &
W 52| & O
xR R 2

Connect S2...

mS2:Material Object

:XYZUnitOperation

Validate

Calculate

Get Properti

[P

GetProperties(<namgs>,S1)
SetProperties(<names>,S2)

CalculateProperty(<tiame>,ms2)

SetMaterial(ms2)

7
|
|
|
|
|
|
'
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
'
|
|
|
|
|
|
1
|
|
|
|
|
i
|
|
|
|
T
|
|
|
|
)
|
|
|
|
'
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|

el
|

Internal

Calculation

Get Praperties<name

CalculateProperty<name>

ed Properties

Set Calculat

Figure 8: Streams connected to a UNIT and calculation

32

5.8 Property Package component behaviour

A Property Package is permitted to use the ICapeThermoCompounds, ICapeThermo
UniversalConstants and ICapeThermoPropertyRoutine interfaces supported by the Material
Object passed to the Property Package by the PME. The PME is required to support these
call backs in order to make it possible to write Property Packages with minimum effort (for
example just providing calculation routines and not pure compound physical properties). It
allows the writer of a Property Package to take advantage of typical PME functionality:
providing Universal Constants, Compound constants and Physical Property Calculations.

A Property Package that is configured to use external Property Calculator and Equilibrium
Calculator components must be able to provide them with Material Objects in order to pass
and receive data.

One implementation would be for the Property Package to provide its own Material Object
implementation so that it can decide whether to handle the call itself or to pass it on to the
PME via the PME’s Material Object. The disadvantage with this solution is that
implementing a Material Object is not simple.

The alternative implementation would be for the Property Package to pass the Material
Obiject that it was given by its calling PME. The consequence of this implementation is that
when the Property Calculator (or Equilibrium Calculator) calls a method of one of the
ICapeThermoCompounds, ICapeThermoUniversalConstants or
ICapeThermoPropertyRoutine interfaces implemented by the Material Object, the call will
be handled by the PME, instead of the Property Package, because the Material Object is not
aware of the Property Package. With this alternative, the PME should insure that there is no
loop arising any call back.

The sequence diagrams showing Property Calculator and Equilibrium Calculator behaviour
both show this approach.

When a Property Package implements the functionality of a Physical Property Calculator
without using external Property Calculator components it must show the behaviour
described for a Physical Property Calculator component in 5.6: no side effects resulting from
calculations and support for different enthalpy and entropy references. A Property package
component must only set properties on a passed Material Object if those properties have
been requested explicitly. Unlike a Physical Property Calculator, a Property Package must
implement support for the 1CapeThermoCompounds and ICapeThermoPhases interfaces so
that it can be used correctly by a PME.

When a Property Package implements the functionality of an Equilibrium Calculator without
using an external Equilibrium Calculator component it must show the behaviour described
for an Equilibrium Calculator component in 5.4: to set temperature pressure and composition
for all Phases calculated to be present — with no side effects from internal calculations.

5.9 Property Package Manager responsibilities

A Property Package Manager component is responsible for managing a set of Property
Packages. It implements the 1CapeThermoPropertyPackageManager interface which allows
a client to get a list of the names of the Property Packages managed by the component and to
request that a Property Package be instantiated.

The main purpose of a Property Package Manager is to allow a component developer to
implement the instantiation of a Property Package in a proprietary way, which is
independent of the middleware being used.

33

As an example, assume that a Property Package Manager stores the description of its
Property Packages in text files. When a client requests a Property Package to be instantiated,
the Property Package Manager instantiates a generic object that supports the interfaces of a
Property Package component. This component then reads the corresponding data file in
order to configure itself.

As a primary CAPE-OPEN component, a Property Package Manager may allow a client to
edit Property Packages and to create new ones.

510 COM Implementation details

In COM the mechanism used to access any other interface supported by the object or
component is a call to the Querylinterface method, which is inherited by all COM interfaces.

To aid identification, the Property Packages managed by a COM Property Package Manager
need to be described using the ‘CapeDescription’ registry entries specified in [8]. Since
managed Property Packages do not have their own registry entries, their *‘CapeDescription’
entries are written as part of the registry entries for the Property Package Manager
component using the following structure of keys:

HKEY_CLASSES_ROOT\CLSID
\{<Property Package Manager Class id>}
\CapeDescription
<values describing the Property Package Manager component>
\PropertyPackages
\<Name of first Property Package>
\CapeDescription
<values describing the first Property Package >
\<Name of second Property Package>
\CapeDescription
<values describing the second Property Package >

and so on for each Property Package.

Some users will not have the necessary privileges to write to “system” areas of the registry,
in which case the Property Package entries should be written to the
HKEY_CURRENT_USER area of the registry. The format of the entries is the same as
described above except that they are located under:

HKEY_CURRENT_USER\Software\Classes\CLSID

PMEs that present lists of available Property Packages to the user must aggregate the
contents of the HKEY_CURRENT_USER and HKEY_CLASSES ROOT entries for each
Property Package Manager to show a complete list of the available Property Packages.
Where a Property Package with the same name occurs in both lists the
HKEY_CURRENT_USER entry takes precedence.

34

Consistent with previous version of the CAPE-OPEN standard, COM Category Ids are
defined for the Thermodynamic and Physical Property component types in order to provide a
mechanism to allow a PME to identify installed components that are compliant with this
version of the standard.

Description Category ID

CAPE-OPEN 1.1 Property Package CF51E383-0110-4ed8-ACB7-B50CFDE69S08E
Manager

CAPE-OPEN 1.1 Property Package CF51E384-0110-4ed8-ACB7-B50CFDE6908E

CAPE-OPEN 1.1 Physical Property CF51E385-0110-4ed8-ACB7-B50CFDE6908E
Calculator

CAPE-OPEN 1.1 Equilibrium CF51E386-0110-4ed8-ACB7-B50CFDE6908E
Calculator

Developers of CAPE-OPEN 1.1 Thermodynamic and Physical Property components must,
as part of the installation procedures for their components, ensure that these Category Ids
with these descriptions exist in the registry of the machine where the components are being
installed. If these category ids do not exist, then the installation procedure should create
them.

For COM implementations, CO-LaN provides an installation kit that installs the CAPE-
OPEN type libraries and creates all the necessary Category ids for registering components.
For COM developers, CO-LaN also provides an install merge module that can be integrated
with the installation kit for other components so that when the component is installed the
type libraries will also be installed.

5.11 CORBA Implementation details

In CORBA implementations, a casting mechanism is used to select between the interfaces
inherited by an implementation class.

There are no other CORBA-specific implementation details.

35

6. Interface Reference

In the following descriptions of the methods of each interface, some arguments are desig-
nated as ‘“ACTUALLYout’. The IDL definition of an ACTUALLYout argument is identical
to [in, out] but the intent is that it is actually an output argument. ACTUALLYout is used for
two reasons:

e Performance optimisation. An [in,out] declaration allows an array structure to be
created only once by the client application and then reused in each call of the
method.

e Language limitations. Some programming languages such as Visual Basic 6 do not
allow an [out] designation for an argument.

It should be noted that the special value denoted by UNDEFINED is used in the argument
descriptions. For more information on the interpretation of this value see section 7.3.

CAPE-OPEN data types are described in a CAPE-OPEN document (see [8] in the Bibliogra-
phy). In particular the definition of the CapeArray types should be carefully noted.

6.1 ICapeThermoMaterial

A Material Object is a container of information that describes a Material stream. Calcula-
tions of thermophysical and thermodynamic properties are performed by a Property Package
using information stored in a Material Object. Results of such calculations may be stored in
the Material Object for further usage. The ICapeThermoMaterial interface provides the
methods to gather information and perform checks in preparation for a calculation, to
request a calculation and to retrieve results and information stored in the Material Object.

The following methods are exposed by this interface:
ClearAllProps
CreateMaterial
CopyFromMaterial
GetPresentPhases
GetOverallProp
GetOverallITPFraction
GetSinglePhaseProp
GetTPFraction
GetTwoPhaseProp
SetOverallProp
SetPresentPhases
SetSinglePhaseProp

0o o o o 0o 0000 0 0O D DO

SetTwoPhaseProp

36

ClearAllProps

Interface Name ICapeThermoMaterial
Method Name ClearAllProps

Returns -

Description

Remove all stored Physical Property values.

Notes

ClearAllProps removes all stored Physical Properties that have been set using the
SetSinglePhaseProp, SetTwoPhaseProp or SetOverallProp methods. This means that any
subsequent call to retrieve Physical Properties will result in an exception until new values
have been stored using one of the Set methods. ClearAllProps does not remove the
configuration information for a Material, i.e. the list of Compounds and Phases.

Using the ClearAllProps method results in a Material Object that is in the same state as
when it was first created. It is an alternative to using the CreateMaterial method but it is
expected to have a smaller overhead in operating system resources.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeUnknown - The error to be raised when other error(s), specified for this operation, are
not suitable.

37

CreateMaterial

Interface Name ICapeThermoMaterial
Method Name CreateMaterial

Returns Capelnterface
Description

Creates a Material Object with the same configuration as the current Material Object.

Arguments

Description

[out, retval] Capelnterface The interface for the Material Object.
materialObject

Notes

The Material Object created does not contain any non-constant Physical Property value but
has the same configuration (Compounds and Phases) as the current Material Object. These
Physical Property values must be set using SetSinglePhaseProp, SetTwoPhaseProp or
SetOverallProp. Any attempt to retrieve Physical Property values before they have been set
will result in an exception.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeFailedlInitialisation — The pre-requisites for the creation of the Material Object are not
valid. The necessary initialisation has not been performed or has failed.

ECapeOutOfResources - The physical resources necessary to the creation of the Material
Object are out of limits.

ECapeNoMemory - The physical memory necessary to the creation of the Material Object is
out of limit.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

38

CopyFromMaterial

Interface Name ICapeThermoMaterial
Method Name CopyFromMaterial
Returns -

Description

Copies all the stored non-constant Physical Properties (which have been set using the
SetSinglePhaseProp, SetTwoPhaseProp or SetOverallProp) from the source Material Object to the
current instance of the Material Object.

Arguments
Description
[in] source Capelnterface Source Material Object from which stored properties
will be copied.
Notes

Before using this method, the Material Object must have been configured with the same
exact list of Compounds and Phases as the source one. Otherwise, calling the method will
raise an exception. There are two ways to perform the configuration: through the PME
proprietary mechanisms and with CreateMaterial. Calling CreateMaterial on a Material
Object S and subsequently calling CopyFromMaterial(S) on the newly created Material
Obiject N is equivalent to the deprecated method ICapeMaterialObject.Duplicate.

The method is intended to be used by a client, for example a Unit Operation that needs a
Material Object to have the same state as one of the Material Objects it has been connected
to. One example is the representation of an internal stream in a distillation column.

If the Material Object supports the Petroleum Fractions Interface [7] the petroleum fraction
properties are also copied from the source Material Object to the current instance of the
Material Object.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeFailedInitialisation — The pre-requisites for copying the non-constant Physical
Properties of the Material Object are not valid. The necessary initialisation, such as
configuring the current Material with the same Compounds and Phases as the source, has not
been performed or has failed.

ECapeOutOfResources - The physical resources necessary to copy the non-constant Physical
Properties are out of limits.

ECapeNoMemory - The physical memory necessary to copy the non-constant Physical
Properties is out of limit.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

39

GetOverallProp

Interface Name ICapeThermoMaterial
Method Name GetOverallProp
Returns -

Description

Retrieves non-constant Physical Property values for the overall mixture.

Arguments

Name Type Description

[in] property CapeString The identifier of the Physical Property for which values
are requested. This must be one of the single-phase
Physical Properties or derivatives that can be stored for
the overall mixture. The standard identifiers are listed
in sections 7.5.5 and 7.6.

[in] basis CapeString Basis of the results. Valid settings are: “Mass” for

Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

[ACTUALLYout]r | CapeArrayDouble | Results vector containing Physical Property value(s) in
esults Sl units.

Notes

The Physical Property values returned by GetOverallProp refer to the overall mixture. These
values are set by calling the SetOverallProp method. Overall mixture Physical Properties are
not calculated by components that implement the ICapeThermoMaterial interface. The
property values are only used as input specifications for the CalcEquilibrium method of a
component that implements the ICapeThermoEquilibriumRoutine interface.

It is expected that this method will normally be able to provide Physical Property values on
any basis, i.e. it should be able to convert values from the basis on which they are stored to
the basis requested. This operation will not always be possible. For example, if the
molecular weight is not known for one or more Compounds, it is not possible to convert
between a mass basis and a molar basis.

Although the result of some calls to GetOverallProp will be a single value, the return type is
CapeArrayDouble and the method must always return an array even if it contains only a
single element.

Exceptions

ECapeNolmpl — The operation GetOverallProp is “not” implemented even if this method
can be called for reasons of compatibility with the CAPE-OPEN standards. That is to say
that the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable — The Physical Property required is not available from the
Material Object, possibly for the basis requested. This exception is raised when a Physical

40

Property value has not been set following a call to the CreateMaterial or ClearAllProps
methods.

ECapelnvalidArgument — To be used when an invalid argument value was passed, for
example UNDEFINED for property.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialisation has
not been performed or has failed.

ECapeUnknown — The error to be raised when other error(s), specified for this operation are
not suitable.

41

GetOverallTPFraction

Interface Name ICapeThermoMaterial
Method Name GetOveral I TPFraction
Returns -

Description

Retrieves temperature, pressure and composition for the overall mixture.

Arguments

Name Type Description

[ACTUALLYout] | CapeDouble Temperature (in K)
temperature

[ACTUALLYout] | CapeDouble Pressure (in Pa)
pressure

[ACTUALLYout] | CapeArrayDouble | Composition (mole fractions)
composition

Notes

This method is provided to make it easier for developers to make efficient use of the CAPE-
OPEN interfaces. It returns the most frequently requested information from a Material
Object in a single call.

There is no choice of basis in this method. The composition is always returned as mole
fractions.

Exceptions

ECapeNolmpl — The operation GetOverallTPFraction is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable — One of the Physical Properties is not available from the
Material Object. This exception is raised when a Physical Property value has not been set
following a call to the CreateMaterial method or the value has been erased by a call to the
ClearAllProps methods.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialization has
not been performed, or has failed.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

42

GetPresentPhases

Interface Name ICapeThermoMaterial
Method Name GetPresentPhases
Returns -

Description

Returns Phase labels for the Phases that are currently present in the Material Object.

Arguments
Name Type Description
[ACTUALLYout] CapeArrayString | The list of Phase labels (identifiers — names) for the
phaseLabels Phases present in the Material Object.

The Phase labels in the Material Object must be a
subset of the labels returned by the GetPhaseL.ist
method of the ICapeThermoPhases interface.

[ACTUALLYout] CapeArrayEnumer | Array of Phase status flags corresponding to each of
phaseStatus ation the Phase labels. See description below.

Notes

A Phase is ‘present’ in a Material Object (or other component that implements the
ICapeThermoMaterial interface) if it has been explicitly made present by calling the
SetPresentPhases method or if any properties have been set by calling the
SetSinglePhaseProp or SetTwoPhaseProp methods. Even if a Phase is present, it does not
necessarily imply that any Physical Properties are actually set unless the phaseStatus is
Cape_AtEquilibrium or Cape_Estimates (see below). Note that calling the SetPresentPhases
method of the ICapeThermoMaterial interface will cause any phases not specified in its
phaseLabels list to not present, even if previously present as a result of a SetSingle-
PhaseProp or SetTwoPhaseProp call.

If no Phases are present, UNDEFINED should be returned for both the phaseLabels and
phaseStatus arguments.

The phaseStatus argument contains as many entries as there are Phase labels. The valid
settings are listed in the following table:

Identifier Meaning

Cape_UnknownPhaseStatus | This is the normal setting when a Phase is specified as being available
for an Equilibrium Calculation.

Cape_AtEquilibrium The Phase has been set as present as a result of an Equilibrium
Calculation.
Cape_Estimates Estimates of the equilibrium state have been set in the Material Object.

All the Phases with a status of Cape_AtEquilibrium have values of temperature, pressure,
composition and Phase fraction set that correspond to an equilibrium state, i.e. equal
temperature, pressure and fugacities of each Compound. Phases with a Cape_Estimates
status have values of temperature, pressure, composition and Phase fraction set in the
Material Object. These values are available for use by an Equilibrium Calculator component
to initialise an Equilibrium Calculation. The stored values are available but there is no
guarantee that they will be used.

43

GetPresentPhases is intended to be used in several contexts.

e A Property Package, Property Calculator or other PMC may use this method to check
whether a phase is present in the Material Object prior to requesting and/or calculating
some properties.

e An Equilibrium Calculator component will use this method to obtain the list of phases to
consider in an equilibrium calculation or when checking an equilibrium specification
(see below for more details).

e The method will be used by the PME or PMC to obtain the list of phases present as the
result of an equilibrium calculation (see below for more details).

e A Unit Operation (or other PMC) will use this method to get the list of phases present at
an inlet port or during its calculations.

In the context of Equilibrium Calculations the GetPresentPhases method is intended to work
in conjunction with the SetPresentPhases method. Together these methods provide a means
of communication between a PME (or another client) and an Equilibrium Calculator (or
other component that implements the ICapeThermoEquilibriumRoutine interface). The
following sequence of operations is envisaged.

1. Prior to requesting an Equilibrium Calculation, a PME will use the SetPresentPhases
method to define a list of Phases that may be considered in the Equilibrium
Calculation. Typically, this is necessary because an Equilibrium Calculator may be
capable of handling a large number of Phases but for a particular application, it may
be known that only certain Phases will be involved. For example, if the complete
Phase list contains Phases with the following labels (with the obvious interpretation):
vapour, hydrocarbonLiquid and aqueousLiquid and it is required to model a liquid
decanter, the present Phases might be set to hydrocarbonLiquid and aqueousLiquid.

2. The GetPresentPhases method is then used by the CalcEquilibrium method of the
ICapeThermoEquilibriumRoutine interface to obtain the list of Phase labels corre-
sponding to the Phases that may be present at equilibrium.

3. The Equilibrium Calculation determines which Phases actually co-exist at
equilibrium. This list of Phases may be a sub-set of the Phases considered because
some Phases may not be present at the prevailing conditions. For example, if the
amount of water is sufficiently small the aqueousLiquid Phase in the above example
may not exist because all the water dissolves in the hydrocarbonLiquid Phase.

4. The CalcEquilibrium method uses the SetPresentPhases method to indicate the
Phases present following the equilibrium calculation (and sets the phase properties).

5. The PME uses the GetPresentPhases method to find out the Phases present following
the calculation and it can then use the GetSinglePhaseProp or GetTPFraction
methods to get the Phase properties.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

44

GetSinglePhaseProp

Interface Name ICapeThermoMaterial
Method Name GetSinglePhaseProp
Returns -

Description

Retrieves single-phase non-constant Physical Property values for a mixture.

Arguments

Name Type Description

[in] property CapeString The identifier of the Physical Property for which values
are requested. This must be one of the single-phase
Physical Properties or derivatives. The standard
identifiers are listed in sections 7.5.5 and 7.6.

[in] phaseLabel CapeString Phase label of the Phase for which the Physical
Property is required. The Phase label must be one of
the identifiers returned by the GetPresentPhases
method of this interface.

[in] basis CapeString Basis of the results. Valid settings are: “Mass” for
Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

[ACTUALLYout] | CapeVariant Results vector (CapeArrayDouble) containing Physical

results Property value(s) in Sl units or Capelnterface (see
notes).

Notes

The results argument returned by GetSinglePhaseProp is either a CapeArrayDouble that
contains one or more numerical values, e.g. temperature, or a Capelnterface that may be
used to retrieve single-phase Physical Properties described by a more complex data
structure, e.g. distributed properties.

It is required that a component that implements the ICapeThermoMaterial interface will
always support the following properties: temperature, pressure, fraction, phaseFraction,
flow, totalFlow.

Although the result of some calls to GetSinglePhaseProp may be a single numerical value,
the return type for numerical values is CapeArrayDouble and in such a case the method must
return an array even if it contains only a single element.

A Phase is ‘present’ in a Material if its identifier is returned by the GetPresentPhases
method. An exception is raised by the GetSinglePhaseProp method if the Phase specified is
not present. Even if a Phase is present, this does not necessarily mean that any Physical
Properties are available.

The Physical Property values returned by GetSinglePhaseProp refer to a single Phase. These
values may be set by the SetSinglePhaseProp method, which may be called directly, or by

45

other methods such as the CalcSinglePhaseProp method of the
ICapeThermoPropertyRoutine interface or the CalcEquilibrium method of the
ICapeThermoEquilibriumRoutine interface. Note: Physical Properties that depend on more
than one Phase, for example surface tension or K-values, are returned by the
GetTwoPhaseProp method.

It is expected that this method will normally be able to provide Physical Property values on
any basis, i.e. it should be able to convert values from the basis on which they are stored to
the basis requested. This operation will not always be possible. For example, if the
molecular weight is not known for one or more Compounds, it is not possible to convert
from mass fractions or mass flows to mole fractions or molar flows.

Exceptions

ECapeNolmpl — The operation GetSinglePhaseProp is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable — The property required is not available from the Material
Object possibly for the Phase label or basis requested. This exception is raised when a
property value has not been set following a call to the CreateMaterial or the value has been
erased by a call to the ClearAllProps methods.

ECapelnvalidArgument — To be used when an invalid argument value was passed: for
example UNDEFINED for property, or an unrecognised identifier for phaseLabel.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialisation has
not been performed, or has failed. This exception is returned if the Phase specified does not
exist.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

46

GetTPFraction

Interface Name ICapeThermoMaterial
Method Name GetTPFraction

Returns -

Description

Retrieves temperature, pressure and composition for a Phase.

Arguments
Name Type Description
[in] phaseLabel CapeString Phase label of the Phase for which the property is
required. The Phase label must be one of the identifiers
returned by the GetPresentPhases method of this
interface.
[ACTUALLYout] | CapeDouble Temperature (in K)
temperature
[ACTUALLYout] | CapeDouble Pressure (in Pa)
pressure
[ACTUALLYout] | CapeArrayDouble | Composition (mole fractions)
composition
Notes

This method is provided to make it easier for developers to make efficient use of the CAPE-
OPEN interfaces. It returns the most frequently requested information from a Material
Obiject in a single call.

There is no choice of basis in this method. The composition is always returned as mole
fractions.

To get the equivalent information for the overall mixture the GetOveralITPFraction method
of the ICapeThermoMaterial interface should be used.

Exceptions

ECapeNolmpl — The operation GetTPFraction is “not” implemented even if this method can
be called for reasons of compatibility with the CAPE-OPEN standards. That is to say that
the operation exists but it is not supported by the current implementation.

ECapeThrmPropertyNotAvailable — One of the properties is not available from the Material
Object. This exception is raised when a property value has not been set following a call to
the CreateMaterial or the value has been erased by a call to the ClearAllProps methods.

ECapelnvalidArgument — To be used when an invalid argument value was passed: for
example an unrecognized identifier for phaseLabel.

EcapeFailedInitialisation - The pre-requisites are not valid. The necessary initialization has
not been performed, or has failed. This exception is returned if the phase specified does not
exist.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

47

GetTwoPhaseProp

Interface Name ICapeThermoMaterial
Method Name GetTwoPhaseProp
Returns -

Description

Retrieves two-phase non-constant Physical Property values for a mixture.

Arguments
Name Type Description
[in]property CapeString The identifier of the property for which values are

requested. This must be one of the two-phase Physical
Properties or Physical Property derivatives listed in
sections 7.5.6 and 7.6.

[in]phaseLabels CapeArrayString List of Phase labels of the Phases for which the
property is required. The Phase labels must be two of
the identifiers returned by the GetPhaseList method of
the Material Object.

[in]basis CapeString Basis of the results. Valid settings are: “Mass” for
Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

[ACTUALLYout] | CapeVariant Results vector (CapeArrayDouble) containing property
results value(s) in Sl units or Capelnterface (see notes).
Notes

The results argument returned by GetTwoPhaseProp is either a CapeArrayDouble that
contains one or more numerical values, e.g. kvalues, or a Capelnterface that may be used to
retrieve 2-phase Physical Properties described by a more complex data structure, e.g.
distributed Physical Properties.

Although the result of some calls to GetTwoPhaseProp may be a single numerical value, the
return type for numerical values is CapeArrayDouble and in such a case the method must
return an array even if it contains only a single element.

A Phase is ‘present’ in a Material if its identifier is returned by the GetPresentPhases
method. An exception is raised by the GetTwoPhaseProp method if any of the Phases
specified is not present. Even if all Phases are present, this does not necessarily mean that
any Physical Properties are available.

The Physical Property values returned by GetTwoPhaseProp depend on two Phases, for
example surface tension or K-values. These values may be set by the SetTwoPhaseProp
method that may be called directly, or by other methods such as the CalcTwoPhaseProp
method of the 1CapeThermoPropertyRoutine interface, or the CalcEquilibrium method of the
ICapeThermoEquilibriumRoutine interface. Note: Physical Properties that depend on a
single Phase are returned by the GetSinglePhaseProp method.

48

It is expected that this method will normally be able to provide Physical Property values on
any basis, i.e. it should be able to convert values from the basis on which they are stored to
the basis requested. This operation will not always be possible. For example, if the
molecular weight is not known for one or more Compounds, it is not possible to convert
between a mass basis and a molar basis.

If a composition derivative is requested this means that the derivatives are returned for both
Phases in the order in which the Phase labels are specified. The number of values returned
for a composition derivative will depend on the dimensionality of the property. For example,
if there are N Compounds then the results vector for the surface tension derivative will
contain N composition derivative values for the first Phase, followed by N composition

derivative values for the second Phase. For K-value derivative there will be N2 derivative

values for the first phase followed by N2 values for the second phase in the order defined in
7.6.2.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation. This could be the case if two-
phase non-constant Physical Properties are not required by the PME and so there is no
particular need to implement this method.

ECapeThrmPropertyNotAvailable — the property required is not available from the Material
Object possibly for the Phases or basis requested.

ECapeFailedlInitialisation - The pre-requisites are not valid. This exception is raised when a
call to the SetTwoPhaseProp method has not been performed, or has failed, or when one or
more of the Phases referenced does not exist.

ECapelnvalidArgument — To be used when an invalid argument value was passed: for
example, UNDEFINED for property, or an unrecognised identifier in phaseLabels.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

49

SetOverallProp

Interface Name ICapeThermoMaterial
Method Name SetOverallProp
Returns -

Description

Sets non-constant property values for the overall mixture.

Arguments
Name Type Description
[in] property CapeString The identifier of the property for which values are set.
This must be one of the single-phase properties or
derivatives that can be stored for the overall mixture.
The standard identifiers are listed in sections 7.5.5 and
7.6.
[in] basis CapeString Basis of the results. Valid settings are: “Mass” for
Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.
[in] values CapeArrayDouble Values to set for the property.
Notes

The property values set by SetOverallProp refer to the overall mixture. These values are
retrieved by calling the GetOverallProp method. Overall mixture properties are not
calculated by components that implement the 1CapeThermoMaterial interface. The property
values are only used as input specifications for the CalcEquilibrium method of a component
that implements the ICapeThermoEquilibriumRoutine interface.

Although some properties set by calls to SetOverallProp will have a single value, the type of
argument values is CapeArrayDouble and the method must always be called with values as
an array even if it contains only a single element.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation. This method may not be
required if the PME does not deal with any single-phase property.

ECapelnvalidArgument - To be used when an invalid argument value was passed, that is a
value that does not belong to the valid list described above, for example UNDEFINED for
property.

ECapeOutOfBounds — one or more of the entries in the values argument is outside of the
range of values accepted by the Material Object.

ECapeUnknown — The error to be raised when other error(s), specified for the
SetSinglePhaseProp operation, are not suitable.

50

Interface Name
Method Name

Returns

Description

SetPresentPhases

SetPresentPhases

CapeError

ICapeThermoMaterial

Allows the PME or the Property Package to specify the list of Phases that are currently present.

Arguments

Name
[in] phaseLabels

Type
CapeArrayString

Description
The list of Phase labels for the Phases present.
The Phase labels in the Material Object must be a

subset of the labels returned by the GetPhaseL.ist
method of the ICapeThermoPhases interface.

[in] phaseStatus

CapeArrayEnumer
ation

Array of Phase status flags corresponding to each of
the Phase labels. See description below.

Notes

SetPresentPhases is intended to be used in the following ways:

e To restrict an Equilibrium Calculation (using the CalcEquilibrium method of a
component that implements the ICapeThermoEquilibriumRoutine interface) to a subset

of the Phases supported by the Property Package component;

e When the component that implements the 1CapeThermoEquilibriumRoutine interface
needs to specify which Phases are present in a Material Object after an Equilibrium

Calculation has been performed.

¢ In the context of dynamic simulations to specify the state of a Material Object that is an
output of a unit operation. This is the equivalent of calculating equilibrium in steady-
state simulations.

If a Phase in the list is already present, its Physical Properties are unchanged by the action of
this method. Any Phases not in the list when SetPresentPhases is called are removed from
the Material Object. This means that any Physical Property values that may have been stored
on the removed Phases are no longer available (i.e. a call to GetSinglePhaseProp or
GetTwoPhaseProp including this Phase will return an exception). A call to the
GetPresentPhases method of the Material Object will return the same list as specified by
SetPresentPhases.

The phaseStatus argument must contain as many entries as there are Phase labels. The valid

settings are listed in the following table:

51

Identifier Meaning

Cape_UnknownPhaseStatus | This is the normal setting when a Phase is specified as being available
for an Equilibrium Calculation.

Cape_AtEquilibrium The Phase has been set as present as a result of an Equilibrium
Calculation.
Cape_Estimates Estimates of the equilibrium state have been set in the Material Object.

All the Phases with a status of Cape_AtEquilibrium must have properties that correspond to
an equilibrium state, i.e. equal temperature, pressure and fugacities of each Compound (this
does not imply that the fugacities are set as a result of the Equilibrium Calculation). The
Cape_AtEquilibrium status should be set by the CalcEquilibrium method of a component
that implements the ICapeThermoEquilibriumRoutine interface following a successful
Equilibrium Calculation. If the temperature, pressure or composition of an equilibrium Phase
is changed, the Material Object implementation is responsible for resetting the status of the
Phase to Cape_UnknownPhaseStatus. Other property values stored for that Phase should not
be affected.

Phases with an Estimates status must have values of temperature, pressure, composition and
phase fraction set in the Material Object. These values are available for use by an
Equilibrium Calculator component to initialise an Equilibrium Calculation. The stored
values are available but there is no guarantee that they will be used.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapelnvalidArgument - To be used when an invalid argument value was passed, that is a
value that does not belong to the valid list described above, for example if phaseLabels
contains UNDEFINED or phaseStatus contains a value that is not in the above table.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

52

SetSinglePhaseProp

Interface Name ICapeThermoMaterial
Method Name SetSinglePhaseProp
Returns -

Description

Sets single-phase non-constant property values for a mixture.

Arguments

Name Type Description

[in] property CapeString The identifier of the property for which values are set.
This must be one of the single-phase properties or
derivatives. The standard identifiers are listed in
sections 7.5.5 and 7.6.

[in] phaseLabel CapeString Phase label of the Phase for which the property is set.
The phase label must be one of the strings returned by
the GetPhaseList method of the ICapeThermoPhases
interface.

[in] basis CapeString Basis of the results. Valid settings are: “Mass” for
Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

[in] values CapeVariant Values to set for the property (CapeArrayDouble) or
Capelnterface (see notes).

Notes

The values argument of SetSinglePhaseProp is either a CapeArrayDouble that contains one
or more numerical values to be set for a property, e.g. temperature, or a Capelnterface that
may be used to set single-phase properties described by a more complex data structure, e.g.
distributed properties.

It is required that a component that implements the ICapeThermoMaterial interface will
always support the following properties: temperature, pressure, fraction, phaseFraction,
flow, totalFlow.

Although some properties set by calls to SetSinglePhaseProp will have a single numerical
value, the type of the values argument for numerical values is CapeArrayDouble and in such
a case the method must be called with values containing an array even if it contains only a
single element.

The property values set by SetSinglePhaseProp refer to a single Phase. Properties that de-
pend on more than one Phase, for example surface tension or K-values, are set by the
SetTwoPhaseProp method of the ICapeThermoMaterial Interface.

To set a property using SetSinglePhaseProp, a phaseLabel identifier should be passed that is
supported by the Property Package or Material Object, i.e. one that appears in the list
returned by the GetPhaseList method of the 1CapeThermoPhases interface. Setting such a

53

property should cause the phase to be present on the Material Object, as if it were specified
in a call to SetPresentPhases with status Cape_UnknownPhaseStatus. The SetPresentPhases
method of this interface does not need to be called before calling SetSinglePhaseProp.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation. This method may not be
required if the PME does not deal with any single-phase properties.

ECapelnvalidArgument - To be used when an invalid argument value was passed, that is a
value that does not belong to the valid list described above, for example UNDEFINED for
property or phaseLabel is not in the list returned by GetPhaseL.ist.

ECapeOutOfBounds — one or more of the entries in the values argument is outside of the
range of values accepted by the Material Object.

ECapeUnknown — The error to be raised when other error(s), specified for the
SetSinglePhaseProp operation, are not suitable.

54

SetTwoPhaseProp

Interface Name ICapeThermoMaterial
Method Name SetTwoPhaseProp
Returns -

Description

Sets two-phase non-constant property values for a mixture.

Arguments
Name Type Description
[in] property CapeString The property for which values are set in the Material

Obiject. This must be one of the two-phase properties or
derivatives included in sections 7.5.6 and 7.6.

[in] phaseLabels CapeArrayString Phase labels of the Phases for which the property is set.
The Phase labels must be two of the identifiers returned
by the GetPhaseL.ist method of the
ICapeThermoPhases interface.

[in] basis CapeString Basis of the results. Valid settings are: “Mass” for
Physical Properties per unit mass or “Mole” for molar
properties. Use UNDEFINED as a place holder for a
Physical Property for which basis does not apply. See
section 7.5.5 for details.

[in] values CapeVariant Value(s) to set for the property (CapeArrayDouble) or
Capelnterface (see notes).

Notes

The values argument of SetTwoPhaseProp is either a CapeArrayDouble that contains one or
more numerical values to be set for a property, e.g. kvalues, or a Capelnterface that may be
used to set two-phase properties described by a more complex data structure, e.g. distributed
properties.

Although some properties set by calls to SetTwoPhaseProp will have a single numerical
value, the type of the values argument for numerical values is CapeArrayDouble and in such
a case the method must be called with the values argument containing an array even if it
contains only a single element.

The Physical Property values set by SetTwoPhaseProp depend on two Phases, for example
surface tension or K-values. Properties that depend on a single Phase are set by the
SetSinglePhaseProp method.

If a Physical Property with composition derivative is specified, the derivative values will be
set for both Phases in the order in which the Phase labels are specified. The number of
values returned for a composition derivative will depend on the property. For example, if
there are N Compounds then the values vector for the surface tension derivative will contain
N composition derivative values for the first Phase, followed by N composition derivative

values for the second Phase. For K-values there will be N2 derivative values for the first
phase followed by N2 values for the second phase in the order defined in 7.6.2.

55

To set a property using SetTwoPhaseProp, phaselLabels identifiers should be passed that are
supported by the Property Package or Material Object, i.e. one that appears in the list returned by the
GetPhaseList method of the ICapeThermoPhases interface. Setting such a property should cause the
phases to be present on the Material Object, as if it were present in a call to SetPresentPhases with
status Cape_UnknownPhaseStatus. The SetPresentPhases method of this interface does not need to
be called before calling SetTwoPhaseProp.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation. This method may not be re-
quired if the PME does not deal with any two-phase properties.

ECapelnvalidArgument — To be used when an invalid argument value was passed, that is a
value that does not belong to the valid lists described above, for example if UNDEFINED is
used for identifying the property, or the calculation type, or the phaseLabels argument con-
tains only one item or the phaseLabels are not in the list returned by GetPhaseL.ist.

ECapeOutOfBounds — One or more of the entries in the values argument is outside of the
range of values accepted by the Material Object, for example, negative K-values.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

56

6.2 ICapeThermoMaterialContext

This interface should be implemented by all Thermodynamic and Physical Properties
components that need an ICapeThermoMaterial interface in order to set and get a Material’s
property values. The following methods are described in this section:

o SetMaterial
o UnsetMaterial

57

SetMaterial

Interface Name ICapeThermoMaterialContext
Method Name SetMaterial

Returns -

Description

Allows the client of a component that implements this interface to pass an ICapeThermoMaterial
interface to the component, so that it can access the properties of a Material.

Arguments

Name Type Description

[in] material Capelnterface The Material interface.
Notes

The SetMaterial method allows a Thermodynamic and Physical Properties component, such
as a Property Package, to be given the ICapeThermoMaterial interface of a Material Object.
This interface gives the component access to the description of the Material for which
Property Calculations or Equilibrium Calculations are required. The component can access
property values directly using this interface. A client can also use the 1CapeThermoMaterial
interface to query a Material Object for its ICapeThermoCompounds and ICapeThermo-
Phases interfaces, which provide access to Compound and Phase information, respectively.

It is envisaged that the SetMaterial method will be used to check that the Material Interface
supplied is valid and useable. For example, a Property Package may check that there are
some Compounds in a Material Object and that those Compounds can be identified by the
Property Package. In addition a Property Package may perform any initialisation that
depends on the configuration of a Material Object. A Property Calculator component might
typically use this method to query the Material Object for any required information
concerning the Compounds.

Calling the UnsetMaterial method of the ICapeThermoMaterialContext interface has the
effect of removing the interface set by the SetMaterial method.

After a call to SetMaterial() has been received, the object implementing the 1CapeThermo-
MaterialContext interface can assume that the number, name and order of compounds for
that Material Object will remain fixed until the next call to SetMaterial() or UnsetMaterial().

A PME must not call SetMaterial on a Property Package while the Property Package is in the
process of performing a calculation. A scenario in which this behavior was encountered is
described below for clarification.

Example: the Material Object performs a reference state correction, as outlined in section 5.6
“Physical Property Calculator behaviour”. The PME requires a PH equilibrium calculation.
The PME has a Material Object for this purpose, that is configured with the overall
temperature, pressure and composition. The PME sets the Material Object on the Property
Package and calls CalcEquilibrium with the request for enthalpy calculation. The Property
Package requests overall enthalpy from the Material Object. The Material Object determines
that it has not yet calculated the compound reference enthalpies (see section 5.6), and creates
a duplicate of itself to ask the Property Package to calculate the pure compound reference

58

rty Package, and
er of the Equilibrium calculation will fail because it references the wrong
Material Object.

This example illustrates that if the Material Object requires reference values for entropies
and enthalpies, it cannot postpone their calculations until the Property Package is calling the
Material Object to provide enthalpy or entropy values. The PME should calculate such
reference value before it asks the Property Package to perform an equilibrium calculation.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapelnvalidArgument — The input argument is not a valid Capelnterface.

ECapeFailedlInitialisation — The pre-requisites for the property calculation are not valid. For
example:

e There are no Compounds in the object that implements the 1CapeThermoMaterial
interface.

e The Compounds cannot be identified by the client (e.g. a Property Package). This
case is a possibility if the way a Material Object has been configured by a PME is
not consistent with the Property Package being used.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

59

UnsetMaterial

Interface Name ICapeThermoMaterialContext
Method Name UnsetMaterial

Returns CapeError

Description

Removes any previously set Material interface.

Notes

The UnsetMaterial method removes any Material interface previously set by a call to the
SetMaterial method of the ICapeThermoMaterialContext interface. This means that any
methods of other interfaces that depend on having a valid Material Interface, for example
methods of the ICapeThermoPropertyRoutine or [CapeThermoEquilibriumRoutine
interfaces, should behave in the same way as if the SetMaterial method had never been
called.

If UnsetMaterial is called before a call to SetMaterial it has no effect and no exception
should be raised.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable

60

6.3 ICapeThermoCompounds

Any component or object that maintains a list of Compounds must implement the
ICapeThermoCompounds interface. Within the scope of this specification this means that it
must be implemented by Property Package components and Material Objects. When
implemented by a Property Package, this interface is used to access the list of Compounds
that the Property Package can deal with, as well as the Compounds Physical Properties.
When implemented by a Material Object, the interface is used for the same purpose but is
applied to the Compounds present in the Material.

It is recommended for the SetMaterial method of the ICapeThermoMaterialContext interface
to be called prior to calling any of the methods described below. A Property Package may
contain Physical Property values for all the Compounds that it supports or it may rely on the
PME to provide these data through the Material Object.

The following methods are described in this section:

GetCompoundConstant
GetCompoundList
GetConstPropL.ist
GetNumCompounds
GetPDependentProperty
GetPDependentPropList
GetTDependentProperty
GetTDependentPropList

Sy

61

GetCompoundConstant

Interface Name ICapeThermoCompounds
Method Name GetCompoundConstant
Returns CapeArrayVariant
Description

Returns the values of constant Physical Properties for the specified Compounds.

Arguments

Name Type Description

[in] props CapeArrayString The list of Physical Property identifiers. Valid
identifiers for constant Physical Properties are listed in
section 7.5.2.

[in] complds CapeArrayString List of Compound identifiers for which constants are to
be retrieved. Set complds to UNDEFINED to denote
all Compounds in the component that implements the
ICapeThermoCompounds interface.

[out, retval] CapeArrayVariant Values of constants for the specified Compounds.

propvals

Notes

The GetConstPropList method can be used in order to check which constant Physical
Properties are available.

If the number of requested Physical Properties is P and the number of Compounds is C, the
propvals array will contain C*P variants. The first C variants will be the values for the first
requested Physical Property (one variant for each Compound) followed by C values of con-
stants for the second Physical Property, and so on. The actual type of values returned
(Double, String, etc.) depends on the Physical Property as specified in section 7.5.2.

Physical Properties are returned in a fixed set of units as specified in section 7.5.2.

If the complds argument is set to UNDEFINED this is a request to return property values for
all compounds in the component that implements the 1CapeThermoCompounds interface
with the compound order the same as that returned by the GetCompoundList method. For
example, if the interface is implemented by a Property Package component the property
request with complds set to UNDEFINED means all compounds in the Property Package
rather than all compounds in the Material Object passed to the Property package.

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECapeThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.

Exceptions

ECapeNolmpl — The operation GetCompoundConstant is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is

62

to say that the operation exists, but it is not supported by the current implementation. This
exception should be raised if no compounds or no properties are supported.

ECapeThrmPropertyNotAvailable — At least one item in the list of Physical Properties is not
available for a particular Compound. This exception is meant to be treated as a warning
rather than as an error.

ECapeLimitedimpl — One or more Physical Properties are not supported by the component
that implements this interface. This exception should also be raised if any element of the
props argument is not recognised since the list of Physical Properties in section 7.5.2 is not
intended to be exhaustive and an unrecognised Physical Property identifier may be valid. If
no Physical Properties at all are supported ECapeNolmpl should be raised (see above).

ECapelnvalidArgument — To be used when an invalid argument value is passed, for exam-
ple, an unrecognised Compound identifier or UNDEFINED for the props argument.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetCompoundConstant method. The error would not
be raised when the GetCompoundConstant method is implemented by a Material Object.

63

GetCompoundList

Interface Name ICapeThermoCompounds
Method Name GetCompoundList
Returns -

Description

Returns the list of all Compounds. This includes the Compound identifiers recognised and extra
information that can be used to further identify the Compounds.

Arguments
Name Type Description
[ACTUALLYout] | CapeArrayString List of Compound identifiers
complds
[ACTUALLYout] | CapeArrayString List of Compound formulae
formulae
[ACTUALLYout] | CapeArrayString List of Compound names.
names

[ACTUALLYout] | CapeArrayDouble | List of boiling point temperatures.
boilTemps

[ACTUALLYout] | CapeArrayDouble | List of molecular weights.

molwts
[ACTUALLYout] | CapeArrayString List of Chemical Abstract Service (CAS) Registry
casnos numbers.

Notes

If any item cannot be returned then the value should be set to UNDEFINED. The same in-
formation can also be extracted using the GetCompoundConstant method. The equivalences
between GetCompoundList arguments and Compound constant Physical Properties, as
specified in section 7.5.2, is given in the table below.

When the 1CapeThermoCompounds interface is implemented by a Material Object, the list
of Compounds returned is fixed when the Material Object is configured.

For a Property Package component, the Property Package will normally contain a limited set
of Compounds selected for a particular application, rather than all possible Compounds that
could be available to a proprietary Properties System.

The complds returned by the GetCompoundList method must be unique within the
component that implements the 1CapeThermoCompounds interface. There is no restriction
on the length of the strings returned in complds. However, it should be recognised that a
PME may restrict the length of Compound identifiers internally. In such a case the PME’s
CAPE-OPEN socket must maintain a method of mapping the, potentially long, identifiers
used by a CAPE-OPEN Property package component to the identifiers used within the PME.

In order to identify the Compounds of a Property Package, the PME, or other client, will use
the casnos argument rather than the complds. This is because different PMEs and different
Property Packages may give different names to the same Compounds and the casnos is

64

(almost always) unique. If the casnos is not available (e.g. for petroleum fractions), or not
unique, the other pieces of information returned by GetCompoundList can be used to
distinguish the Compounds. It should be noted, however, that for communication with a
Property Package a client must use the Compound identifiers returned in the complds
argument. It is the responsibility of the client to maintain appropriate data structures that
allow it to reconcile the different Compound identifiers used by different Property Packages
and any native property system.

GetCompoundList

arguments Compound constant property

complds No equivalence. complds is an artefact, which is assigned by the
component that implements the GetCompoundL.ist method.
This string must contain a unique Compound identifier such as
"benzene”. It must be used in all the arguments which are named
“complds” in the methods of the ICapeThermoCompounds and
ICapeThermoMaterial interfaces.

Formulae chemicalFormula

names iupacName

boilTemps normalBoilingPoint

molwts molecularWeight

casnos casRegistryNumber

Exceptions

ECapeNolmpl —The operation GetCompoundL.ist is “not” implemented even if this method
can be called for reasons of compatibility with the CAPE-OPEN standards. That is to say
that the operation exists, but it is not supported by the current implementation.

ECapeUnknown -The error to be raised when other error(s), specified for the
GetCompoundL.ist operation, are not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetCompoundList method. The error would not be
raised when the GetCompoundList method is implemented by a Material Object.

65

GetConstProplList

Interface Name ICapeThermoCompounds
Method Name GetConstPropL.ist

Returns CapeArrayString
Description

Returns the list of supported constant Physical Properties.

Arguments

Description

[out, retval] props | CapeArrayString List of identifiers for all supported constant
Physical Properties. The standard constant
property identifiers are listed in section 7.5.2.

Notes

GetConstPropList returns identifiers for all the constant Physical Properties that can be
retrieved by the GetCompoundConstant method. If no properties are supported,
UNDEFINED should be returned. The CAPE-OPEN standards do not define a minimum list
of Physical Properties to be made available by a software component that implements the
ICapeThermoCompounds interface.

A component that implements the 1CapeThermoCompounds interface may return constant
Physical Property identifiers which do not belong to the list defined in section 7.5.2.
However, these proprietary identifiers may not be understood by most of the clients of this
component.

Exceptions
ECapeNolmpl —The operation GetConstPropList is “not” implemented even if this method

can be called for reasons of compatibility with the CAPE-OPEN standards. That is to say
that the operation exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the Get-
ConstPropL.ist operation, are not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetConstPropList method. The error would not be
raised when the GetConstPropList method is implemented by a Material Object.

66

GetNumCompounds

Interface Name ICapeThermoCompounds
Method Name GetNumCompounds
Returns CapeLong

Description

Returns the number of Compounds supported.

Arguments

Name Type Description

[out, retval] num CapeLong Number of Compounds supported.
Notes

The number of Compounds returned by this method must be equal to the number of
Compound identifiers that are returned by the GetCompoundList method of this interface. It
must be zero or a positive number.

Exceptions
ECapeNolmpl — The operation is “not” implemented even if this method can be called for

reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetNumCompounds method. The error would not be
raised when the GetNumCompounds method is implemented by a Material Object.

67

GetPDependentProperty

Interface Name ICapeThermoCompounds
Method Name GetPDependentProperty
Returns -

Description

Returns the values of pressure-dependent Physical Properties for the specified pure Compounds.

Arguments

Name Type Description

[in] props CapeArrayString The list of Physical Property identifiers. Valid
identifiers for pressure-dependent Physical Properties
are listed in section 7.5.4

[in] pressure CapeDouble Pressure (in Pa) at which Physical Properties are
evaluated

[in] complds CapeArrayString List of Compound identifiers for which Physical

Properties are to be retrieved. Set complds to
UNDEFINED to denote all Compounds in the
component that implements the
ICapeThermoCompounds interface.

[ACTUALLYout] | CapeArrayDouble | Property values for the Compounds specified.
propvals

Notes

The GetPDependentPropList method can be used in order to check which Physical
Properties are available.

If the number of requested Physical Properties is P and the number Compounds is C, the
propvals array will contain C*P values. The first C will be the values for the first requested
Physical Property followed by C values for the second Physical Property, and so on.

Physical Properties are returned in a fixed set of units as specified in section 7.5.4.

If the complds argument is set to UNDEFINED this is a request to return property values for
all compounds in the component that implements the ICapeThermoCompounds interface
with the compound order the same as that returned by the GetCompoundList method. For
example, if the interface is implemented by a Property Package component the property
request with complds set to UNDEFINED means all compounds in the Property Package
rather than all compounds in the Material Object passed to the Property package.

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECape ThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.

68

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation. This exception should be raised
if no Compounds or no Physical Properties are supported.

ECapeLimitedimpl — One or more Physical Properties are not supported by the component
that implements this interface. This exception should also be raised (rather than
ECapelnvalidArgument) if any element of the props argument is not recognised since the list
of Physical Properties in section 7.5.4 is not intended to be exhaustive and an unrecognised
Physical Property identifier may be valid. If no Physical Properties at all are supported,
ECapeNolmpl should be raised (see above).

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
UNDEFINED for argument props.

ECapeOutOfBounds — The value of the pressure is outside of the range of values accepted
by the Property Package.

ECapeThrmPropertyNotAvailable — at least one item in the properties list is not available for
a particular compound.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetPDependentProperty method. The error would not
be raised when the GetPDependentProperty method is implemented by a Material Object.

69

GetPDependentPropList

Interface Name ICapeThermoCompounds
Method Name GetPDependentPropList
Returns CapeArrayString
Description

Returns the list of supported pressure-dependent properties.

Arguments

Description

[out, retval] props | CapeArrayString The list of Physical Property identifiers for all
supported pressure-dependent properties. The standard
identifiers are listed in section 7.5.4

Notes

GetPDependentPropList returns identifiers for all the pressure-dependent properties that can
be retrieved by the GetPDependentProperty method. If no properties are supported
UNDEFINED should be returned. The CAPE-OPEN standards do not define a minimum list
of Physical Properties to be made available by a software component that implements the
ICapeThermoCompounds interface.

A component that implements the ICapeThermoCompounds interface may return identifiers
which do not belong to the list defined in section 7.5.4. However, these proprietary
identifiers may not be understood by most of the clients of this component.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetPDependentPropList method. The error would not
be raised when the GetPDependentPropL.ist method is implemented by a Material Object.

70

GetTDependentProperty

Interface Name ICapeThermoCompounds
Method Name GetTDependentProperty
Returns -

Description

Returns the values of temperature-dependent Physical Properties for the specified pure Compounds.

Arguments
Name Type Description
[in] props CapeArrayString The list of Physical Property identifiers. Valid
identifiers for temperature-dependent Physical
Properties are listed in section 7.5.3
[in] temperature CapeDouble Temperature (in K) at which properties are evaluated
[in] complds CapeArrayString List of Compound identifiers for which Physical

Properties are to be retrieved. Set complds to
UNDEFINED to denote all Compounds in the
component that implements the
ICapeThermoCompounds interface.

[ACTUALLYout] | CapeArrayDouble | Physical Property values for the Compounds specified.
propvals

Notes

The GetTDependentPropList method can be used in order to check which Physical
Properties are available.

If the number of requested Physical Properties is P and the number of Compounds is C, the
propvals array will contain C*P values. The first C will be the values for the first requested
Physical Property followed by C values for the second Physical Property, and so on.

Properties are returned in a fixed set of units as specified in section 7.5.3.

If the complds argument is set to UNDEFINED this is a request to return property values for
all compounds in the component that implements the ICapeThermoCompounds interface
with the compound order the same as that returned by the GetCompoundList method. For
example, if the interface is implemented by a Property Package component the property
request with complds set to UNDEFINED means all compounds in the Property Package
rather than all compounds in the Material Object passed to the Property package.

If any Physical Property is not available for one or more Compounds, then undefined values
must be returned for those combinations and an ECapeThrmPropertyNotAvailable exception
must be raised. If the exception is raised, the client should check all the values returned to
determine which is undefined.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation

71

exists, but it is not supported by the current implementation. This exception should be raised
if no Compounds or no Physical Properties are supported.

ECapeLimitedimpl — One or more Physical Properties are not supported by the component
that implements this interface. This exception should also be raised (rather than
ECapelnvalidArgument) if any element of the props argument is not recognised since the list
of properties in section 7.5.3 is not intended to be exhaustive and an unrecognised Physical
Property identifier may be valid. If no properties at all are supported ECapeNolmpl should
be raised (see above).

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
UNDEFINED for argument props.

ECapeOutOfBounds — The value of the temperature is outside of the range of values ac-
cepted by the Property Package.

ECapeThrmPropertyNotAvailable — at least one item in the properties list is not available for
a particular compound.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetTDependentProperty method. The error would not
be raised when the GetTDependentProperty method is implemented by a Material Object.

72

GetTDependentPropList

Interface Name ICapeThermoCompounds
Method Name GetTDependentPropList
Returns CapeArrayString
Description

Returns the list of supported temperature-dependent Physical Properties.

Arguments

Description

[out, retval] props | CapeArrayString The list of Physical Property identifiers for all
supported temperature-dependent properties. The
standard identifiers are listed in section 7.5.3

Notes

GetTDependentPropList returns identifiers for all the temperature-dependent Physical
Properties that can be retrieved by the GetTDependentProperty method. If no properties are
supported UNDEFINED should be returned. The CAPE-OPEN standards do not define a
minimum list of properties to be made available by a software component that implements
the 1CapeThermoCompounds interface.

A component that implements the ICapeThermoCompounds interface may return identifiers
which do not belong to the list defined in section 7.5.3. However, these proprietary identifi-
ers may not be understood by most of the clients of this component.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the operation, are
not suitable.

ECapeBadInvOrder — The error to be raised if the Property Package required the SetMaterial
method to be called before calling the GetTDependentPropList method. The error would not
be raised when the GetTDependentPropList method is implemented by a Material Object.

73

6.4 ICapeThermoPhases

This interface is designed to provide information about the number and types of Phases sup-
ported by the component that implements it. It defines all the Phases that a component such
as a Physical Property Calculator can handle. It does not provide information about the
Phases that are actually present in a Material Object. This function is provided by the Get-
PresentPhases method of the 1CapeThermoMaterial interface.

The following methods are described in this section:

o GetNumPhases
o GetPhaselnfo
o GetPhaseList

74

GetNumPhases

Interface Name ICapeThermoPhases
Method Name GetNumPhases
Returns CapeLong
Description

Returns the number of Phases.

Arguments

Name Type Description

[out, retval] num CapeLong The number of Phases supported.
Notes

The number of Phases returned by this method must be equal to the number of Phase labels
that are returned by the GetPhaseList method of this interface. It must be zero, or a positive
number.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

75

GetPhaselnfo

Interface Name ICapeThermoPhases
Method Name GetPhaselnfo
Returns CapeVariant
Description

Returns information on an attribute associated with a Phase for the purpose of understanding what
lies behind a Phase label.

Arguments
Name Type Description
[in] phaseLabel CapeString A (single) Phase label. This must be one of the values
returned by GetPhaseList method.
[in] phaseAttribute CapeString One of the Phase attribute identifiers from the table
below.
[out, retval] value CapeVariant The value corresponding to the Phase attribute identifier —
see table below.
Notes

GetPhaselnfo is intended to allow a PME, or other client, to identify a Phase with an arbi-
trary label. A PME, or other client, will need to do this to map stream data into a Material
Obiject, or when importing a Property Package. If the client cannot identify the Phase, it can
ask the user to provide a mapping based on the values of these properties.

The list of supported Phase attributes is defined in the following table:

Phase attribute
identifier Supported values

StateOfAggregation One of the following strings:

Vapor
Liquid
Solid
Unknown

KeyCompoundld The identifier of the Compound (compld as returned by
GetCompoundList) that is expected to be present in highest
concentration in the Phase. May be undefined in which case
UNDEFINED should be returned.

ExcludedCompoundld The identifier of the Compound (compld as returned by
GetCompoundList) that is expected to be present in low or zero
concentration in the Phase. May not be defined in which case
UNDEFINED should be returned.

DensityDescription A description that indicates the density range expected for the Phase.
One of the following strings or UNDEFINED:

Heavy
Light

76

UserDescription A description that helps the user or PME to identify the Phase.
It can be any string or UNDEFINED.

TypeOfSolid A description that provides more information about a solid Phase. For
Phases with a “Solid” state of aggregation it may be one of the
following standard strings or UNDEFINED:

PureSolid
SolidSolution
Hydratel
Hydratell
HydrateH

Other values may be returned for solid Phases but these may not be
understood by most clients.

For Phases with any other state of aggregation it must be
UNDEFINED.

For example, the following information might be returned by a Property Package component
that supports a vapour Phase, an organic liquid Phase and an aqueous liquid Phase:

Phase label Gas Organic Aqueous

StateOfAggregation Vapor Liquid Liquid

KeyCompoundId UNDEFINED UNDEFINED Water

ExcludedCompoundld UNDEFINED Water UNDEFINED

DensityDescription UNDEFINED Light Heavy

UserDescription The gas Phase The organic liquid The aqueous liquid
Phase Phase

TypeOfSolid UNDEFINED UNDEFINED UNDEFINED

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists but it is not supported by the current implementation.

ECapelnvalidArgument — phaseLabel is not recognised, or UNDEFINED, or phaseAttribute
is not recognised.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

77

GetPhaseList

Interface Name ICapeThermoPhases
Method Name GetPhaseList
Returns -

Description

Returns Phase labels and other important descriptive information for all the Phases supported.

Arguments

Name Type Description

[ACTUALLYout] CapeArrayString The list of Phase labels for the Phases supported. A
phaseLabels Phase label can be any string but each Phase must
have a unique label. If, for some reason, no Phases
are supported an UNDEFINED value should be
returned for the phaseLabels. The number of Phase
labels must also be equal to the number of Phases
returned by the GetNumPhases method.

[ACTUALLYout] CapeArrayString The physical State of Aggregation associated with
stateOfAggregation each of the Phases. This must be one of the
following strings:

”Vapor”, “Liquid”, “Solid” or “Unknown”. Each
Phase must have a single State of Aggregation.
The value must not be left undefined, but may be
set to “Unknown”.

[ACTUALLYout] CapeArrayString The key Compound for the Phase. This must be the
keyCompoundId Compound identifier (as returned by
GetCompoundL.ist), or it may be undefined in
which case a UNDEFINED value is returned. The
key Compound is an indication of the Compound
that is expected to be present in high concentration
in the Phase, e.g. water for an aqueous liquid
phase. Each Phase can have a single key
Compound.

Notes

The Phase label allows the phase to be uniquely identified in methods of the ICapeThermo-
Phases interface and other CAPE-OPEN interfaces. The State of Aggregation and key
Compound provide a way for the PME, or other client, to interpret the meaning of a Phase
label in terms of the physical characteristics of the Phase.

All arrays returned by this method must be of the same length, i.e. equal to the number of
Phase labels.

To get further information about a Phase, use the GetPhaselnfo method.

78

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

79

6.5 ICapeThermoPropertyRoutine

Any Component or object that can calculate a Physical Property must implement the
ICapeThermoPropertyRoutine interface. Within the scope of this specification this means
that it must be implemented by Calculation Routine components, Property Package
components and Material Object implementations that will be passed to clients which may
need to perform Property Calculations, such as Unit Operations [2] and Reaction Package
components [3].

When the 1CapeThermoPropertyRoutine interface is implemented by a Material Object, it is
expected that the actual Calculate, Check and Get functions will be delegated either to
proprietary methods within a PME or to methods in an associated CAPE-OPEN Property
Package or Calculation Routine component.

The following methods are described in this section:

CalcAndGetLnPhi
CalcSinglePhaseProp
CalcTwoPhaseProp
CheckSinglePhasePropSpec
CheckTwoPhasePropSpec
GetSinglePhasePropL.ist
GetTwoPhasePropL.ist

O0O000OD0D

80

CalcAndGetLnPhi

Interface Name ICapeThermoPropertyRoutine
Method Name CalcAndGetLnPhi

Returns -

Description

This method is used to calculate the natural logarithm of the fugacity coefficients (and
optionally their derivatives) in a single Phase mixture. The values of temperature, pressure
and composition are specified in the argument list and the results are also returned through

the argument list.

Arguments

Name Type Description

[in] phaseLabel CapeString Phase label of the Phase for which the properties are to
be calculated. The Phase label must be one of the
strings returned by the GetPhaseList method on the
ICapeThermoPhases interface.

[in] temperature CapeDouble The temperature (K) for the calculation.

[in] pressure CapeDouble The pressure (Pa) for the calculation.

[in] moleNumbers

CapeArrayDouble

Mole fractions of Compounds in the mixture.

[in] fFlags Capelnteger Code indicating whether natural logarithm of the
fugacity coefficients and/or derivatives should be
calculated (see notes).

[ACTUALLYout] | CapeArrayDouble | Natural logarithm of the fugacity coefficients (if

InPhi requested).

[ACTUALLYout] | CapeArrayDouble | Derivatives of natural logarithm of the fugacity

InPhiDT coefficients w.r.t. temperature (if requested).

[ACTUALLYout] | CapeArrayDouble | Derivatives of natural logarithm of the fugacity

InPhiDP coefficients w.r.t. pressure (if requested).

[ACTUALLYout] | CapeArrayDouble | Derivatives of natural logarithm of the fugacity

InPhiDn coefficients w.r.t. mole numbers (if requested).

Notes

This method is provided to allow the natural logarithm of the fugacity coefficient, which is
the most commonly used thermodynamic property, to be calculated and returned in a highly
efficient manner.

The temperature, pressure and composition (mole fractions) for the calculation are specified
by the arguments and are not obtained from the Material Object by a separate request. Note
that the moleNumbers argument should actually contain mole fractions. This inconsistency
in the argument name arises because the specification has been revised but it is desired to
keep the COM IDL unchanged.

Likewise, any quantities calculated are returned through the arguments and are not stored in
the Material Object. The state of the Material Object is not affected by calling this method. It

81

should be noted however, that prior to calling CalcAndGetLnPhi a valid Material Object
must have been defined by calling the SetMaterial method on the
ICapeThermoMaterialContext interface of the component that implements the
ICapeThermoPropertyRoutine interface. The compounds in the Material Object must have
been identified and the number of mole fraction values supplied in the moleNumbers
argument must be equal to the number of Compounds in the Material Object. It should not
be assumed that the mole fractions are normalized and values may also lie outside the range
0 to 1. If fractions are not normalized, or are outside the expected range, it is the
responsibility of the Property Package to decide how to deal with the situation.

The fugacity coefficient information is returned as the natural logarithm of the fugacity
coefficient. This is because thermodynamic models naturally provide the natural logarithm
of this quantity and also a wider range of values may be safely returned.

The quantities actually calculated and returned by this method are controlled by an integer
code fFlags. The code is formed by summing contributions for the property and each
derivative required using the enumerated constants eCapeCalculationCode (defined in the
Thermo version 1.1 IDL) shown in the following table. For example, to calculate log
fugacity coefficients and their T-derivatives the fFlags argument would be set to
CAPE_LOG_FUGACITY_COEFFICIENTS + CAPE_T_DERIVATIVE.

numerical
code value

no calculation CAPE_NO_CALCULATION 0
log fugacity CAPE_LOG_FUGACITY_COEFFICIENTS 1
coefficients

T-derivative CAPE_T_DERIVATIVE 2
P-derivative CAPE_P DERIVATIVE 4
mole number CAPE_MOLE_NUMBERS DERIVATIVES 8
derivatives

If CalcAndGetLnPhi is called with fFlags set to CAPE_NO_CALCULATION no property
values are returned; the CAPE_NO_CALCULATION is provided for completeness and is
generally not used.

The values returned by this method should be identical to the equivalent quantities returned
by the CalcSinglePhaseProp method with the same input information set on the Material
Obiject. In particular, this means that the mole number derivatives are evaluated for a total of
one mole of substance.

A typical sequence of operations for this method when implemented by a Property Package
component would be:

- Check that the phaseLabel specified is valid.

- Check that the moleNumbers array contains the number of values expected
(should be consistent with the last call to the SetMaterial method).

- Calculate the requested properties/derivatives at the T/P/composition specified in
the argument list.

- Store values for the properties/derivatives in the corresponding arguments.

Note that this calculation can be carried out irrespective of whether the Phase actually exists
in the Material Object.

82

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeLimitedimpl — Would be raised if the one or more of the properties requested cannot
be returned because the calculation is not implemented.

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. For example, the ICapeThermoMaterial interface has not been passed via
a SetMaterial call prior to calling this method.

ECapeFailedlInitialisation - The pre-requisites for the Property Calculation are not valid. For
example, the composition of the phase is not defined, the number of Compounds in the
Material Object is zero or not consistent with the moleNumbers argument or any other
necessary input information is not available.

ECapeThrmPropertyNotAvailable — At least one item in the requested properties cannot be
returned. This could be because the property cannot be calculated at the specified conditions
or for the specified Phase. If the property calculation is not implemented then
ECapeLimitedImpl should be returned.

ECapeSolvingError — One of the property calculations has failed. For example if one of the
iterative solution procedures in the model has run out of iterations, or has converged to a
wrong solution.

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
an unrecognised value, or UNDEFINED for the phaseLabel argument.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

83

CalcSinglePhaseProp

Interface Name ICapeThermoPropertyRoutine
Method Name CalcSinglePhaseProp

Returns -

Description

CalcSinglePhaseProp is used to calculate properties and property derivatives of a mixture in
a single Phase at the current values of temperature, pressure and composition set in the
Material Object. CalcSinglePhaseProp does not perform phase Equilibrium Calculations.

Arguments

Name Type Description

[in] props CapeArrayString The list of identifiers for the single-phase properties or
derivatives to be calculated. See sections 7.5.5 and 7.6
for the standard identifiers.

[in] phaseLabel CapeString Phase label of the Phase for which the properties are to
be calculated. The Phase label must be one of the
strings returned by the GetPhaseList method on the
ICapeThermoPhases interface and the phase must be
present in the Material Object.

Notes

CalcSinglePhaseProp calculates properties, such as enthalpy or viscosity that are defined for
a single Phase. Physical Properties that depend on more than one Phase, for example surface
tension or K-values, are handled by CalcTwoPhaseProp method.

Components that implement this method must get the input specification for the calculation
(temperature, pressure and composition) from the associated Material Object and set the
results in the Material Object.

Thermodynamic and Physical Properties Components, such as a Property Package or Prop-
erty Calculator, must implement the ICapeThermoMaterialContext interface so that an
ICapeThermoMaterial interface can be passed via the SetMaterial method.

The component that implements the 1CapeThermoPropertyRoutine interface (e.g. a Property
Package or Property Calculator) must also implement the ICapeThermoPhases interface so
that it is possible to get a list of supported phases. The phaseLabel passed to this method
must be one of the phase labels returned by the GetPhaseList method of the
ICapeThermoPhases interface and it must also be present in the Material Object, ie. one of
the phase labels returned by the GetPresentPhases method of the ICapeThermoMaterial
interface. This latter condition will be satisfied if the phase is made present explicitly by
calling the SetPresentPhases method or if any phase properties have been set by calling the
SetSinglePhaseProp or SetTwoPhaseProp methods.

A typical sequence of operations for CalcSinglePhaseProp when implemented by a Property
Package component would be:

- Check that the phaseLabel specified is valid.

84

- Use the GetTPFraction method (of the Material Object specified in the last call to the
SetMaterial method) to get the temperature, pressure and composition of the
specified Phase.

- Calculate the properties.

- Store values for the properties of the Phase in the Material Object using the
SetSinglePhaseProp method of the ICapeThermoMaterial interface.

CalcSinglePhaseProp will request the input Property values it requires from the Material
Object through GetSinglePhaseProp calls. If a requested property is not available, the
exception raised will be ECapeThrmPropertyNotAvailable. If this error occurs then the
Property Package can return it to the client, or request a different property. Material Object
implementations must be able to supply property values using the client’s choice of basis by
implementing conversion from one basis to another.

Clients should not assume that Phase fractions and Compound fractions in a Material Object
are normalised. Fraction values may also lie outside the range O to 1. If fractions are not
normalised, or are outside the expected range, it is the responsibility of the Property Package
to decide how to deal with the situation.

It is recommended that properties are requested one at a time in order to simplify error
handling. However, it is recognised that there are cases where the potential efficiency gains
of requesting several properties simultaneously are more important. One such example
might be when a property and its derivatives are required.

I a client uses multiple properties in a call and one of them fails then the whole call should
be considered to have failed. This implies that no value should be written back to the Mate-
rial Object by the Property Package until it is known that the whole request can be satisfied.

It is likely that a PME might request values of properties for a Phase at conditions of tem-
perature, pressure and composition where the Phase does not exist (according to the
mathematical/physical models used to represent properties). The exception
ECapeThrmPropertyNotAvailable may be raised or an extrapolated value may be returned.
It is responsibility of the implementer to decide how to handle this circumstance.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeLimitedimpl — Would be raised if the one or more of the properties requested cannot
be returned because the calculation (of the particular property) is not implemented. This
exception should also be raised (rather than ECapelnvalidArgument) if the props argument
IS not recognised because the list of properties in section 7.5.5 is not intended to be
exhaustive and an unrecognised property identifier may be valid. If no properties at all are
supported ECapeNolmpl should be raised (see above).

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. For example, the ICapeThermoMaterial interface has not been passed via
a SetMaterial call prior to calling this method.

ECapeFailedlInitialisation - The pre-requisites for the property calculation are not valid. For
example, the composition of the phases is not defined or any other necessary input informa-
tion is not available.

85

ECapeThrmPropertyNotAvailable — At least one item in the requested properties cannot be
returned. This could be because the property cannot be calculated at the specified conditions
or for the specified phase. If the property calculation is not implemented then
ECapeLimitedimpl should be returned.

ECapeSolvingError — One of the property calculations has failed. For example if one of the
iterative solution procedures in the model has run out of iterations, or has converged to a
wrong solution.

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
an unrecognised value or UNDEFINED for the phaseLabel argument or UNDEFINED for
the props argument.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

86

CalcTwoPhaseProp

Interface Name ICapeThermoPropertyRoutine
Method Name CalcTwoPhaseProp

Returns -

Description

CalcTwoPhaseProp is used to calculate mixture properties and property derivatives that depend on
two Phases at the current values of temperature, pressure and composition set in the Material Object.
It does not perform Equilibrium Calculations.

Arguments
Name Type Description
[in] props CapeArrayString The list of identifiers for properties to be calculated.

This must be one or more of the supported two-phase
properties and derivatives (as given by the
GetTwoPhasePropList method). The standard identifiers
for two-phase properties are given in section 7.5.6 and
7.6.

[in] phaseLabels CapeArrayString Phase labels of the phases for which the properties are
to be calculated. The phase labels must be two of the
strings returned by the GetPhaseList method on the
ICapeThermoPhases interface and the phases must also
be present in the Material Object.

Notes

CalcTwoPhaseProp calculates the values of properties such as surface tension or K-values.
Properties that pertain to a single Phase are handled by the CalcSinglePhaseProp method of
the ICapeThermoPropertyRoutine interface.Components that implement this method must
get the input specification for the calculation (temperature, pressure and composition) from
the associated Material Object and set the results in the Material Object.

Components such as a Property Package or Property Calculator must implement the
ICapeThermoMaterialContext interface so that an ICapeThermoMaterial interface can be
passed via the SetMaterial method.

The component that implements the 1CapeThermoPropertyRoutine interface (e.g. a Property
Package or Property Calculator) must also implement the 1CapeThermoPhases interface so
that it is possible to get a list of supported phases. The phaseLabels passed to this method
must be in the list of phase labels returned by the GetPhaseList method of the
ICapeThermoPhases interface and they must also be present in the Material Object, ie. in the
list of phase labels returned by the GetPresentPhases method of the ICapeThermoMaterial
interface. This latter condition will be satisfied if the phases are made present explicitly by
calling the SetPresentPhases method or if any phase properties have been set by calling the
SetSinglePhaseProp or SetTwoPhaseProp methods.

A typical sequence of operations for CalcTwoPhaseProp when implemented by a Property
Package component would be:

87

- Check that the phaseLabels specified are valid.

- Use the GetTPFraction method (of the Material Object specified in the last call to the
SetMaterial method) to get the temperature, pressure and composition of the
specified Phases.

- Calculate the properties.

- Store values for the properties in the Material Object using the SetTwoPhaseProp
method of the ICapeThermoMaterial interface.

CalcTwoPhaseProp will request the values it requires from the Material Object through
GetTPFraction or GetSinglePhaseProp calls. If a requested property is not available, the ex-
ception raised will be ECapeThrmPropertyNotAvailable. If this error occurs, then the
Property Package can return it to the client, or request a different property. Material Object
implementations must be able to supply property values using the client choice of basis by
implementing conversion from one basis to another.

Clients should not assume that Phase fractions and Compound fractions in a Material Object
are normalised. Fraction values may also lie outside the range 0 to 1. If fractions are not
normalised, or are outside the expected range, it is the responsibility of the Property Package
to decide how to deal with the situation.

It is recommended that properties are requested one at a time in order to simplify error
handling. However, it is recognised that there are cases where the potential efficiency gains
of requesting several properties simultaneously are more important. One such example
might be when a property and its derivatives are required.

If a client uses multiple properties in a call and one of them fails, then the whole call should
be considered to have failed. This implies that no value should be written back to the Mate-
rial Object by the Property Package until it is known that the whole request can be satisfied.

CalcTwoPhaseProp must be called separately for each combination of Phase groupings. For
example, vapour-liquid K-values have to be calculated in a separate call from liquid-liquid
K-values.

Two-phase properties may not be meaningful unless the temperatures and pressures of all
Phases are identical. It is the responsibility of the Property Package to check such conditions
and to raise an exception if appropriate.

It is likely that a PME might request values of properties for Phases at conditions of tem-
perature, pressure and composition where one or both of the Phases do not exist (according
to the mathematical/physical models used to represent properties). The exception
ECapeThrmPropertyNotAvailable may be raised or an extrapolated value may be returned.
It is responsibility of the implementer to decide how to handle this circumstance.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeLimitedimpl — Would be raised if the one or more of the properties requested cannot
be returned because the calculation (of the particular property) is not implemented. This
exception should also be raised (rather than ECapelnvalidArgument) if the props argument
is not recognised because the list of properties in section 7.5.6 is not intended to be

88

dentifier may be valid. If no properties at all are
supported ECapeNolmpl should be raised (see above).

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. For example, the ICapeThermoMaterial interface has not been passed via
a SetMaterial call prior to calling this method.

ECapeFailedlInitialisation - The pre-requisites for the property calculation are not valid. For
example, the composition of one of the Phases is not defined, or any other necessary input
information is not available.

ECapeThrmPropertyNotAvailable — At least one item in the requested properties cannot be
returned. This could be because the property cannot be calculated at the specified conditions
or for the specified Phase. If the property calculation is not implemented then
ECapeLimitedimpl should be returned.

ECapeSolvingError — One of the property calculations has failed. For example if one of the
iterative solution procedures in the model has run out of iterations, or has converged to a
wrong solution.

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
an unrecognised value or UNDEFINED for the phaseLabels argument or UNDEFINED for
the props argument.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

89

CheckSinglePhasePropSpec

Interface Name ICapeThermoPropertyRoutine
Method Name CheckSinglePhasePropSpec
Returns CapeBoolean

Description

Checks whether it is possible to calculate a property with the CalcSinglePhaseProp method for a
given Phase.

Arguments

Name Type Description

[in] property CapeString The identifier of the property to check. To be valid this
must be one of the supported single-phase properties or
derivatives (as given by the GetSinglePhasePropL.ist
method).

[in] phaseLabel CapeString The Phase label for the calculation check. This must be
one of the labels returned by the GetPhaseList method on
the 1CapeThermoPhases interface.

[out, retval] valid | CapeBoolean Set to True if the combination of property and phaseLabel
is supported or False if not supported.

Notes

The result of the check should only depend on the capabilities and configuration
(Compounds and Phases supported) of the component that implements the
ICapeThermoPropertyRoutine interface (e.g. a Property Package). It should not depend on
whether a Material Object has been set nor on the state (temperature, pressure, composition
etc.), or configuration of a Material Object that might be set.

It is expected that the PME, or other client, will use this method to check whether the prop-
erties it requires are supported by the Property Package when the package is imported. If any
essential properties are not available, the import process should be aborted.

If either the property or the phaseLabel arguments are not recognised by the component that
implements the 1CapeThermoPropertyRoutine interface this method should return False.

Exceptions

ECapeNolmpl —The operation CheckSinglePhasePropSpec is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapelnvalidArgument — One or more of the input arguments is not valid: for example,
UNDEFINED value for the property argument or the phaseLabel argument.

ECapeUnknown — The error to be raised when other error(s), specified for the
CheckSinglePhasePropSpec operation, are not suitable.

90

CheckTwoPhasePropSpec

Interface Name ICapeThermoPropertyRoutine
Method Name CheckTwoPhasePropSpec
Returns CapeBoolean

Description

Checks whether it is possible to calculate a property with the CalcTwoPhaseProp method for a given
set of Phases.

Arguments
Name Type Description
[in] property CapeString The identifier of the property to check. To be valid this

must be one of the supported two-phase properties
(including derivatives), as given by the
GetTwoPhasePropList method.

[in] phaseLabels | CapeArrayString Phase labels of the Phases for which the properties are to
be calculated. The Phase labels must be two of the
identifiers returned by the GetPhaseList method on the
ICapeThermoPhases interface.

[out, retval] valid | CapeBoolean Set to True if the combination of property and
phaseLabels is supported, or False if not supported.

Notes

The result of the check should only depend on the capabilities and configuration
(Compounds and Phases supported) of the component that implements the
ICapeThermoPropertyRoutine interface (e.g. a Property Package). It should not depend on
whether a Material Object has been set nor on the state (temperature, pressure, composition
etc.), or configuration of a Material Object that might be set.

It is expected that the PME, or other client, will use this method to check whether the
properties it requires are supported by the Property Package when the Property Package is
imported. If any essential properties are not available, the import process should be aborted.

If either the property argument or the values in the phaseLabels arguments are not
recognised by the component that implements the 1CapeThermoPropertyRoutine interface
this method should return False.

Exceptions

ECapeNolmpl — The operation CheckTwoPhasePropSpec is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation. This
may be the case if no two-phase property is supported.

ECapelnvalidArgument — One or more of the input arguments is not valid. For example,
UNDEFINED value for the property argument or the phaseLabels argument or number of
elements in phaseLabels array not equal to two.

ECapeUnknown — The error to be raised when other error(s), specified for the
CheckTwoPhasePropSpec operation, are not suitable.

91

GetSinglePhasePropList

Interface Name ICapeThermoPropertyRoutine
Method Name GetSinglePhasePropList
Returns CapeArrayString

Description

Returns the list of supported non-constant single-phase Physical Properties.

Arguments

Description

[out, retval] props | CapeArrayString List of all supported non-constant single-phase
property identifiers. The standard single-phase
property identifiers are listed in section 7.5.5.

Notes
A non-constant property depends on the state of the Material Object.

Single-phase properties, e.g. enthalpy, only depend on the state of one phase.
GetSinglePhasePropList must return all the single-phase properties that can be calculated by
CalcSinglePhaseProp. If derivatives can be calculated these must also be returned. The list
of standard property identifiers in section 7.5.5 also contains properties such as temperature,
pressure, fraction, phaseFraction, flow and totalFlow that are not usually calculated by the
CalcSinglePhaseProp method and hence these property identifiers would not be returned by
GetSinglePhasePropList. These properties would normally be used in calls to the
Set/GetSinglePhaseProp methods of the ICapeThermoMaterial interface.

If no single-phase properties are supported this method should return UNDEFINED.
To get the list of supported two-phase properties, use GetTwoPhasePropList.

A component that implements this method may return non-constant single-phase property
identifiers which do not belong to the list defined in section 7.5.5. However, these
proprietary identifiers may not be understood by most of the clients of this component.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetSinglePhasePropList operation, are not suitable.

92

GetTwoPhasePropList

Interface Name ICapeThermoPropertyRoutine
Method Name GetTwoPhasePropL.ist

Returns CapeArrayString

Description

Returns the list of supported non-constant two-phase properties.

Arguments

Description

[out, retval] props | CapeArrayString List of all supported non-constant two-phase
property identifiers. The standard two-phase
property identifiers are listed in section 7.5.6.

Notes

A non-constant property depends on the state of the Material Object. Two-phase properties
are those that depend on more than one co-existing phase, e.g. K-values.

GetTwoPhasePropList must return all the properties that can be calculated by
CalcTwoPhaseProp. If derivatives can be calculated, these must also be returned.

If no two-phase properties are supported this method should return UNDEFINED.

To check whether a property can be evaluated for a particular set of phase labels use the
CheckTwoPhasePropSpec method.

A component that implements this method may return non-constant two-phase property
identifiers which do not belong to the list defined in section 7.5.6. However, these
proprietary identifiers may not be understood by most of the clients of this component.

To get the list of supported single-phase properties, use GetSinglePhasePropL.ist.
Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetTwoPhasePropL.ist operation, are not suitable.

93

6.6 ICapeThermoEquilibriumRoutine

Any component or object that can perform an Equilibrium Calculation must implement the
ICapeThermoEquilibriumRoutine interface. Within the scope of this specification, this
means that it must be implemented by Equilibrium Calculator components, Property
Package components and by Material Object implementations that will be passed to clients
which may need to perform Equilibrium Calculations, such as Unit Operations [2].

When a Material Object implements the 1CapeThermoEquilibriumRoutine interface, it is
expected that the methods will be delegated either to proprietary methods within a PME, or
to methods in an associated CAPE-OPEN Property Package or Equilibrium Calculator
component.

o CalcEquilibrium
0 CheckEquilibriumSpec

94

Interface Name
Method Name

Returns

Description

CalcEquilibrium

ICapeThermoEquilibriumRoutine

CalcEquilibrium

CalcEquilibrium is used to calculate the amounts and compositions of Phases at equilibrium.
CalcEquilibrium will calculate temperature and/or pressure if these are not among the two
specifications that are mandatory for each Equilibrium Calculation considered.

Arguments

Name
[in]specificationl

Type
CapeArrayString

Description

First specification for the Equilibrium Calculation. The
specification information is used to retrieve the value of
the specification from the Material Object. See below
for details.

[in]specification2

CapeArrayString

Second specification for the Equilibrium Calculation in
the same format as specificationl.

[in]solutionType

CapeString

The identifier for the required solution type. The
standard identifiers are given in the following list:

Unspecified
Normal
Retrograde

The meaning of these terms is defined below in the
notes. Other identifiers may be supported but their
interpretation is not part of the CO standard.

Notes

The specificationl and specification2 arguments provide the information necessary to
retrieve the values of two specifications, for example the pressure and temperature, for the
Equilibrium Calculation. The CheckEquilibriumSpec method can be used to check for
supported specifications. Each specification variable contains a sequence of strings in the
order defined in the following table (hence, the specification arguments may have 3 or 4

items):

item

meaning

property identifier

The property identifier can be any of the identifiers listed in section 7.5.5 but
only certain property specifications will normally be supported by any
Equilibrium Routine.

basis

The basis for the property value. Valid settings for basis are given in section
7.4. Use UNDEFINED as a placeholder for a property for which basis does
not apply. For most Equilibrium Specifications, the result of the calculation
is not dependent on the basis, but, for example, for phase fraction
specifications the basis (Mole or Mass) does make a difference.

95

phase label

“Overall”.

The phase label denotes the Phase to which the specification applies. It must
either be one of the labels returned by GetPresentPhases, or the special value

compound
(optional)

identifier

The compound identifier allows for specifications that depend on a particular
Compound. This item of the specification array is optional and may be
omitted. In case of a specification without compound identifier, the array
element may be present and empty, or may be absent.

Some examples of typical phase equilibrium specifications are given in the table below.

water

Type of phase

equilibrium

calculation specificationl specification2 Comments

Fixed temperature pressure

temperature and | UNDEFINED UNDEFINED

pressure Overall Overall

Fixed pressure pressure enthalpy UNDEFINED is used as the basis for

and enthalpy UNDEFINED UNDEFINED the enthalpy specification because the

Overall Overall result of the calculation does not de-

pend on the basis (i.e.
CalcEquilibrium can request the
enthalpy from a Material Object on
any basis using the GetOverallProp
method)

Fixed temperature enthalpy

temperature and | UNDEFINED UNDEFINED

enthalpy Overall Overall

Fixed temperature phaseFraction 1. Assumes Phase label of the vapour

temperature and | UNDEFINED Mole Phase is “gas”

C;?g;:?ﬁ:szn of | Overall gas 2. The value of the I_:’hase fractiqn
must have been set in the Material
Object. For a dew point this would be
1.0, for a bubble point it would be 0.0
and it could be set to any value in
between. The basis setting indicates
that the specification is for phase
fraction on a molar basis.

Fixed pressure pressure activityCoefficient | 1. Assumes Phase label of the

and activity of UNDEFINED UNDEFINED aqueous Phase is “AqueousLiquid”

water Overall AqueousLiquid

2. The value of the activity coefficient
for water must have been set in the
Material Object.

The values corresponding to the specifications in the argument list and the overall
composition of the mixture must be set in the associated Material Object before a call to

CalcEquilibrium.

Components such as a Property Package or an Equilibrium Calculator must implement the
ICapeThermoMaterialContext interface, so that an ICapeThermoMaterial interface can be

96

passed via the SetMaterial method. It is the responsibility of the implementation of
CalcEquilibrium to validate the Material Object before attempting a calculation.

The Phases that will be considered in the Equilibrium Calculation are those that exist in the
Material Object, i.e. the list of phases specified in a SetPresentPhases call. This provides a
way for a client to specify whether, for example, a vapour-liquid, liquid-liquid, or vapour-
liquid-liquid calculation is required. CalcEquilibrium must use the GetPresentPhases method
to retrieve the list of Phases and the associated Phase status flags. The Phase status flags may
be used by the client to provide information about the Phases, for example whether estimates
of the equilibrium state are provided. See the description of the GetPresentPhases and
SetPresentPhases methods of the ICapeThermoMaterial interface for details. When the
Equilibrium Calculation has been completed successfully, the SetPresentPhases method
must be used to specify which Phases are present at equilibrium and the Phase status flags
for the phases should be set to Cape_AtEquilibrium. This must include any Phases that are
present in zero amount such as the liquid Phase in a dew point calculation.

Some types of Phase equilibrium specifications may result in more than one solution. A
common example of this is the case of a dew point calculation. However, CalcEquilibrium
can provide only one solution through the Material Object. The solutionType argument
allows the “Normal” or “Retrograde” solution to be explicitly requested. The following
definitions are intended for use when one of the specifications includes a phase fraction and
the other is temperature or pressure.

Specification Normal Retrograde

Tand Fv ﬁj <0 aFVJ -0
p) »).

rand) o W)
op), op),

Tand F, % 0 @J -0
ap T p T

P and Fv oF, S0 (aF\,) <0
or), ot),

Pand F_ ﬁj <0 oF, -0
ot J, oT),

P and Fq (@j <0 (@j 0
ar J, B ar J,

where Fy is a vapor phase fraction, F_ is a liquid phase fraction and Fs is a solid phase
fraction. The derivatives are at equilibrium states. When none of the specifications includes
a phase fraction and P or T, the solutionType argument should be set to “Unspecified”.

97

CalcEquilibrium must set the amounts (phase fractions), compositions, temperature and
pressure for all Phases present at equilibrium, as well as the temperature and pressure for the
overall mixture if not set as part of the calculation specifications. It must not set any other
values — in particular it must not set any values for phases that are not present.

As an example, the following sequence of operations might be performed by
CalcEquilibrium in the case of an Equilibrium Calculation at fixed pressure and temperature:

- With the ICapeThermoMaterial interface of the supplied Material Object:

- Use the GetPresentPhases method to find the list of Phases that the Equilibrium
Calculation should consider.

- With the ICapeThermoCompounds interface of the Material Object use the
GetCompoundList method to find which Compounds are present.

- Use the GetOverallProp method to get the temperature, pressure and composition
for the overall mixture.

- Perform the Equilibrium Calculation.

- Use SetPresentPhases to specify the Phases present at equilibrium and set the
Phase status flags to Cape_AtEquilibrium.

- Use SetSinglePhaseProp to set pressure, temperature, Phase amount (or Phase
fraction) and composition for all Phases present.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. The ICapeThermoMaterial interface has not been passed via a SetMaterial
call prior to calling this method.

ECapeSolvingError — The Equilibrium Calculation could not be solved. For example if the
solver has run out of iterations, or has converged to a trivial solution.

ECapeLimitedimpl — Would be raised if the Equilibrium Routine is not able to perform the
flash it has been asked to perform. For example, the values given to the input specifications
are valid, but the routine is not able to perform a flash given a temperature and a Compound
fraction. That would imply a bad usage or no usage of CheckEquilibriumSpec method,
which is there to prevent calling CalcEquilibrium for a calculation which cannot be
performed.

ECapelnvalidArgument — To be used when an invalid argument value is passed. It would be
raised, for example, if a specification identifier does not belong to the list of recognised
identifiers. It would also be raised if the value given to argument solutionType is not among
the three defined, or if UNDEFINED was used instead of a specification identifier.

ECapeFailedlInitialisation - The pre-requisites for the Equilibrium Calculation are not valid.
For example:

e The overall composition of the mixture is not defined.

e The Material Object (set by a previous call to the SetMaterial method of the
ICapeThermoMaterialContext interface) is not valid. This could be because no

98

Phases are present or because the Phases present are not recognised by the
component that implements the ICapeThermoEquilibriumRoutine interface.

e Any other necessary input information is not available.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

99

CheckEquilibriumSpec

Interface Name ICapeThermoEquilibriumRoutine
Method Name CheckEquilibriumSpec

Returns CapeBoolean

Description

Checks whether the Property Package can support a particular type of Equilibrium Calculation.

Arguments
Name Type Description
[in]specificationl | CapeArrayString | First specification for the Equilibrium Calculation.

[in]specification2 | CapeArrayString | Second specification for the Equilibrium Calculation.

[in]solutionType CapeString The required solution type.
[out, retval] CapeBoolean Set to True if the combination of specifications and
isSupported solutionType is supported for a particular combination of

present phases or False if not supported.

Notes

The meaning of the specificationl, specification2 and solutionType arguments is the same as
for the CalcEquilibrium method. If solutionType, specificationl and specification2
arguments appear valid but the actual specifications are not supported or not recognised a
False value should be returned.

The result of the check should depend primarily on the capabilities and configuration
(compounds and phases supported) of the component that implements the 1CapeThermo-
EquilibriumRoutine interface (egg. a Property package). A component that supports
calculation specifications for any combination of supported phases is capable of checking
the specification without any reference to a Material Object. However, it is possible that
there may be restrictions on the combinations of phases supported in an equilibrium
calculation. For example a component may support vapor-liquid and liquid-liquid
calculations but not vapor-liquid-liquid calculations. In general it is therefore a necessary
prerequisite that a Material Object has been set (using the SetMaterial method of the
ICapeThermoMaterialContext interface) and that the SetPresentPhases method of the
ICapeThermoMaterial interface has been called to specify the combination of phases for the
equilibrium calculation. The result of the check should not depend on the state (temperature,
pressure, composition etc.) of the Material Object.

Exceptions

ECapeNolmpl — The operation is “not” implemented even if this method can be called for
reasons of compatibility with the CAPE-OPEN standards. That is to say that the operation
exists, but it is not supported by the current implementation.

ECapelnvalidArgument — To be used when an invalid argument value is passed, for example
UNDEFINED for solutionType, specificationl or specification2 argument.

ECapeBadInvOrder - The necessary pre-requisite operation has not been called prior to the
operation request. E.g. the ICapeThermoMaterial interface has not been passed via a
SetMaterial call prior to calling this method.

ECapeUnknown — The error to be raised when other error(s), specified for this operation, are
not suitable.

100

6.7 ICapeThermoUniversalConstants

Any component that can return the value of a Universal Constant can implement the
ICapeThermoUniversalConstants interface in order that clients can access these values. This
interface is optional for all components. It is recommended that it is implemented by
Property Package components and Material Objects being used by CAPE-OPEN Unit
Operations.

The following methods are described in this section:

o GetUniversalConstant
a GetUniversalConstantList

101

GetUniversalConstant

Interface Name ICapeThermoUniversalConstants
Method Name GetUniversalConstant

Returns CapeVariant

Description

Retrieves the value of a Universal Constant.

Arguments
Name Type Description
[in] constantld CapeString Identifier of Universal Constant. The list of constants
supported should be obtained by using the
GetUniversalConstantList method.
[out, retval] CapeVariant Value of Universal Constant. This could be a humeric or
constantValue a string value. For numeric values the units of
measurement are specified in section 7.5.1.
Notes

Universal Constants (often called fundamental constants) are quantities like the gas constant,
or the Avogadro constant.

Exceptions

ECapeNolmpl —The operation GetUniversalConstant is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapelnvalidArgument —for example, UNDEFINED for constantld argument is used, or
value for constantld argument does not belong to the list of recognised values.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetUniversalConstant operation, are not suitable.

102

GetUniversalConstantList

Interface Name ICapeThermoUniversalConstants
Method Name GetUniversalConstantList

Returns CapeArrayString

Description

Returns the identifiers of the supported Universal Constants.

Arguments
Description
[out, retval] CapeArrayString | List of identifiers of Universal Constants. The list of
constantlds standard identifiers is given in section 7.5.1.
Notes

A component may return Universal Constant identifiers that do not belong to the list defined
in section 7.5.1. However, these proprietary identifiers may not be understood by most of the
clients of this component.

Exceptions

ECapeNolmpl —The operation GetUniversalConstantList is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation. This
may occur when the Property Package does not support any Universal Constants, or if it
does not want to provide values for any Universal Constants which may be used within the
Property Package.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetUniversalConstantList operation, are not suitable.

103

6.8 ICapeThermoPropertyPackageManager

The 1CapeThermoPropertyPackageManager interface should only be implemented by a
Property Package Manager component. This interface is used to access the Property
Packages managed by such a component.

The following methods are described in this section:

o GetPropertyPackageL.ist
o GetPropertyPackage

104

GetPropertyPackagelist

Interface Name ICapeThermoPropertyPackageManager
Method Name GetPropertyPackageL.ist

Returns CapeArrayString

Description

Retrieves the names of the Property Packages being managed by a Property Package Manager
component.

Arguments
Description
[out, retval] CapeArrayString The names of the managed Property Packages
PackageNames
Notes

If no packages are managed by the Property Package Manager UNDEFINED should be
returned.

Exceptions

ECapeNolmpl —The operation GetPropertyPackageList is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetPropertyPackageL.ist operation, are not suitable.

105

GetPropertyPackage

Interface Name ICapeThermoPropertyPackageManager
Method Name GetPropertyPackage

Returns Capelnterface

Description

Creates a new instance of a Property Package with the configuration specified by the
PackageName argument.

Arguments
Name Type Description
[in] PackageName | CapeString The name of one of the Property Packages managed by
this Property Package Manager component.
[out, retval] Capelnterface The 1CapeThermoPropertyRoutine interface of the
Package named Property Package.
Notes

The Property Package Manager is only an indirect mechanism to create Property Packages.
After the Property Package has been created, the Property Package Manager instance can be
destroyed, and this will not affect the normal behaviour of the Property Packages.

Exceptions

ECapeNolmpl —The operation GetPropertyPackage is “not” implemented even if this
method can be called for reasons of compatibility with the CAPE-OPEN standards. That is
to say that the operation exists, but it is not supported by the current implementation.

ECapeFailedlInitialisation — This error should be returned if the Property Package cannot be
created for any reason.

ECapelnvalidArgument — This error will be returned if the name of the Property Package
asked for does not belong to the list of recognised names. Comparison of names is not case
sensitive.

ECapeUnknown — The error to be raised when other error(s), specified for the
GetPropertyPackage operation, are not suitable.

106

7. Property Descriptions

7.1 Case-sensitivity of identifiers

Although the identifiers listed in this section are shown in a combination of lower- and
upper-case characters, all identifiers must be treated as case-independent in any
implementation of the interfaces described in this document.

7.2 Units of measurement

The units of measurement for all properties are base Sl units. The unit to be used for each
property is listed along with the property identifier in these appendices. For more
information on units refer to the Bureau International des Poids et Mesures website
http://www.bipm.fr/enus/3_Sl/si.html.

7.3 UNDEFINED interpretation

Be aware that the UNDEFINED value depends on the type of the corresponding argument.
This special value is described in [8]. Reference [8] does not include an interpretation of
UNDEFINED for a Capelnterface. For COM this is NULL (Empty object for VB).

UNDEFINED is only used when one of the arguments is irrelevant for the particular
method, such as basis for the Temperature property.

UNDEFINED is never allowed in the property/ies or phases qualifiers.
UNDEFINED must not be used to express a default value.

UNDEFINED must also be used when an argument type is CapeArray and its length is 0
(otherwise VB has problems).

7.4 Identifiers for Basis

The following strings or placeholder may be used for the basis argument of the methods
described in this document.

Identifier Meaning

Mole molar basis

Mass mass basis

UNDEFINED basis does not apply to the property

107

7.5 Property Identifiers

7.5.1 Universal constants

The following constants are returned by the GetUniversalConstant method of the
ICapeThermoUniversalConstants interface. The possible return types are Double or String.
Note: only the units of measurement are specified in the CAPE-OPEN standards, not the
values.

Identifier typical value units return type
avogadroConstant 6.022 141 99(47)x1023 | 1/mol Double
boltzmannConstant 1.380 6503(24)x10-23 | J/K Double
idealGasStateReferencePressure | 101325 Pa Double
molarGasConstant 8.314 472(15) J/mol! K Double
speedOfLightinVacuum 2.99792458(1)x108 m/s Double
standardAccelerationOfGravity | 9.806 65 m /s2 Double

7.5.2 Pure compound constant properties

STRING-VALUED PROPERTIES

The following properties are returned as string values by the GetCompoundConstant method
of the ICapeThermoCompounds interface:

Identifier meaning

casRegistryNumber Chemical Abstract Service Registry Number
chemicalFormula Chemical formula

iupacName Complete IUPAC Name

SMILESformula SMILES chemical structure formula

CASRegistryNumber

The value of this constant is a variable-length character string that contains a sequence of 3
numbers separated by hyphens. There must be no leading zeros and no leading spaces. The
intention is that it should be possible to compare two CAS numbers with a simple string
comparison

CAS numbers and other properties are accessible at
http://webbook.nist.gov/chemistry

Compounds can also be accessed directly. For example, compounds with the formula
C10H22 can be located with

http://webbook.nist.gov/cgi/cbook.cgi?Formula=c10h22&Nolon=o0n&Units=SI
or compounds can be located by name. For example

http://webbook.nist.gov/cqgi/cbook.cqgi?Name=water&Units=SlI

CAS numbers can be undefined, for example for petroleum fractions, in which case
comparison has to be done by looking at constant properties.

108

ChemicalFormula

The formula is delivered in Hill nomenclature [10]: organic compounds: first C, then H,
other atoms alphabetical; inorganic compounds: all atoms alphabetical.

It is not obligatory to specify unitary atomicities explicitly. For example, the formula for
carbon dioxide may be returned as CO2 or C102. The formula string must be case-sensitive
so that it is possible to distinguish between cases such as Co (cobalt) and CO (carbon
monoxide).

The atomicity may be non-integer, eg. Fep9470 should be represented as Fe0.9470. The
decimal separator in the character string that represents the non-integer atomicity must be a
period (decimal point).

iupacName

Name assigned in accordance with the recommendations of IUPAC Blue Book [15, 16] for
organic compounds and the IUPAC Red Book [14] for inorganic compounds. The Blue book
is available online at http://www.acdlabs.com/iupac/nomenclature/ and the acdlabs website
also has software that can be used to derive the IUPAC name for an organic compound.

SMILESformula

The Simplified Molecular Input Line Entry Specification that represents the structure of the
molecule [9].

109

PROPERTIES WITH NUMERICAL VALUES

The following properties are returned by the GetCompoundConstant method of the

ICapeThermoCompounds interface as numerical (Double) values.

Identifier meaning units
acentricFactor Pitzer acentric factor
associationParameter association-parameter (Hayden-
O’Connell)
bornRadius m
charge
criticalCompressibilityFactor critical compressibility factor Z
criticalDensity critical density mol/m?
criticalPressure critical pressure Pa
criticalTemperature critical temperature K
critical\Volume critical volume m*/mol
diffusionVolume diffusion volume m®
dipoleMoment dipole moment Cm
energyLennardJones Lennard-Jones energy parameter | K
(divided by Boltzmann constant)
gyrationRadius radius of gyration m
heatOfFusionAtNormalFreezingPoint | enthalpy change on melting at normal | J/mol
freezing point (101325 Pa)
heatOfVaporizationAtNormalBoilingP | enthalpy change on vaporization at|J/mol
oint normal boiling point (101325 Pa)
idealGasEnthalpyOfFormationAt25C J/mol
idealGasGibbsFreeEnergyOfFormation J/mol
At25C
liquidDensityAt25C liquid density at 25 °C mol/m?
liquidVolumeAt25C liquid volume at 25 °C m*/mol
lengthLennardJones Lennard-Jones length parameter m
molecularWeight relative molar mass
normalBoilingPoint boiling point temperature at 101325 Pa |K
normalFreezingPoint melting point temperature at 101325 Pa K

parachor

Parachor

m3 kgo.25/(50.5
mol)

110

Identifier meaning units

standardEntropyGas Standard entropy of gas J/mol

standardEntropyLiquid standard entropy of liquid J/mol

standardEntropySolid standard entropy of solid J/mol

standardEnthalpyAqueousDilution Standard aqueous infinite dilution J/mol
enthalpy

standardFormationEnthalpyGas standard enthalpy change on formation | J/mol
of gas

standardFormationEnthalpyLiquid standard enthalpy change on formation | J/mol
of liquid

standardFormationEnthalpySolid standard enthalpy change on formation | J/mol
of solid

standardFormationGibbsEnergyGas standard Gibbs energy change on|J/mol
formation of gas

standardFormationGibbsEnergyLiquid |standard Gibbs energy change on |J/mol
formation of liquid

standardFormationGibbsEnergySolid |standard Gibbs energy change on |J/mol
formation of solid

standardGibbsAqueousDilution Standard aqueous infinite dilution | J/mol
Gibbs energy

triplePointPressure triple point pressure Pa

triplePointTemperature triple point temperature K

vanderwaalsArea van der Waals area m?/mol

vanderwaalsVolume van der Waals volume m*/mol

Standard conditions are 298.15 K (25 °C) and the pressure

returned by the
GetUniversalConstant method for the property idealGasStateReferencePressure. If this

property is not available a reference pressure of 101325 Pa (1 atm) may be assumed.

Note that the ‘standardFormationGibbsEnergyGas’, ‘standardFormationGibbsEnergyLiquid’

and ‘standardFormationGibbsEnergySolid’ identifiers respectively replace the
‘standardFreeFormationEnthalpyGas’, ‘standardFreeFormationEnthalpyLiquid’ and
‘standardFreeFormationEnthalpySolid’ identifiers used in previous versions of this

specification.

111

7.5.3

returned as numerical

Temperature-dependent pure compound properties

The following properties are
GetTDependentProperty method of the ICapeThermoCompounds interface:

(Double)

values Dby the

Identifier Meaning units
cpAqueouslinfiniteDilution Heat capacity of a solute in an infinitely | J/(mol K)
dilute aqueous solution.
dielectricConstant The ratio of the capacity of a condenser
with a particular substance as dielectric
to the capacity of the same condenser
with a vacuum for dielectric.
expansivity Coefficient of linear expansion for a 1/K
14
solid: Lar (where L is the length) at
1 atm
fugacityCoefficientOfVapor Fugacity coefficient of vapour on the
saturation line
glassTransitionPressure Glass transition pressure Pa
heatCapacityOfLiquid Heat capacity (Cp) of liquid on the J/(mol K)
saturation line
heatCapacityOfSolid Solid heat capacity (Cp) at 1 atm J/(mol K)
heatOfFusion Enthalpy change on fusion for the solid | J/mol
on the melting line
heatOfSublimation Enthalpy change on evaporation of the |J/mol
solid on the sublimation line
heatOfSolidSolidPhaseTransition Enthalpy change on phase transition J/mol
heatOfVaporization Enthalpy change on evaporation of the | J/mol
liquid on the saturation line
idealGasEnthalpy Enthalpy of ideal gas J/mol
idealGasEntropy Temperature-dependent part of entropy | J/(mol K)
of ideal gas
idealGasHeatCapacity Heat capacity (Cp) of ideal gas J/(mol K)
meltingPressure Pressure on melting line Pa
selfDiffusionCoefficientGas Self-diffusion coefficient in gas phase | m/s
at1atm
selfDiffusionCoefficientLiquid self-diffusion coefficient in liquid phase | m*/s
on saturation line
solidSolidPhaseTransitionPressure Pressure at phase transition Pa
sublimationPressure Vapour pressure of solid on the Pa
sublimation line
surfaceTensionSatLiquid Surface tension of liquid on the N/m
saturation line
thermalConductivityOfLiquid Thermal conductivity of liquid on W/(m K)
saturation line
thermalConductivityOfSolid Thermal conductivity of solid at 1 atm | W/(m K)
thermalConductivityOfVapor Thermal conductivity of dilute gas W/(m K)

112

Identifier Meaning units
vaporPressure Vapour pressure of saturated liquid Pa
virialCoefficient Second virial coefficient of gas m*/mol
viscosityOfLiquid Viscosity of liquid on saturation line Pas
viscosityOfVapor Viscosity in dilute gas state Pas
volumeChangeUponMelting Volume change for the solid on the m*/mol
melting line
volumeChangeUponSolidSolidPhaseTr | Volume change upon solid-solid phase | m*/mol
ansition transition
volumeChangeUponSublimation Volume change for the solid on the m*/mol
sublimation line
volumeChangeUponVaporization Volume change for the liquid on the m*/mol
saturation line
volumeOfLiquid Volume of liquid on saturation line m*/mol
volumeOfSolid Volume of solid at 1 atm m*/mol

The properties in the table above are independent of pressure. Properties like the perfect gas
heat capacity or virial coefficient are independent of pressure by definition. For properties at
a phase transition, the pressure is implied by the temperature. For example, the pressure for
the heatOfVaporization property is given by the vaporPressure property at the same
temperature.

If a software component requires the value of the pressure as part as the calculation of one of
the properties listed above, the software component is responsible for calculating the
pressure value.

7.5.4 Pressure-dependent pure compound properties

The following properties are returned as numerical (Double) values by the
GetPDependentProperty method of the 1CapeThermoCompounds interface:

Identifier Meaning units
boilingPointTemperature Temperature at liquid-vapour transition | K
glassTransitionTemperature Glass transition temperature K
meltingTemperature Temperature on melting line K
solidSolidPhaseTransitionTemperature | Temperature at phase transition K

The properties in the table above are independent of temperature. For properties at a phase
transition, the temperature is fixed by the pressure.

If a software component requires the value of the temperature as part as the calculation of
one of the properties listed above, the software component is responsible for calculating the
temperature value.

113

7.5.5 Non-constant single-phase mixture properties
See section 7.5.7 for more information on entries in this table.

type of
prop- |dimens over-
Identifier Meaning erty ionality | units basis all
activity Activity | 1 U
activityCoefficient Activity coefficient | 1 U
compressibilit 1(ov I 1/Pa U
P y Isothermal compressibility V[ﬁl
ibili PV
compressibilityFactor Compressibility factor Z =1~ I U Y
density Density | mol/m® mole/mass Y
diffusionCoefficient Binary diffusion coefficients for all species in I 2 m?/s U
mixture relative to all other species
dissociationConstant Chemical equilibrium constant corresponding to | | U
a dissociation reaction.
enthalpy Enthalpy (may or may not include the enthalpy |E J mole/mass Y
of formation)
enthalpyF Enthalpy, including the enthalpy of formation E J mole/mass Y
enthalpyNF Enthalpy, not including the enthalpy of E J mole/mass Y
formation
entropy Entropy (may or may not include the entropy of |E JIK mole/mass Y
formation)
entropyF Entropy, including the entropy of formation E JIK mole/mass Y
entropyNF Entropy, not including the entropy of formation |E JIK mole/mass Y
excessEnthalpy Excess enthalpy E J mole/mass
excessEntropy Excess entropy E JIK mole/mass
excessGibbsEnergy Excess Gibbs energy E J mole/mass

114

prop- |dimens over-

Identifier Meaning erty ionality | units basis all
excessHelmholtzEnergy Excess Helmholtz energy E J mole/mass
excessinternalEnergy Excess internal energy E J mole/mass
excessVolume Excess volume E m’ mole/mass
flow Flows of each Compound in a given Phase (or | E 1 mol/s mole/mass Y

the overall mixture)
fraction Molar (or mass) fractions of each Compound in |1 1 mole/mass Y

a given Phase (or the overall mixture)
fugacity Fugacity I Pa U
fugacityCoefficient Fugacity coefficient | U
gibbsEnergy Gibbs energy E J mole/mass Y
heatCapacityCp Heat capacity at constant pressure (Cp) E JIK mole/mass Y
heatCapacityCv Heat capacity at constant volume (Cv) E J K mole/mass Y
helmholtzEnergy Helmholtz energy E J mole/mass Y
internalEnergy Internal energy E J mole/mass Y
jouleThomsonCoefficient [6; j I K/Pa U

P),

logFugacity Natural logarithm of fugacity (expressed in Pa) |1 U
logFugacityCoefficient Natural logarithm of fugacity coefficient I U
meanActivityCoefficient The geometrical mean of the activity I U

coefficients of the ions in an electrolyte

solution.
molecularWeight Mixture average molecular weight (relative I U

molar mass)

115

type of

prop- |dimens over-

Identifier Meaning erty ionality | units basis all
osmoticCoefficient A measure of water activities, defined as, I U

¢ = - nw In (xw fw)/(ns 2vi)

where,

nyw is the moles of water; ng is the moles of

solute; xy is the mole fraction of water; fy is

the symmetric activity coefficient of water; v, is

the stoichiometric coefficient of component i.
pH pH I U
pOH pOH I U
phaseFraction The molar (or mass) fraction of the fluid thatis |1 mole/mass

in the specified phase
pressure Pressure | Pa) Y
speedOfSound Thermodynamic speed of sound w, where I m/s U

w? =(C,/C,)(v/M§B;) see [13]
temperature Temperature I K U Y
thermalConductivity Thermal conductivity I W/(mK) |U
totalFlow Matter flow of a Phase or the overall mixture E mol/s mole/mass Y
viscosity Viscosity I Pas U
volume Volume E m? mole/mass Y

116

7.5.6 Non-constant two-phase properties
See section 7.5.7 for more information on entries in this table.

type of
prop- |dimens
Identifier meaning erty ionality | units basis
kvalue Ratio of fugacity coefficients for a pair of I 1 U
phases defined as follows:
Ki =6,/ $1 where $u is the fugacity
coefficient of compound i in phase 1 and b is
the fugacity coefficient in phase 2
logKvalue Natural logarithm of K-value I 1 U
surfaceTension Interfacial tension for a pair of phases I N/m U

117

7.5.7 Notes

IDENTIFIERS

The identifiers in sections 7.5.5 and 7.5.6 include most of those used in previous versions of this
specification but there are some changes. Partial molar properties no longer have their own
identifiers because they can be identified as mole number derivatives of another property. The
Gibbs free energy and Helmholtz free energy are now identified by their recommended names of
Gibbs energy and Helmholtz energy. The “‘energy’ identifier has been replaced by ‘internalEnergy’.
The previous identifier of heatCapacity is changed to heatCapacityCp and the corresponding
heatCapacityCv has been added. The identifiers ‘dewPointPressure/Temperature’ and
‘boilingPointTemperature’ have been removed because these are the results of Equilibrium
Calculations rather than phase properties. They should be evaluated using the CalcEquilibrium
method of the ICapeThermoEquilibriumRoutine interface.

New property identifiers enthalpyF, entropyF, enthalpyNF and entropyNF have been added. The
enthalpy and entropy identifiers are still supported but it is not specified whether or not the
properties include the enthalpy/entropy of formation. However the properties must always
correspond to the ‘NF’ variant or always correspond to the ‘F’ variant. It is not permissible to
switch between the two.

TYPE OF PROPERTY

This column shows whether the property is extensive: E, or intensive: 1. An extensive property, like
the volume, depends directly on the quantity of material involved. By contrast, an intensive
property, such as the temperature or viscosity, is independent of the quantity of matter making up
the system

DIMENSIONALITY
The dimensionality of the property indicates whether it has a scalar, vector or higher-rank value.

For properties that are scalar quantities no entry is made.

1 indicates a vector quantity (rank 1 tensor) where the number of values is equal to the number of
compounds. Values are returned as a 1-dimensional array in the same order as the compounds.

2 indicates a rank 2 tensor quantity where the number of values is equal to the number of
compounds squared. The components of some quantity A are returned as a sequence of values in
the order: {a11, @21, ... an1, @12, A22, ... @n2, ..., &1n, @2n ... ann }. THis convention is extendable to higher-
rank quantities.

BASIS AND UNITS

The ‘Basis’ column shows the basis settings that may be used for each property. U means
UNDEFINED which is used when a molar or mass basis is not applicable.

For properties where only one basis is applicable, the units are fixed.

Extensive thermodynamic properties (enthalpy, entropy, volume etc.) may be expressed on a molar
or mass basis. The units shown must be changed to match the Basis setting: for a molar basis the
unit is divided by ‘mol’, for a ‘“mass’ basis the unit is divided by ‘kg’. For example, the property
‘enthalpy’ with a basis of ‘mole’ has units of J/mol and with a basis of ‘mass’ it has units of J/kg.

For intensive properties where there is a choice of ‘mole’ or ‘mass’ basis, the unit shown
corresponds to the molar basis and ‘kg’ must be substituted for ‘“mol’ if a mass basis is used.

118

OVERALL

Properties which are allowed in the GetOverallProp or SetOverallProp methods of the
ICapeThermoMaterial interface, are indicated by a Y entry in this column.

Overall properties are used as inputs to equilibrium calculations: the overall composition and the
flash constraints must be set on a material object before requesting an equilibrium calculation. In
addition, the equilibrium calculation must set overall pressure and temperature for the overall phase,
if not part of the flash specification.

Overall properties (total flow and composition, or compound flows, temperature, pressure, ...) are
the ones that are typically transported in streams in a flowsheet. Unit operations can assume that
feed streams are in equilibrium, and that the flow rate of the feeds are available. Upon calculation,
unit operation must perform an equilibrium calculation on the product streams, as well as set the
flow rate.

Calculation of overall properties cannot be requested on a Property Package by any of its clients.
The client needs to obtain the necessary bits of information from a Property Package that enable the
calculation overall properties, i.e. the client must iterate over all present phases, and ask for the
calculation by the Property Package of the property for each phase. The overall is calculated from
the contribution of each phase. For extensive properties, the overall value generally follows from
summation of the phase fractions times the phase properties; such summation being performed by
the client. Typically the overall property is desired at phase equilibrium; in this case, the client must
request the phase equilibrium calculation before calculating the overall property.

PHASE ORDER FOR TWO-PHASE PROPERTIES

Some of the two-phase properties listed in section 7.5.6 and all the composition derivatives depend
on the interpretation of phase order. When the definitions in section 7.5.6 refer to phase 1, this is the
first phase in the phaseLabels argument of the CalcTwoPhaseProp method of the
ICapeThermoPropertyRoutine interface. Phase 2 is the second phase in the phaseLabels argument.

FUGACITY

Section 7.5.5 includes four different identifiers that may be used to request information about the
fugacity of a compound in a mixture (fugacity, fugacityCoefficient, logFugacity and
logFugacityCoefficient). It is not the intention to imply that all of these properties should
necessarily be supported by components that implement the [CapeThermoPropertyRoutine
interface. The natural quantity that arises from most thermodynamic models of mixtures is the
logFugacityCoefficient. Unlike the fugacity itself this quantity is also well-defined at zero
concentration of a compound and the logarithmic form allows a wider range of numerical values to
be represented. It is therefore recommended that when a component supports any of these properties
at least the logFugcityCoefficient should be supported.

7.6 Derivatives

Derivatives are built from the property identifier: a point with a D meaning Derivative” and the
name for the independent variable. The only independent variables that may be specified are
temperature, pressure, and mole numbers or mole fractions, as shown in the table below.

Derivative identifier meaning units

property.Dtemperature derivative of property with respect to temperature | [property]/K
with pressure and composition fixed

property.Dpressure derivative of property with respect to pressure | [property]/Pa
with temperature and composition fixed

119

property.Dmoles derivatives of property with respect to mole | [property]/mol
number Kkeeping pressure and temperature and
other mole numbers fixed for a mixture containing
a total of one mole of material. For some property
H the ith element of derivative is

H.Dmoles, = h. = oM
8n p.T.n

i

For a two-phase property the mole number
derivatives are evaluated independently for each
phase by keeping the temperature and pressure of
both phases and the mole numbers in the other
phase fixed

Property.DmolFraction derivatives of property with respect to mole | [property]
fraction, keeping pressure and temperature and
other mole fractions fixed. The mole fractions are
therefore treated as independent variables. These
derivatives are a mathematical construction and do
not necessarily have a physical meaning. The
derivatives depend on the specific implementation
of the property in the property package and may
therefore not be unique. So mole fraction
derivatives from different Property Packages can’t
be expected to coincide in general. However they
should coincide as directional derivatives with
directions d that lie in the plane

The directional derivative is the scalar product of the
derivative (“gradient”) and the direction

d:
N, OH (X, Xy T, P
VHETP) 4=y A X TR
i=1 Xi
For some property H, the ith element of the
derivative is
H.DmolFraction =| 9 _OH (X, Xy
8Xi TP axi

J#I
For a two-phase property the mole number
derivatives are evaluated independently for each
phase by keeping the temperature and pressure of
both phases and the mole fractions in the other phase
fixed.

Derivatives of two-phase properties are not equilibrium derivatives. That means that composition
derivatives are evaluated independently for each phase keeping the temperature and pressure of
both phases and the composition of the other phase fixed. Similarly a temperature (or pressure)
derivative does not imply any change in the phase compositions or the pressure (or temperature).

120

For a two-phase property the derivatives with respect to temperature or pressure are the sum of the
derivatives for each phase even if the temperatures or pressures in both phases are not the same.

7.6.1 Basis and Units

The units for a derivative property depend on the units of the property itself, the basis specified and
the type of derivative, as shown in the table above. For example, enthalpy.Dtemperature on a molar
basis has units of J/(K mol) and on a mass basis it has units of J/(K kg).

For mole number derivatives the combination of basis and property type leads to a number of
possible combinations. The table below gives examples of all the possibilities.

Units of .Dmoles

Property type Basis Example of property derivative
Intensive UNDEFINED logFugacityCoefficient 1/mol
mole density (mol/m3)/mol
mass density (kg/m3)/mol
Extensive mole enthalpy J/mol

For extensive properties only the molar basis is allowed. This should be interpreted as the mole
number derivative of the extensive property for one mole of substance and it corresponds to a
partial molar property.

7.6.2 Number of values returned and order
The following rules apply.

o Dtemperature and Dpressure derivatives return the same number of values and in the same order
as the corresponding property. For example, enthalpy.Dtemperature will return a single value,
whereas fugacityCoefficient. Dtemperature will return a vector of values.

o Dmoles derivatives of scalar properties return a vector of values with the same number of
elements as there are compounds in the mixture. For example, enthalpy.Dmoles with a basis of
Mole will return a vector of the partial molar enthalpies containing as many values as there are
compounds.

o Dmoles derivatives of vector-valued mixture properties are, conceptually, a sequence of vectors.
The first vector returns the derivatives of all properties with respect to the mole number of the
first compound. The second vector returns the derivative with respect to the mole number of the
second compound, and so on. The actual representation of these values will be a single sequence
that contains all the values of these vectors as a one-dimensional array.

o For example, activity.Dmoles with respect to all compounds will return the following
values:
{5117521’531"'§n1’512’§227§32"'gn2’513’§23’g33"‘§n31“"§ln'52n’53n"'gnn’}

where the derivative of the activity of compound i with respect to the mole number of
compound j is

- 0a;
a =|—-
' on,
P.T Ny

121

o In general, Dmoles derivatives of a rank-m quantity are returned as a sequence of values
containing the components of a rank-m+1 quantity.

o For two-phase properties the mole number derivatives are returned w.r.t. the composition of
phase 1 followed by derivatives w.r.t. phase 2. The phase order is defined in the section Phase
order for two-phase properties in 7.5.7.

o The remarks for Dmoles derivatives in this section also apply to DmoleFraction derivatives.

8. Implementation of the Persistence Interface

It is expected that simulation environments will allow the possibility to store the current state of a
simulation case in order to be able to restore it at any time in the future. Thermodynamic software
components such as Property Packages are a part of the simulation case being saved. In addition to
storing the information required to recreate the thermodynamic software components (such as
CLSID and Property Package name), the information specific to the software component (such as
the content of the Property Package) should be stored along with the simulation case. This is
important to ensure consistency between simulation sessions in case the content of the Property
Package has been changed, but also to allow transfer of the simulation case from one computer
system to another.

Persistence may also help to preserve consistency of the simulation case over time. For example,
when thermodynamic software component versions change, a stored state of a previous version may
allow the thermodynamic software component to function in a manner consistent with the saved
version or, alternatively, it may issue an appropriate warning.

Therefore, it is recommended for thermodynamic software components (such as Property Packages)
to implement the Persistence Interfaces as described in Persistence Common Interface document
[19].

The following methods should be implemented: Load, Save, GetClassID, IsDirty, GetSizeMax
and, optionally, InitNew. Implementation of persistence also allows modification of the
thermodynamic software component’s configuration while it is part of the simulation case, e.g. via
the Edit method of 1CapeUtilities. Note that Property Packages should implement 1CapeUTtilities; as
such, it is possible for a Property Package to have Edit functionality as well as to expose parameters
[18]. For Property Packages allowing Edit functionality or modification by means of changing
parameter values, persistence is a prerequisite, as otherwise the modifications will be lost between
simulation sessions.

Implementation tips:
e The Load or (if Implemented) InitNew methods should be called before ICapeUtitilities::Initialize.
e The GetSizeMax method must be properly implemented as it is called by PMEs to allocate space for
storing the content of a PMC . If GetSizeMax returns too small a value, this may lead to allocation
failure.

8.1 Initialization and termination

A Property Package Manager software component is a top-level CAPE-OPEN object (or PMC primary
object as outlined in the Methods & Tools integrated Guidelines [8] documentation) and should therefore
implement the ICapeUtilities interface. For a stand-alone Property Package, this also holds. The simulation
environment is expected to call Initialize and Terminate on such objects.

A Property Package that is created from a Property Package Manager is, in accordance with the definition of

PMC primary objects and PMC secondary object in the also a top-level CAPE-OPEN object. Therefore, it is
expected of the Property Package to implement ICapeUtilities, and it is expected from the simulation

122

environment that initialization and termination (and possibly persistence) are performed for such Property
Packages as if it were a stand-alone Property Package.

123

© © N o a0 bk~ w D PE

11.
12.
13.
14.

15.

16.

17.

18.
19.

9. Bibliography
“Open Interface Specification Thermodynamic and Physical Properties v1.0”, CAPE-OPEN, 2002.
“Unit Operation Specification”, CAPE-OPEN, 2001.
“Open Interface Specification: Reactions Interface”, CAPE-OPEN, 2003.
“Open Interface Specification: Identification Common Interface”, CAPE-OPEN, 2003.
“Open Interface Specification: Error Common Interface”, CAPE-OPEN, 2003.
“Design Patterns”, Gamma, Helm, Johnson, Vlissedes, Addison-Wesley, 1995.
“Open Interface Specification: Petroleum Fractions Interface”, CAPE-OPEN, 2003.
“Methods & Tools Integrated Guidelines”, CAPE-OPEN, 2003.

http://www.daylight.com/smiles/f_smiles.html , see also: D. Weininger, "SMILES 1.Introduction and
Encoding Rules", J. Chem. Inf. Comput. Sci., 28, 31 (1988).

. Hill, J. “On A System Of Indexing Chemical Literature; Adopted By The Classification Division Of The

U. S. Patent Office”, Am. Chem. Soc. 22(8), 478-494 (1900).

“Thermodynamics and Physical Properties v1.1”, version 2.22, 23 October 2006.

“Errata and clarifications, Thermodynamics and Physical Properties v1.1”, version 1.11, 12 July 2008.
Rowlinson, J.S. and Swinton, F. L., “Liquids and Liquid Mixtures”, Butterworth Scientific (1982)

“Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H”, Pergamon Press, 1979. Edited
by J Rigaudy and S P Klesney. [ISBN 0-08-022369-9]

“A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993, Blackwell
Scientific Publications, 1993. Edited by R Panico, W H Powell and J C Richer. [ISBN 0-632-03488-2]

“Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005”, Royal Society of Chemistry,
2005. Edited by N G Connelly and T Damhus (with R M Hartshorn and A T Hutton) [ISBN 0-85404-
438-8].

“Open Interface Specification: Utilities Common Interface”, CAPE-OPEN, 2003.
Open Interface Specification: Parameter Common Interface, CAPE-OPEN 2003.

Open Interface Specification: Persistence Common Interface, CAPE-OPEN 2003

124

http://www.colan.org/Spec%2010/Unit%20Operations%20Interface%20Specification.pdf
http://www.colan.org/Spec%2010/Chemical%20Reactions%20Interface%20Specification.pdf
http://www.colan.org/Spec%2010/Petroleum%20Fractions%20Interface%20Specification.pdf
http://www.daylight.com/smiles/f_smiles.html
http://www.colan.org/Spec%2010/Persistence%20Common%20Interface.pdf

	1. Introduction
	2. Audience
	3. Glossary
	4. Scope
	5. Conceptual Object Model
	5.1 The Description of Material
	5.2 Material Object responsibilities
	5.2.1 Interfaces used by a Physical Property Calculator to access Material Objects
	5.2.2 Interfaces used by a Equilibrium Calculator to access Material Objects
	5.2.3 Interfaces used by a Unit Operation to access Material Objects
	5.2.4 Material Object behaviour

	5.3 Equilibrium Calculator component responsibilities
	5.4 Equilibrium Calculator behaviour
	5.5 Physical Property Calculator component responsibilities
	5.6 Physical Property Calculator behaviour
	5.7 Property Package Component responsibilities
	5.8 Property Package component behaviour
	5.9 Property Package Manager responsibilities
	5.10 COM Implementation details
	5.11 CORBA Implementation details

	6. Interface Reference
	6.1 ICapeThermoMaterial
	6.2 ICapeThermoMaterialContext
	6.3 ICapeThermoCompounds
	6.4 ICapeThermoPhases
	6.5 ICapeThermoPropertyRoutine
	6.6 ICapeThermoEquilibriumRoutine
	6.7 ICapeThermoUniversalConstants
	6.8 ICapeThermoPropertyPackageManager

	7. Property Descriptions
	7.1 Case-sensitivity of identifiers
	7.2 Units of measurement
	7.3 UNDEFINED interpretation
	7.4 Identifiers for Basis
	7.5 Property Identifiers
	7.5.1 Universal constants
	7.5.2 Pure compound constant properties
	String-valued properties
	Properties with numerical values

	7.5.3 Temperature-dependent pure compound properties
	7.5.4 Pressure-dependent pure compound properties
	7.5.5 Non-constant single-phase mixture properties
	7.5.6 Non-constant two-phase properties
	7.5.7 Notes
	Identifiers
	Type of property
	Dimensionality
	Basis and Units
	Overall
	Phase order for two-phase properties
	Fugacity

	7.6 Derivatives
	7.6.1 Basis and Units
	7.6.2 Number of values returned and order

	8. Implementation of the Persistence Interface
	9. Bibliography

