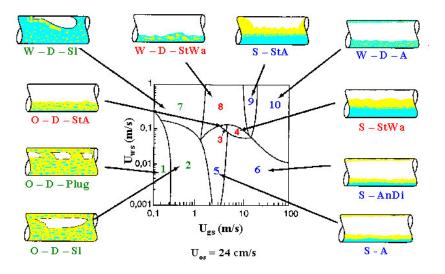
Hydro SIG

Special Interest Group of the CO-LaN dedicated to the development of hydrodynamic interface specification

п

Energies nouvelles

HYDRO SIG – TMF Meeting – September 2010



- CAPE-OPEN defines <u>rules</u> and <u>software interfaces</u> that allow CAPE (computer-aided process engineering) applications and components to interoperate
 - For Thermodynamic modules (Physical Property Packages)
 - For Unit operations (process equipment modules, sub-networks, ...)
- CAPE-OPEN adopted by most of the software industry involved in process simulation
- CO-LaN (CAPE-OPEN Laboratories Network)
 - Neutral industry and academic organization promoting the standard
 - Free use of the standard and documentations : www.colan.org
 - Special Interest Groups (SIGs) supervise standard evolutions
 - Thermo SIG, Unit SIG, Method and Tools SIG, <u>Hydro SIG</u>

- Pipeline hydrodynamics
 - Multiphase flow through pipes

Hydrodynamic Point Models

- 1 dimension correlations for characterizing flow within a pipe element
 - Calculate phase hold-ups, Average pressure drop, Flow pattern, ...
 - Empirical models: Taitel, Beggs&Brill, ...
 - Semi-mechanistic models: OLGAS 2P/3P (SPTGroup), TACITE Hydro (IFP Energies nouvelles), Leda Point Model (SINTEF), Unified Model (TULSA university), academic developments
- Correlations are used as closure laws by steady state and transient pipeline software modules

- Why a software standard for hydrodynamic point models?
 - To make easier the use of hydrodynamics
 - "Plug and play" with hydrodynamic components
- How to specify software interfaces for hydrodynamic point models?
 - Define relationships between hydrodynamic components, unit operations and process modeling environment
 - Take into account multiphase flow specificities such as emulsion, solid, bed and deposit
 - Specifications should be as general as possible to take into account both developer's and user's needs

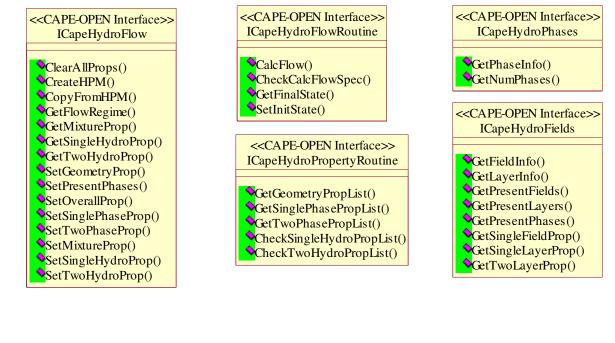
- Hydro SIG charter
- Charter for 2010
 - Develop hydrodynamic interface specification
- Key Responsibilities
 - Manage the development of the hydrodynamic interface specification
 - Develop prototypes to prove the applicability of the standard
 - Contact organizations and companies that may be interested in hydrodynamic interfaces and propose then to join the SIG (CO-LaN membership mandatory)
- Deliverables for 2010
 - Didactic documentation to promote the utility of the standard
 - Document describing the hydrodynamic interface specification and the main scenarios of usage for these interfaces
 - Scope of work, responsibilities and planning for the implementation of prototypes
 - Prototypes implementing the interface specification

Accomplishment

Current SIG members

- IFP Energies nouvelles (SIG leader up to now), SPT Group, Total, Kongsberg O&G Technology, RSI-Dynamic Simulation Solutions, Infochem Computer Services, SINTEF
- A draft of specification document now completed
 - Glossary: standard based on Layer, Field and Phase concept
 - 10 Use Cases identified
 - UC-001: HPM
 - UC-002: HPM association
 - UC-003: HPM validation
 - UC-004: Hydrodynamic calculation
 - UC-005: Impose flow regime
 - UC-006: Hydrodynamic specific property calculation
 - UC-007: Input properties
 - UC-008: Delivered properties
 - UC-009: Calculation initialization
 - UC-010: HPM tuning
 - This document needs to be reviewed and accepted by a large group of organizations involved in hydrodynamics

HYDRO SIG – TMF Meeting – September 2010


layer3	layer5 layer4	Present phases water liquid gas	
Layers		Fields	
Labellayer_1Volumetric fraction	value		
Field labels	field_1	Label field_1	
Volumetric fraction Stratified Annular Slug Pocket Continuous Dispersed Continuous field Length Fraction Interface perimeters Wet perimeter	value [1] Stratified Pocket No <i>field_1</i> value values [1] value	Phase labels Volumetric fraction Velocity Emulsion Continuous phase	water value [1] value No water

Current interfaces

- Hydrodynamic interfaces so far
 - Existing thermodynamic interfaces used if possible
 - Interface proposal

<<CAPE-OPEN Interface>> ICapeHydroPackageManager

HYDRO SIG – TMF M CetHPMPackage()

<<CAPE-OPEN Interface>> ICapeHydroContext

Current interfaces

Example

Interface Name	ICapeHydroFlowRoutine	
Method Name	CalcFlow	
Returns	CapeError	

Description

The Calculate method is used to compute the standard hydrodynamic properties: pressure drop, phase velocities and phase holdups.

Arguments

Name	Туре	Description	
[in] specification1	CapeString	First specification identifier for hydrodynamic calculation. below for details.	
[in] specification2	CapeString	Second specification identifier for hydrodynamic calculation. below for details.	
[in] <i>flowRegime</i>	CapeString	Specified flow regime identifier for calculation. May be UNDEFINED if no flow regime is specify for calculation.	

How to participate

To become a SIG member

- Industrial/academic organization should become a Corporate Associate Member of the CO-LaN
 - Membership is open to all process companies, process simulation and modelling software suppliers as well as academic organisations using, developing CAPE tools
 - No member fee for Corporate Associate Member
 - In kind contribution by participating to the activities
 - Telecom meeting, review of document, testing, prototyping, ...

For more information

- Visit: <u>www.colan.org</u>
- Contact
 - Martin Gainville: <u>martin.gainville@ifpenergiesnouvelles.fr</u>
 - Michel Pons: <u>technologyofficer@colan.org</u>

Thank you for your attention!

HYDRO SIG – TMF Meeting – September 2010

11